Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol Extension
  • Published:

Selective isolation of large segments from individual microbial genomes and environmental DNA samples using transformation-associated recombination cloning in yeast

Abstract

Here, we describe an extension of our original transformation-associated recombination (TAR) cloning protocol, enabling selective isolation of DNA segments from microbial genomes. The technique is based on the previously described TAR cloning procedure developed for isolation of a desirable region from mammalian genomes that are enriched in autonomously replicating sequence (ARS)-like sequences, elements that function as the origin of replication in yeast. Such sequences are not common in microbial genomes. In this Protocol Extension, an ARS is inserted into the TAR vector along with a counter-selectable marker, allowing for selection of cloning events against vector circularization. Pre-treatment of microbial DNA with CRISPR–Cas9 to generate double-stranded breaks near the targeted sequences greatly increases the yield of region-positive colonies. In comparison to other available methods, this Protocol Extension allows selective isolation of any region from microbial genomes as well as from environmental DNA samples. The entire procedure can be completed in 10 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Construction of the TAR vector with targeting sequences.
Fig. 2: TAR cloning of genomic regions lacking ARS sequences from microbial genomes.

Similar content being viewed by others

References

  1. Kouprina, N. & Larionov, V. TAR cloning: insights into gene function, long-range haplotypes and genome structure and evolution. Nat. Rev. Genet. 7, 805–812 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Kouprina, N. & Larionov, V. Transformation-associated recombination (TAR) cloning for genomics studies and synthetic biology. Chromosoma 125, 621–632 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kouprina, N. & Larionov, V. TAR cloning: perspectives for functional genomics, biomedicine, and biotechnology. Mol. Ther. Methods Clin. Dev. 14, 16–26 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kouprina, N. et al. Accelerated evolution of the ASPM gene controlling brain size begins prior to human brain expansion. PLOS Biol. 2, 653–663 (2004).

    Article  Google Scholar 

  5. Kouprina, N. et al. Evolutionary diversification of SPANX-N sperm protein gene structure and expression. PLOS One 2, e359 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pavlicek, A. et al. Evolution of the tumor suppressor BRCA1 locus in primates: implications for cancer predisposition. Hum. Mol. Genet. 13, 1–15 (2004).

    Article  Google Scholar 

  7. Lee, N. C. O., Larionov, V. & Kouprina, N. Highly efficient CRISPR/Cas9-mediated TAR cloning of genes and chromosomal loci from complex genomes in yeast. Nucleic Acids Res. 43, e55 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Theis, J. F. & Newlon, C. S. The ARS309 chromosomal replicator of Saccharomyces cerevisiae depends on an exceptional ARS consensus sequence. Proc. Natl Acad. Sci. USA 94, 10786–10791 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stinchcomb, D. T., Thomas, M., Kelly, J., Selker, E. & Davis, R. W. Eukaryotic DNA segments capable of autonomous replication in yeast. Proc. Natl Acad. Sci. USA 77, 4559–4563 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Choi, S. S. et al. Genome engineering for microbial natural product discovery. Curr. Opin. Microbiol. 45, 53–60 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, M. M., Qiao, Y., Ang, E. L. & Zhao, H. Using natural products for drug discovery: the impact of the genomics era. Expert Opin. Drug Discov. 12, 475–487 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kouprina, N. & Larionov, V. Selective isolation of genomic loci from complex genomes by transformation-associated recombination cloning in the yeast Saccharomyces cerevisiae. Nat. Protoc. 3, 371–377 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Noskov, V. N. et al. A general transformation-associated recombination cloning system to selectively isolate any eukaryotic or prokaryotic genomic region. BMC Genomics 4, 16 (2003). Epub 2003 Apr 29.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhang, J. J., Yamanaka, K., Tang, X. & Moore, B. S. Direct cloning and heterologous expression of natural product biosynthetic gene clusters by transformation-associated recombination. Methods Enzymol. 621, 87–110 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Feng, Z., Kim, J. H. & Brady, S. F. Fluostatins produced by the heterologous expression of a TAR reassembled environmental DNA derived type II PKS gene cluster. J. Am. Chem. Soc. 132, 11902–11913 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim, J. H. et al. Cloning large natural product gene clusters from the environment: piecing environmental DNA gene clusters back together with TAR. Biopolymers 93, 833–844 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yamanaka, K. et al. Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A. Proc. Natl Acad. Sci. USA 111, 1957–1962 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Noskov, V. N. et al. Isolation of circular yeast artificial chromosomes for synthetic biology and functional genomics studies. Nat. Protoc. 6, 89–96 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–347 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Lartigue, C. et al. Creating bacterial strains from genomes that have been cloned and engineered in yeast. Science 325, 1693–1696 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Benders, G. A. et al. Cloning whole bacterial genomes in yeast. Nucleic Acids Res. 38, 2558–2569 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Karas, B. J., Tagwerker, C., Yonemoto, I. T., Hutchison, C. A. 3rd & Smith, H. O. Cloning the Acholeplasma laidlawii PG-8A genome in Saccharomyces cerevisiae as a yeast centromeric plasmid. ACS Synth. Biol. 1, 22–28 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Tagwerker, C. et al. Sequence analysis of a complete 1.66 Mb Prochlorococcus marinus MED4 genome cloned in yeast. Nucleic Acids Res 40, 10375–1038 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Karas, B. J. et al. Assembly of eukaryotic algal chromosomes in yeast. J. Biol. Eng. 7, 30 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mitchell, L. A. et al. Versatile genetic assembly system (VEGAS) to assemble pathways for expression in S. cerevisiae. Nucleic Acids Res. 43, 6620–6630 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shang, Y. et al. Construction and rescue of a functional synthetic baculovirus. ACS Synth. Biol. 6, 1393–1402 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Oldfield, L. M. et al. Genome-wide engineering of an infectious clone of herpes simplex virus type 1 using synthetic genomics assembly methods. Proc. Natl Acad. Sci. USA 114, E8885–E8894 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vashee, S. et al. Cloning, assembly, and modification of the primary human cytomegalovirus isolate Toledo by yeast-based transformation-associated recombination. mSphere 2, pii: e00331-17 (2017).

  29. Xie, Y. G. et al. Cloning of a novel, anonymous gene from a megabase-range YAC contig in the neurofibromatosis type 2/meningioma region on human chromosome 22q12. Hum. Mol. Genet. 2, 1361–1368 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Loots, G. G. Modifying yeast artificial chromosomes to generate Cre/LoxP and FLP/FRT site-specific deletions and inversions. Methods Mol. Biol. 349, 75–84 (2006).

    CAS  PubMed  Google Scholar 

  31. Jiang, W. et al. Cas9-Assisted Targeting of CHromosome segments CATCH enables one-step targeted cloning of large gene clusters. Nat. Commun. 6, 8101 (2015).

    Article  PubMed  Google Scholar 

  32. Jiang, W. & Zhu, T. F. Targeted isolation and cloning of 100-kb microbial genomic sequences by Cas9-assisted targeting of chromosome segments. Nat. Protoc. 11, 960–975 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Medema, M. H. & Osbourn, A. Computational genomic identifcation and functional reconstitution of plant natural product biosynthetic pathways. Nat. Prod. Rep. 33, 951–962 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Noskov, V. N. et al. A novel strategy for analysis of gene homologs and segmental genome duplications. J. Mol. Evol. 56, 702–710 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Furter-Graves, E. & Hall, B. D. DNA sequence elements required for transcription initiation of the Shizosaccharomyces pombe ADH gene in Saccharomyces cerevisiae. Mol. Gen. Genet. 223, 407–417 (1990).

    Article  CAS  PubMed  Google Scholar 

  36. Miret, J. J., Pessoa-Brandao, L. & Lahue, R. S. Orientation-dependent and sequence-specific expansions of CTG/CAG trinucleotide repeats in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 95, 12438–12443 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Noskov, V. et al. Defining the minimal length of sequence homology required for selective gene isolation by TAR cloning. Nucleic Acids Res. 29, E32 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. D’Rose, V., Johny, T. K. & Bhat, S. Comparative analysis of metagenomic DNA extraction methods from gut microbiota of zebrafish (Danio rerio) for downstream next-generation sequencing. J. Appl. Biol. Biotechnol. 7, 1–15 (2019).

    Google Scholar 

  39. Kouprina, N., Noskov, V. N., Koriabine, M., Leem, S. H. & Larionov, V. Exploring transformation-associated recombination cloning for selective isolation of genomic regions. Methods Mol. Biol. 255, 69–89 (2004).

    CAS  PubMed  Google Scholar 

  40. Kouprina, N., Noskov, V. N. & Larionov, V. Selective isolation of large chromosomal regions by transformation-associated recombination cloning for structural and functional analysis of mammalian genomes. Methods Mol. Biol. 349, 85–101 (2006).

    CAS  PubMed  Google Scholar 

  41. Leem, S. H. et al. Optimum conditions for selective isolation of genes from complex genomes by transformation-associated recombination cloning. Nucleic Acids Res. 31, e29 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tang, X. et al. Identification of thiotetronic acid antibiotic biosynthetic pathways by target-directed genome mining. ACS Chem. Biol. 10, 2841–2849 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bilyk, O., Sekurova, O. N., Zotchev, S. B. & Luzhetskyy, A. Cloning and heterologous expression of the grecocycline biosynthetic gene cluster. PLOS One 11, e0158682 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tanveer, A., Yadav, S. & Yadav, D. Comparative assessment of methods for metagenomic DNA isolation from soils of different crop growing fields. 3 Biotech 6, 220 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lazarevic, V., Gaïa, N., Girard, M., François, P. & Schrenzel, J. Comparison of DNA extraction methods in analysis of salivary bacterial communities. PLOS One 8, e67699 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Larionov, V., Kouprina, N., Solomon, G., Barrett, J. C. & Resnick, M. A. Direct isolation of human BRCA2 gene by transformation-associated recombination in yeast. Proc. Natl Acad. Sci. USA 94, 7384–7387 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Annab, L. et al. Isolation of a functional copy of the human BRCA1 gene by TAR cloning in yeast. Gene 250, 201–208 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Kouprina, N. et al. Dynamic structure of the SPANX gene cluster mapped to the prostate cancer susceptibility locus HPCX at Xq27. Genome Res. 15, 1477–1486 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research, USA.

Author information

Authors and Affiliations

Authors

Contributions

V.L., V.N.N. and N.K. designed the research and wrote the manuscript.

Corresponding author

Correspondence to Natalay Kouprina.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Yinhua Lu and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Kouprina, N. and Larionov, V. Mol. Ther. Methods Clin. Dev. 14, 16–26 (2019): https://doi.org/10.1016/j.omtm.2019.05.006

Lee, N. C. O., Larionov, V. and Kouprina, N. Nucleic Acids Res. 43, e55 (2015): https://doi.org/10.1093/nar/gkv112

Kouprina, N. and Larionov, V. Nat. Protoc. 3, 371–377 (2008): https://doi.org/10.1038/nprot.2008.5

Noskov, V. N. et al. BMC Genomics 4, 16 (2003): https://doi.org/10.1186/1471-2164-4-16

This protocol is an extension to: Nat. Protoc. doi:10.1038/nprot.2008.5.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kouprina, N., Noskov, V.N. & Larionov, V. Selective isolation of large segments from individual microbial genomes and environmental DNA samples using transformation-associated recombination cloning in yeast. Nat Protoc 15, 734–749 (2020). https://doi.org/10.1038/s41596-019-0280-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-019-0280-1

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research