Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Roadmap
  • Published:

A roadmap for delivering a human musculoskeletal cell atlas

Abstract

Advances in single-cell technologies have transformed the ability to identify the individual cell types present within tissues and organs. The musculoskeletal bionetwork, part of the wider Human Cell Atlas project, aims to create a detailed map of the healthy musculoskeletal system at a single-cell resolution throughout tissue development and across the human lifespan, with complementary generation of data from diseased tissues. Given the prevalence of musculoskeletal disorders, this detailed reference dataset will be critical to understanding normal musculoskeletal function in growth, homeostasis and ageing. The endeavour will also help to identify the cellular basis for disease and lay the foundations for novel therapeutic approaches to treating diseases of the joints, soft tissues and bone. Here, we present a Roadmap delineating the critical steps required to construct the first draft of a human musculoskeletal cell atlas. We describe the key challenges involved in mapping the extracellular matrix-rich, but cell-poor, tissues of the musculoskeletal system, outline early milestones that have been achieved and describe the vision and directions for a comprehensive musculoskeletal cell atlas. By embracing cutting-edge technologies, integrating diverse datasets and fostering international collaborations, this endeavour has the potential to drive transformative changes in musculoskeletal medicine.

Key points

  • Musculoskeletal diseases present a large, and growing, global burden and delivery of effective treatments for these diseases requires improved understanding of the cellular basis of musculoskeletal tissue health and disease.

  • The advent of single-cell sequencing methods allows us to build a ‘human cell atlas’ that identifies and maps every cell of the human body.

  • The application of single-cell technologies in the study of musculoskeletal tissue has historically been difficult owing to the low cellularity and extracellular matrix-rich composition of these tissues.

  • Advances in laboratory and computational methodologies and sharing of knowledge and data among the research community should make it possible to deliver a musculoskeletal cell atlas.

  • Future expansion of the atlas, incorporating a greater number of ancestrally diverse donors, more tissue types and life stages, and diseased samples, will help to accelerate the development of improved diagnostic and therapeutic capabilities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Complexity of the musculoskeletal system.
Fig. 2: Generalized workflow for generating a single-cell musculoskeletal atlas.
Fig. 3: Utility of a single-cell atlas of the musculoskeletal system.

Similar content being viewed by others

References

  1. Lee, R. C. et al. Total-body skeletal muscle mass: development and cross-validation of anthropometric prediction models. Am. J. Clin. Nutr. 72, 796–803 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Murphy, A. C. et al. Structure, function, and control of the human musculoskeletal network. PLoS Biol. 16, e2002811 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  3. McKee, T. J., Perlman, G., Morris, M. & Komarova, S. V. Extracellular matrix composition of connective tissues: a systematic review and meta-analysis. Sci. Rep. 9, 10542 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Konnaris, M. A. et al. Computational pathology for musculoskeletal conditions using machine learning: advances, trends, and challenges. Arthritis Res. Ther. 24, 68 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Freemont, A. J. & Hoyland, J. A. Morphology, mechanisms and pathology of musculoskeletal ageing. J. Pathol. 211, 252–259 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Sebbag, E. et al. The world-wide burden of musculoskeletal diseases: a systematic analysis of the World Health Organization Burden of Diseases Database. Ann. Rheum. Dis. 78, 844–848 (2019).

    Article  PubMed  Google Scholar 

  7. Dai, X. & Shen, L. Advances and trends in omics technology development. Front. Med. 9, 911861 (2022).

    Article  Google Scholar 

  8. Regev, A. et al. The human cell atlas. eLife 6, e27041 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zeng, H. What is a cell type and how to define it? Cell 185, 2739–2755 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20, 257–272 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Moses, L. & Pachter, L. Museum of spatial transcriptomics. Nat. Methods 19, 534–546 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Vickovic, S. et al. High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 16, 987–990 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. Nat. Protoc. 15, 1484–1506 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Heumos, L. et al. Best practices for single-cell analysis across modalities. Nat. Rev. Genet. 24, 550–572 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Cieza, A. et al. Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396, 2006–2017 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. World Health Organization. Musculoskeletal Health. Who.int https://www.who.int/news-room/fact-sheets/detail/musculoskeletal-conditions (2022).

  17. Briggs, A. M. et al. Musculoskeletal health conditions represent a global threat to healthy aging: a report for the 2015 World Health Organization World Report on Ageing and Health. Gerontologist 56, S243–S255 (2016).

    Article  PubMed  Google Scholar 

  18. Staal, J. B., de Bie, R., de Vet, H. C. W., Hildebrandt, J. & Nelemans, P. Injection therapy for subacute and chronic low‐back pain. Cochrane Database Syst. Rev. 2008, CD001824 (2008).

    PubMed  PubMed Central  Google Scholar 

  19. Beard, D. J. et al. Arthroscopic subacromial decompression for subacromial shoulder pain (CSAW): a multicentre, pragmatic, parallel group, placebo-controlled, three-group, randomised surgical trial. Lancet 391, 329–338 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jüni, P. et al. Intra-articular corticosteroid for knee osteoarthritis. Cochrane Database Syst. Rev. 2015, CD005328 (2015).

    PubMed  PubMed Central  Google Scholar 

  21. Qiu, X. et al. Single-cell RNA sequencing of human femoral head in vivo. Aging 13, 15595–15619 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kendal, A. R. et al. Multi-omic single cell analysis resolves novel stromal cell populations in healthy and diseased human tendon. Sci. Rep. 10, 13939 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Akbar, M. et al. Single cell and spatial transcriptomics in human tendon disease indicate dysregulated immune homeostasis. Ann. Rheum. Dis. 80, 1494–1497 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Zhao, H. et al. Single-cell transcriptomics analysis of the pathogenesis of tendon injury. Oxid. Med. Cell Longev. 2022, 7887782 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Karlsen, A. et al. Distinct myofibre domains of the human myotendinous junction revealed by single-nucleus RNA sequencing. J. Cell Sci. 136, jcs.260913 (2023).

    Article  Google Scholar 

  26. Fu, W., Yang, R. & Li, J. Single-cell and spatial transcriptomics reveal changes in cell heterogeneity during progression of human tendinopathy. BMC Biol. 21, 132 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gan, Y. et al. Spatially defined single-cell transcriptional profiling characterizes diverse chondrocyte subtypes and nucleus pulposus progenitors in human intervertebral discs. Bone Res. 9, 37 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jiang, W. et al. Single-cell atlas unveils cellular heterogeneity and novel markers in human neonatal and adult intervertebral discs. iScience 25, 104504 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cherif, H. et al. Single-cell RNA-seq analysis of cells from degenerating and non-degenerating intervertebral discs from the same individual reveals new biomarkers for intervertebral disc degeneration. Int. J. Mol. Sci. 23, 3993 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li, Z. et al. Single-cell RNA sequencing reveals the difference in human normal and degenerative nucleus pulposus tissue profiles and cellular interactions. Front. Cell Dev. Biol. 10, 910626 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fu, W. et al. Cellular features of localized microenvironments in human meniscal degeneration: a single-cell transcriptomic study. eLife 11, e79585 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Swahn, H. et al. Senescent cell population with ZEB1 transcription factor as its main regulator promotes osteoarthritis in cartilage and meniscus. Ann. Rheum. Dis. 82, 403–415 (2023).

    Article  CAS  PubMed  Google Scholar 

  33. De Micheli, A. J., Spector, J. A., Elemento, O. & Cosgrove, B. D. A reference single-cell transcriptomic atlas of human skeletal muscle tissue reveals bifurcated muscle stem cell populations. Skelet. Muscle 10, 19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Perez, K. et al. Single nuclei profiling identifies cell specific markers of skeletal muscle aging, frailty, and senescence. Aging 14, 9393–9422 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lovrić, A. et al. Single-cell sequencing deconvolutes cellular responses to exercise in human skeletal muscle. Commun. Biol. 5, 1121 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang, X. et al. Comparison of the major cell populations among osteoarthritis, Kashin–Beck disease and healthy chondrocytes by single-cell RNA-seq analysis. Cell Death Dis. 12, 551 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Orchard, P. et al. Human and rat skeletal muscle single-nuclei multi-omic integrative analyses nominate causal cell types, regulatory elements, and SNPs for complex traits. Genome Res. 31, 2258–2275 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Stephenson, W. et al. Single-cell RNA-seq of rheumatoid arthritis synovial tissue using low-cost microfluidic instrumentation. Nat. Commun. 9, 791 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Armaka, M. et al. Single-cell multimodal analysis identifies common regulatory programs in synovial fibroblasts of rheumatoid arthritis patients and modeled TNF-driven arthritis. Genome Med. 14, 78 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Croft, A. P. et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature 570, 246–251 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rubenstein, A. B. et al. Single-cell transcriptional profiles in human skeletal muscle. Sci. Rep. 10, 229 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Piccolo, S. R. & Frampton, M. B. Tools and techniques for computational reproducibility. GigaScience 5, https://doi.org/10.1186/s13742-016-0135-4 (2016).

  43. Perkel, J. M. The sleight-of-hand trick that can simplify scientific computing. Nature 617, 212–213 (2023).

    Article  CAS  PubMed  Google Scholar 

  44. Osumi-Sutherland, D. et al. Cell type ontologies of the human cell atlas. Nat. Cell Biol. 23, 1129–1135 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Krasniewski, L. K. et al. Single-cell analysis of skeletal muscle macrophages reveals age-associated functional subpopulations. eLife 11, e77974 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Schonfeldova, B., Zec, K. & Udalova, I. A. Synovial single-cell heterogeneity, zonation and interactions: a patchwork of effectors in arthritis. Rheumatology 61, 913–925 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Yin, Z. et al. Atlas of musculoskeletal stem cells with the soft and hard tissue differentiation architecture. Adv. Sci. 7, 2000938 (2020).

    Article  CAS  Google Scholar 

  49. Xi, H. et al. A human skeletal muscle atlas identifies the trajectories of stem and progenitor cells across development and from human pluripotent stem cells. Cell Stem Cell 27, 158–176.e110 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kelly, N. H., Huynh, N. P. T. & Guilak, F. Single cell RNA-sequencing reveals cellular heterogeneity and trajectories of lineage specification during murine embryonic limb development. Matrix Biol. 89, 1–10 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Tsai, S. L., Nödl, M. T. & Galloway, J. L. Bringing tendon biology to heel: leveraging mechanisms of tendon development, healing, and regeneration to advance therapeutic strategies. Dev. Dyn. 250, 393–413 (2021).

    Article  PubMed  Google Scholar 

  52. Kehl, A. S., Corr, M. & Weisman, M. H. Review: enthesitis: new insights into pathogenesis, diagnostic modalities, and treatment. Arthritis Rheumatol. 68, 312–322 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Millar, N. L. et al. Tendinopathy. Nat. Rev. Dis. Prim. 7, 1 (2021).

    Article  PubMed  Google Scholar 

  54. Bosisio, F. M. et al. Next-generation pathology using multiplexed immunohistochemistry: mapping tissue architecture at single-cell level. Front. Oncol. 12, 918900 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Grogan, S. P. et al. Zone-specific gene expression patterns in articular cartilage. Arthritis Rheum. 65, 418–428 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hellingman, C. A. et al. Differences in cartilage-forming capacity of expanded human chondrocytes from ear and nose and their gene expression profiles. Cell Transplant. 20, 925–940 (2011).

    Article  PubMed  Google Scholar 

  57. Petrany, M. J. et al. Single-nucleus RNA-seq identifies transcriptional heterogeneity in multinucleated skeletal myofibers. Nat. Commun. 11, 6374 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cutler, A. A., Jackson, J. B., Corbett, A. H. & Pavlath, G. K. Non-equivalence of nuclear import among nuclei in multinucleated skeletal muscle cells. J. Cell Sci. 131, jcs207670 (2018).

    PubMed  PubMed Central  Google Scholar 

  59. Teytelman, L., Stoliartchouk, A., Kindler, L. & Hurwitz, B. L. Protocols.io: virtual communities for protocol development and discussion. PLoS Biol. 14, e1002538 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lindsay, S. & Copp, A. J. MRC-Wellcome Trust human developmental biology resource: enabling studies of human developmental gene expression. Trends Genet. 21, 586–590 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Ramos-Mucci, L., Sarmiento, P., Little, D. & Snelling, S. Research perspectives — pipelines to human tendon transcriptomics. J. Orthop. Res. 40, 993–1005 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Samuelsen, B. T. et al. Hamstring autograft versus patellar tendon autograft for ACL reconstruction: is there a difference in graft failure rate? A meta-analysis of 47,613 patients. Clin. Orthop. Relat. Res. 475, 2459–2468 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Craig, R. S., Goodier, H., Singh, J. A., Hopewell, S. & Rees, J. L. Shoulder replacement surgery for osteoarthritis and rotator cuff tear arthropathy. Cochrane Database Syst. Rev. 4, CD012879 (2020).

    PubMed  Google Scholar 

  64. Morris, E. L. et al. Single-cell transcriptomics of suprachiasmatic nuclei reveal a Prokineticin-driven circadian network. EMBO J. 40, e108614 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chang, J. et al. Circadian control of the secretory pathway maintains collagen homeostasis. Nat. Cell Biol. 22, 74–86 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xu, Z. et al. High-throughput single nucleus total RNA sequencing of formalin-fixed paraffin-embedded tissues by snRandom-seq. Nat. Commun. 14, 2734 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mattei, D. et al. Enzymatic dissociation induces transcriptional and proteotype bias in brain cell populations. Int. J. Mol. Sci. 21, 7944 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ding, J. et al. Systematic comparison of single-cell and single-nucleus RNA-sequencing methods. Nat. Biotechnol. 38, 737–746 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bergen, V., Soldatov, R. A., Kharchenko, P. V. & Theis, F. J. RNA velocity — current challenges and future perspectives. Mol. Syst. Biol. 17, e10282 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang, X. et al. Comparative analysis of droplet-based ultra-high-throughput single-cell RNA-seq systems. Mol. Cell 73, 130–142.e135 (2019).

    Article  PubMed  Google Scholar 

  71. Clark, I. C. et al. Microfluidics-free single-cell genomics with templated emulsification. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01685-z (2023).

  72. Xie, Y. et al. Comparative analysis of single-cell RNA sequencing methods with and without sample multiplexing. Preprint at bioRxiv https://doi.org/10.1101/2023.06.28.546827 (2023).

  73. Luecken, M. D. & Theis, F. J. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol. Syst. Biol. 15, e8746 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  74. GTEx Consortium. The GTEx consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318-1330, (2020).

    Article  Google Scholar 

  75. Dunham, I. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  CAS  Google Scholar 

  76. Habib, N. et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat. Methods 14, 955–958 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Westendorf, J. J., Bonewald, L. F., Kiel, D. P. & Burtt, N. P. The musculoskeletal knowledge portal: improving access to multi-omics data. Nat. Rev. Rheumatol. 18, 1–2 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Consortium*, T. T. S. et al. The tabula sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science 376, eabl4896 (2022).

    Article  Google Scholar 

  79. Rood, J. E. et al. Toward a common coordinate framework for the human body. Cell 179, 1455–1467 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Björnsson, B. et al. Digital twins to personalize medicine. Genome Med. 12, 4 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Osanlouy, M. et al. The SPARC DRC: building a resource for the autonomic nervous system community. Front. Physiol. 12, 693735 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Le Rochais, M., Hemon, P., Pers, J. O. & Uguen, A. Application of high-throughput imaging mass cytometry hyperion in cancer research. Front. Immunol. 13, 859414 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Khoury, B. M. et al. The use of nano-computed tomography to enhance musculoskeletal research. Connect. Tissue Res. 56, 106–119 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Peyrin, F., Dong, P., Pacureanu, A. & Langer, M. Micro- and nano-CT for the study of bone ultrastructure. Curr. Osteoporos. Rep. 12, 465–474 (2014).

    Article  PubMed  Google Scholar 

  85. Vanderploeg, E. J., Wilson, C. G. & Levenston, M. E. Articular chondrocytes derived from distinct tissue zones differentially respond to in vitro oscillatory tensile loading. Osteoarthritis Cartilage 16, 1228–1236 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Khoshgoftar, M., Torzilli, P. A. & Maher, S. A. Influence of the pericellular and extracellular matrix structural properties on chondrocyte mechanics. J. Orthop. Res. 36, 721–729 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Juras, V., Mlynarik, V., Szomolanyi, P., Valkovič, L. & Trattnig, S. Magnetic resonance imaging of the musculoskeletal system at 7T: morphological imaging and beyond. Top. Magn. Reson. Imaging 28, 125–135 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Mabbott, N. A. et al. An expression atlas of human primary cells: inference of gene function from coexpression networks. BMC Genomics 14, 632 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Barret, T. & Edgar, R. in Gene Mapping, Discovery, and Expression Methods in Molecular Biology (ed. Bina, M.) 175–190 (Humana Press, 2006).

  90. Parkinson, H. et al. ArrayExpress — a public database of microarray experiments and gene expression profiles. Nucleic Acid. Res. 35, D747–D750 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Dave, M., Rankin, J., Pearce, M. & Foster, H. E. Global prevalence estimates of three chronic musculoskeletal conditions: club foot, juvenile idiopathic arthritis and juvenile systemic lupus erythematosus. Pediatr. Rheumatol. 18, 49 (2020).

    Article  Google Scholar 

  92. Huang, Q., Liu, Y., Du, Y. & Garmire, L. X. Evaluation of cell type annotation R packages on single-cell RNA-seq data. Genomics Proteom. Bioinforma. 19, 267–281 (2021).

    Article  Google Scholar 

  93. Fu, R. et al. clustifyr: an R package for automated single-cell RNA sequencing cluster classification. F1000Res 9, 223 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lin, Y. et al. scClassify: sample size estimation and multiscale classification of cells using single and multiple reference. Mol. Syst. Biol. 16, e9389 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ding, J. & Regev, A. Deep generative model embedding of single-cell RNA-Seq profiles on hyperspheres and hyperbolic spaces. Nat. Commun. 12, 2554 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Schaum, N. et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367–372 (2018).

    Article  PubMed Central  Google Scholar 

  97. Sikkema, L. et al. An integrated cell atlas of the lung in health and disease. Nat. Med. 29, 1563–1577 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Herpelinck, T. et al. An integrated single-cell atlas of the skeleton from development through adulthood. Preprint at bioRxiv https://doi.org/10.1101/2022.03.14.484345 (2022).

  99. Füllgrabe, A. et al. Guidelines for reporting single-cell RNA-seq experiments. Nat. Biotechnol. 38, 1384–1386 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Siemionow, K., An, H., Masuda, K., Andersson, G. & Cs-Szabo, G. The effects of age, sex, ethnicity, and spinal level on the rate of intervertebral disc degeneration: a review of 1712 intervertebral discs. Spine 36, 1333–1339 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Owens, B., Mountcastle, S. & White, D. Racial differences in tendon rupture incidence. Int. J. Sports Med. 28, 617–620 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Yip, K. & Navarro-Millán, I. Racial, ethnic, and healthcare disparities in rheumatoid arthritis. Curr. Opin. Rheumatol. 33, 117–121 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Buechler, M. B. et al. Cross-tissue organization of the fibroblast lineage. Nature 593, 575–579 (2021).

    Article  CAS  PubMed  Google Scholar 

  104. The Cancer Genome Atlas Research Network et al. The Cancer Genome Atlas Pan-Cancer Analysis project. Nat. Genet 45, 1113–1120 (2013).

    Article  Google Scholar 

  105. Nakayama, K. H., Hou, L. & Huang, N. F. Role of extracellular matrix signaling cues in modulating cell fate commitment for cardiovascular tissue engineering. Adv. Healthc. Mater. 3, 628–641 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rowland, C. R., Little, D. & Guilak, F. Factors influencing the long-term behavior of extracellular matrix-derived scaffolds for musculoskeletal soft tissue repair. J. Long. Term. Eff. Med. Implant. 22, 181–193 (2012).

    Article  CAS  Google Scholar 

  107. Nikonova, E., Kao, S. Y. & Spletter, M. L. Contributions of alternative splicing to muscle type development and function. Semin. Cell Dev. Biol. 104, 65–80 (2020).

    Article  PubMed  Google Scholar 

  108. Yanagi, K., Kaname, T., Chinen, Y. & Naritomi, K. Novel alternative splicing of human faciogenital dysplasia 1 gene. Congenit. Anom. 44, 137–141 (2004).

    Article  CAS  Google Scholar 

  109. Peffers, M. J. et al. Transcriptome analysis of ageing in uninjured human Achilles tendon. Arthritis Res. Ther. 17, 33 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Wang, T. et al. Single-cell RNA sequence presents atlas analysis for chondrocytes in the talus and reveals the potential mechanism in coping with mechanical stress. Front. Cell Dev. Biol. 10, 1047119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Long, H. et al. Prevalence trends of site-specific osteoarthritis from 1990 to 2019: findings from the Global Burden of Disease Study 2019. Arthritis Rheumatol. 74, 1172–1183 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Finckh, A. et al. Global epidemiology of rheumatoid arthritis. Nat. Rev. Rheumatol. 18, 591–602 (2022).

    PubMed  Google Scholar 

  113. Mease, P. J. et al. Prevalence of rheumatologist-diagnosed psoriatic arthritis in patients with psoriasis in European/North American dermatology clinics. J. Am. Acad. Dermatol. 69, 729–735 (2013).

    Article  PubMed  Google Scholar 

  114. Scotti, L., Franchi, M., Marchesoni, A. & Corrao, G. Prevalence and incidence of psoriatic arthritis: a systematic review and meta-analysis. Semin. Arthritis Rheum. 48, 28–34 (2018).

    Article  PubMed  Google Scholar 

  115. Dean, L. E. et al. Global prevalence of ankylosing spondylitis. Rheumatology 53, 650–657 (2013).

    Article  PubMed  Google Scholar 

  116. GBD 2021 Low Back Pain Collaborators. Global, regional, and national burden of low back pain, 1990–2020, its attributable risk factors, and projections to 2050: a systematic analysis of the Global Burden of Disease Study 2021. Lancet Rheumatol. 5, e316–e329 (2023).

  117. Wu, A.-M. et al. Global, regional, and national burden of bone fractures in 204 countries and territories, 1990–2019: a systematic analysis from the Global Burden of Disease Study 2019. Lancet Healthy Longev. 2, e580–e592 (2021).

    Article  Google Scholar 

  118. Hopkins, C. et al. Critical review on the socio-economic impact of tendinopathy. Asia Pac. J. Sports Med. Arthrosc. Rehabil. Technol. 4, 9–20 (2016).

    PubMed  PubMed Central  Google Scholar 

  119. Riel, H., Lindstrøm, C. F., Rathleff, M. S., Jensen, M. B. & Olesen, J. L. Prevalence and incidence rate of lower-extremity tendinopathies in a Danish general practice: a registry-based study. BMC Musculoskelet. Disord. 20, 239 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Renström, P. A. Eight clinical conundrums relating to anterior cruciate ligament (ACL) injury in sport: recent evidence and a personal reflection. Br. J. Sports Med. 47, 367–372 (2013).

    Article  PubMed  Google Scholar 

  121. Ethgen, O., Beaudart, C., Buckinx, F., Bruyère, O. & Reginster, J. Y. The future prevalence of sarcopenia in Europe: a claim for public health action. Calcif. Tissue Int. 100, 229–234 (2017).

    Article  CAS  PubMed  Google Scholar 

  122. Shafiee, G. et al. Prevalence of sarcopenia in the world: a systematic review and meta-analysis of general population studies. J. Diabetes Metab. Disord. 16, 21 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  123. de Villiers, T. J. & Goldstein, S. R. Bone health 2022: an update. Climacteric 25, 1–3 (2022).

    Article  PubMed  Google Scholar 

  124. Mirabello, L., Troisi, R. J. & Savage, S. A. International osteosarcoma incidence patterns in children and adolescents, middle ages and elderly persons. Int. J. Cancer 125, 229–234 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sadykova, L. R. et al. Epidemiology and risk factors of osteosarcoma. Cancer Invest. 38, 259–269 (2020).

    Article  PubMed  Google Scholar 

  126. Regev, A. et al. The Human Cell Atlas White Paper. arXiv 1810, 05192 (2018).

    Google Scholar 

Download references

Acknowledgements

This publication is part of the Human Cell Atlas (HCA): www.humancellatlas.org/publications. The authors would like to thank the Musculoskeletal Bionetwork of the Human Cell Atlas for their discussions and input into this roadmap, particularly T. Herpelinck, L. Geris, P. Tylzanowski, (J.) S. Lawrence, J. Mimpen, C. Cohen, T. Boakye-Serebour and S. Teichmann. A.P.C. is funded by Medical Research Council Career Development Fellowship (MR/V010182/1). S.S. and M.B. are funded by the Chan Zuckerberg Initiative (CZIF2019–002426 and CZIF2021–240342) and supported by the National Institute for Health Research Oxford Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Contributions

S.S., M.B., F.G., A.P.C. and P.H. wrote the article. All authors researched data for the article, contributed substantially to discussion of content and reviewer and/or edited the manuscript before submission.

Corresponding author

Correspondence to Sarah Snelling.

Ethics declarations

Competing interests

A.P.C. is listed as an inventor on several patents filed by Oxford University Innovations concerning single-cell sequencing technologies. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Nidhi Bhutani, Deepak Rao, Gabriela Loots and Hui Shen for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Cellxgene: https://cellxgene.cziscience.com/

GitHub: https://github.com/humancellatlas; https://github.com/

Human Cell Atlas biological networks: https://www.humancellatlas.org/biological-networks/

Human Cell Atlas Data Coordination Platform: https://data.humancellatlas.org/

Human Cell Atlas Metrics Dashboard: https://www.humancellatlas.org/learn-more/hca-metrics/

Human Cell Atlas project: https://www.humancellatlas.org/

Protocols.io: https://www.protocols.io/welcome

The Musculoskeletal Knowledge Portal: https://msk.hugeamp.org/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baldwin, M., Buckley, C.D., Guilak, F. et al. A roadmap for delivering a human musculoskeletal cell atlas. Nat Rev Rheumatol 19, 738–752 (2023). https://doi.org/10.1038/s41584-023-01031-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-023-01031-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing