Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Transcriptome-wide identification of RNA-binding protein binding sites using seCLIP-seq

Abstract

Discovery of interaction sites between RNA-binding proteins (RBPs) and their RNA targets plays a critical role in enabling our understanding of how these RBPs control RNA processing and regulation. Cross-linking and immunoprecipitation (CLIP) provides a generalizable, transcriptome-wide method by which RBP/RNA complexes are purified and sequenced to identify sites of intermolecular contact. By simplifying technical challenges in prior CLIP methods and incorporating the generation of and quantitative comparison against size-matched input controls, the single-end enhanced CLIP (seCLIP) protocol allows for the profiling of these interactions with high resolution, efficiency and scalability. Here, we present a step-by-step guide to the seCLIP method, detailing critical steps and offering insights regarding troubleshooting and expected results while carrying out the ~4-d protocol. Furthermore, we describe a comprehensive bioinformatics pipeline that offers users the tools necessary to process two replicate datasets and identify reproducible and significant peaks for an RBP of interest in ~2 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of CLIP methods.
Fig. 2: Overview of the seCLIP protocol.
Fig. 3: Overview of the eCLIP bioinformatics workflow.
Fig. 4: Overview of files required to assess irreproducibility statistics.
Fig. 5: Comparative visualization of biotin-labeled RNA detected by streptavidin-HRP and radiolabeled RNA.
Fig. 6: Representative expected results from an seCLIP experiment and analysis.

Similar content being viewed by others

Data availability

ENCODE3 eCLIP data can be found through the ENCODE portal (encodeproject.org) by using the search term ‘eCLIP’ and have been published previously11,29. seCLIP data referenced in Fig. 4 are available through GEO under the accession number GSE180686.

Code availability

All code is made freely and publicly available under the BSD-3 license. Custom scripts and workflow definition files described in this paper may be found at https://doi.org/10.5281/zenodo.507659149. Up-to-date versions may be found on GitHub at https://github.com/yeolab/eclip.

References

  1. Gerstberger, S., Hafner, M. & Tuschl, T. A census of human RNA-binding proteins. Nat. Rev. Genet. 15, 829–845 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Hentze, M. W., Castello, A., Schwarzl, T. & Preiss, T. A brave new world of RNA-binding proteins. Nat. Rev. Mol. Cell Biol. 19, 327–341 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Lukong, K. E., Chang, K., Khandjian, E. W. & Richard, S. RNA-binding proteins in human genetic disease. Trends Genet. 24, 416–425 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Nussbacher, J. K., Batra, R., Lagier-Tourenne, C. & Yeo, G. W. RNA-binding proteins in neurodegeneration: Seq and you shall receive. Trends Neurosci. 38, 226–236 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brinegar, A. E. & Cooper, T. A. Roles for RNA-binding proteins in development and disease. Brain Res. 1647, 1–8 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Conlon, E. G. & Manley, J. L. RNA-binding proteins in neurodegeneration: mechanisms in aggregate. Genes Dev. 31, 1509–1528 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee, F. C. Y. & Ule, J. Advances in CLIP technologies for studies of protein–RNA interactions. Mol. Cell 69, 354–369 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Ule, J. et al. CLIP identifies Nova-regulated RNA networks in the brain. Science 302, 1212–1215 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Van Nostrand, E. L. et al. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat. Methods 13, 508–514 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Van Nostrand, E. L. et al. Robust, cost-effective profiling of RNA binding protein targets with single-end crosslinking and immunoprecipitation (seCLIP). Methods Mol. Biol. 1648, 177–200 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Van Nostrand, E. L. et al. Principles of RNA processing from analysis of enhanced CLIP maps for 150 RNA binding proteins. Genome Biol. 21, 90 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Shah, A., Qian, Y., Weyn-Vanhentenryck, S. M. & Zhang, C. CLIP Tool Kit (CTK): a flexible and robust pipeline to analyze CLIP sequencing data. Bioinformatics 33, 566–567 (2017).

    CAS  PubMed  Google Scholar 

  13. Haberman, N. et al. Insights into the design and interpretation of iCLIP experiments. Genome Biol. 18, 7 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Wheeler, E. C., Van Nostrand, E. L. & Yeo, G. W. Advances and challenges in the detection of transcriptome-wide protein-RNA interactions. Wiley Interdiscip. Rev. RNA 9, 397–414 (2018).

    Article  CAS  Google Scholar 

  15. Zarnegar, B. J. et al. irCLIP platform for efficient characterization of protein–RNA interactions. Nat. Methods 13, 489–492 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huppertz, I. et al. iCLIP: protein-RNA interactions at nucleotide resolution. Methods 65, 274–287 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Buchbender, A. et al. Improved library preparation with the new iCLIP2 protocol. Methods 178, 33–48 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Kaczynski, T., Hussain, A. & Farkas, M. Quick-irCLIP: interrogating protein-RNA interactions using a rapid and simple cross-linking and immunoprecipitation technique. MethodsX 6, 1292–1304 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, e10 (2011).

    Article  Google Scholar 

  20. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Smith, T., Heger, A. & Sudbery, I. UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy. Genome Res. 27, 491–499 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Merkel, D. Docker: lightweight Linux containers for consistent development and deployment. Linux J. 2014, 81–84 (2014).

    Google Scholar 

  23. Kurtzer, G. M., Sochat, V. & Bauer, M. W. Singularity: scientific containers for mobility of compute. PLoS One 12, e0177459 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Crusoe, M. R. Methods included: standardizing computational reuse and portability with the Common Workflow Language. Preprint at https://doi.org/10.48550/arXiv.2105.07028 (2021).

  25. Köster, J. & Rahmann, S. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics 28, 2520–2522 (2012).

    Article  PubMed  CAS  Google Scholar 

  26. Di Tommaso, P. et al. Nextflow enables reproducible computational workflows. Nat. Biotechnol. 35, 316–319 (2017).

    Article  PubMed  CAS  Google Scholar 

  27. Voss, K., Van der Auwera, G. & Gentry, J. Full-stack Genomics Pipelining with GATK4 + WDL + Cromwell [version 1; not peer reviewed]. F1000Res https://f1000research.com/slides/6-1381 (2017).

  28. Deelman, E. et al. Pegasus, a workflow management system for science automation. Future Gener. Comput. Syst. 46, 17–35 (2015).

    Article  Google Scholar 

  29. Van Nostrand, E. L. et al. A large-scale binding and functional map of human RNA-binding proteins. Nature 583, 711–719 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Conway, A. E. et al. Enhanced CLIP uncovers IMP protein-RNA targets in human pluripotent stem cells important for cell adhesion and survival. Cell Rep. 15, 666–679 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Van Nostrand, E. L. et al. CRISPR/Cas9-mediated integration enables TAG-eCLIP of endogenously tagged RNA binding proteins. Methods 118–119, 50–59 (2017).

    Article  PubMed  CAS  Google Scholar 

  32. Krach, F. et al. Transcriptome-pathology correlation identifies interplay between TDP-43 and the expression of its kinase CK1E in sporadic ALS. Acta Neuropathol. 136, 405–423 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Di Stefano, B. et al. The RNA helicase DDX6 controls cellular plasticity by modulating P-body homeostasis. Cell Stem Cell 25, 622–638.e13 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Xu, Q. et al. Enhanced crosslinking immunoprecipitation (eCLIP) method for efficient identification of protein-bound RNA in mouse testis. J. Vis. Exp. 2019, e59681 (2019).

    Google Scholar 

  35. Ke, S. et al. A majority of m6A residues are in the last exons, allowing the potential for 3′ UTR regulation. Genes Dev. 29, 2037–2053 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Linder, B. et al. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat. Methods 12, 767–772 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Patil, D. P., Pickering, B. F. & Jaffrey, S. R. Reading m6A in the transcriptome: m6A-binding proteins. Trends Cell Biol. 28, 113–127 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Li, X. et al. Base-resolution mapping reveals distinct m1A methylome in nuclear- and mitochondrial-encoded transcripts. Mol. Cell 68, 993–1005.e9 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Roberts, J. T., Porman, A. M. & Johnson, A. M. Identification of m6A residues at single-nucleotide resolution using eCLIP and an accessible custom analysis pipeline. RNA 27, 527–541 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kadumuri, R. V. & Janga, S. C. Epitranscriptomic code and its alterations in human disease. Trends Mol. Med. 24, 886–903 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Tran, S. S. et al. Widespread RNA editing dysregulation in brains from autistic individuals. Nat. Neurosci. 22, 25–36 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Landt, S. G. et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 22, 1813–1831 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, Q., Brown, J. B., Huang, H. & Bickel, P. J. Measuring reproducibility of high-throughput experiments. Ann. Appl. Stat. 5, 1752–1779 (2011).

    Article  Google Scholar 

  44. Vivian, J. et al. Toil enables reproducible, open source, big biomedical data analyses. Nat. Biotechnol. 35, 314–316 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sundararaman, B. et al. Resources for the comprehensive discovery of functional RNA elements. Mol. Cell 61, 903–913 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bao, W., Kojima, K. K. & Kohany, O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 6, 11 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Smith, T. & Sudbery, I. FAQ. UMI-tools. https://umi-tools.readthedocs.io/en/latest/faq.html (2020).

  48. Wang, Z. F., Whitfield, M. L., Ingledue, T. C., Dominski, Z. & Marzluff, W. F. The protein that binds the 3′ end of histone mRNA: a novel RNA-binding protein required for histone pre-mRNA processing. Genes Dev. 10, 3028–3040 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Yee, B., Domissy, A. & Crusoe, M. R. YeoLab/eclip. https://github.com/yeolab/eclip (2021).

Download references

Acknowledgements

The authors thank Yeo laboratory member K. Rothamel for critical reading of the manuscript. This work was supported by grants from the US National Institutes of Health (HG009889 and HG004659 to G.W.Y. and HG009530 to E.L.V.N.).

Author information

Authors and Affiliations

Authors

Contributions

S.M.B. wrote the sections of the manuscript pertaining to the experimental protocol and contributed to the development of the experimental methods. B.A.Y. wrote the sections of the manuscript pertaining to the bioinformatics methods. G.A.P. contributed to the development of bioinformatics methods. J.R.M. and S.S.P. contributed to developing the experimental methods and produced the data in Fig. 3. A.A.S. contributed to the development of experimental methods. A.C.S. produced the data presented in Supplementary Figure 2. E.L.V.N. contributed to the development of all experimental and bioinformatics methods described and directed writing of the manuscript. G.W.Y. directed the development of all experimental and bioinformatics methods described and the writing of the manuscript.

Corresponding author

Correspondence to Gene W. Yeo.

Ethics declarations

Competing interests

G.W.Y. is co-founder, member of the Board of Directors, on the Science Advisory Board, an equity holder and a paid consultant for Locanabio and Eclipse BioInnovations. G.W.Y. is a visiting professor at the National University of Singapore. G.W.Y.’s interest(s) have been reviewed and approved by the University of California, San Diego in accordance with its conflict-of-interest policies. A.A.S. is co-founder and Research & Development Director for Eclipse Bioinnovations. E.L.V.N. is co-founder, member of the Board of Directors, on the Science Advisory Board, an equity holder and a paid consultant for Eclipse BioInnovations. E.L.V.N.’s interest(s) have been reviewed and approved by Baylor College of Medicine in accordance with its conflict-of-interest policies. The authors declare no other competing interests.

Peer review

Peer review information

Nature Protocols thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Van Nostrand, E. et al. Nat. Methods 13, 508–514 (2016): https://doi.org/10.1038/nmeth.3810

Van Nostrand, E. et al. Nature 583, 711–719 (2020): https://doi.org/10.1038/s41586-020-2077-3

Van Nostrand, E. et al. Methods Mol. Biol. 1648, 177–200 (2017): https://doi.org/10.1007/978-1-4939-7204-3_14

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2.

Reporting Summary

Supplementary Data 1

Source data for Supplementary Fig. 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blue, S.M., Yee, B.A., Pratt, G.A. et al. Transcriptome-wide identification of RNA-binding protein binding sites using seCLIP-seq. Nat Protoc 17, 1223–1265 (2022). https://doi.org/10.1038/s41596-022-00680-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-022-00680-z

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing