Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Single-cell transcriptomics in tissue engineering and regenerative medicine

Abstract

Regenerative medicine and tissue engineering aim to promote functional rebuilding of damaged tissue. Comprehensively profiling cell identity, function and interaction in healthy tissues, as well as understanding how these change upon tissue disruption, such as that caused by injury, ageing or infection, is foundational to advancing tissue engineering and regenerative therapeutics. Tissue injury response is a highly dynamic process driven by complex interactions between immune and stromal cell populations, with dysregulation leading to deleterious fibrosis and chronic inflammation. Advances in single-cell RNA sequencing now allow in-depth mapping of the complex cellular response to injury and biomaterial implantation. In this Review, we first describe the fundamentals of sequencing and computational methods for the generation and analysis of high-dimensional single-cell RNA sequencing data sets. We then highlight how these methods can be applied to study tissue injury responses and guide the rational design of biomaterials and regenerative therapeutics.

Key points

  • Single-cell RNA sequencing (scRNA-seq) affords unprecedented resolution in profiling cellular transcriptomics by simultaneously detecting the expression of thousands of genes on an individual cell basis.

  • Tissue engineers can leverage scRNA-seq to comprehensively map healthy and perturbed (such as injured or diseased) tissue environments and explore cellular heterogeneity, gene expression shifts, differentiation trajectories and interaction networks.

  • Insights gained by scRNA-seq profiling of biological systems can be leveraged to guide the rational design of new biomaterials and regenerative therapeutics.

  • scRNA-seq can be used to characterize the host response to implanted engineered constructs or regenerative therapeutics and discern mechanisms of action (regenerative or fibrotic).

  • Sharing of data sets in public repositories, development of large-scale atlases and formation of dedicated consortiums promote low-cost accessibility, increase diversity and maximize exploration of generated scRNA-seq data sets.

  • Interdisciplinary teams of basic scientists, bioinformaticians, tissue engineers and clinicians should work together to connect computational approaches to outstanding biological questions, driving innovation of new regenerative therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: scRNA-seq workflow.
Fig. 2: Mapping tissue injury response.
Fig. 3: Application of scRNA-seq to biomaterials and tissue engineering.
Fig. 4: Large-scale data integration and analysis.

Similar content being viewed by others

References

  1. Slyper, M. et al. A single-cell and single-nucleus RNA-Seq toolbox for fresh and frozen human tumors. Nat. Med. 26, 792–802 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wu, H., Kirita, Y., Donnelly, E. L. & Humphreys, B. D. Advantages of single-nucleus over single-cell RNA sequencing of adult kidney: rare cell types and novel cell states revealed in fibrosis. J. Am. Soc. Nephrol. 30, 23–32 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Grindberg, R. V. et al. RNA-sequencing from single nuclei. Proc. Natl Acad. Sci. USA 110, 19802–19807 (2013).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  4. Autengruber, A., Gereke, M., Hansen, G., Hennig, C. & Bruder, D. Impact of enzymatic tissue disintegration on the level of surface molecule expression and immune cell function. Eur. J. Microbiol. Immunol. 2, 112–120 (2012).

    Article  CAS  Google Scholar 

  5. Reichard, A. & Asosingh, K. Best practices for preparing a single cell suspension from solid tissues for flow cytometry. Cytometry A 95, 219–226 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. van den Brink, S. C. et al. Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations. Nat. Methods 14, 935–936 (2017).

    Article  PubMed  Google Scholar 

  7. Denisenko, E. et al. Systematic assessment of tissue dissociation and storage biases in single-cell and single-nucleus RNA-seq workflows. Genome Biol. 21, 130 (2020). This study compares gene expression and cellular composition of single-cell and single-nucleus suspensions generated implementing different dissociation protocols and different storage methods to identify potential artefacts and biases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sutermaster, B. A. & Darling, E. M. Considerations for high-yield, high-throughput cell enrichment: fluorescence versus magnetic sorting. Sci. Rep. 9, 227 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  9. Stoeckius, M. et al. Cell Hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome Biol. 19, 224 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gehring, J., Hwee Park, J., Chen, S., Thomson, M. & Pachter, L. Highly multiplexed single-cell RNA-seq by DNA oligonucleotide tagging of cellular proteins. Nat. Biotechnol. 38, 35–38 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Srivatsan, S. R. et al. Massively multiplex chemical transcriptomics at single-cell resolution. Science 367, 45–51 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Ding, J. et al. Systematic comparison of single-cell and single-nucleus RNA-sequencing methods. Nat. Biotechnol. 38, 737–746 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mereu, E. et al. Benchmarking single-cell RNA-sequencing protocols for cell atlas projects. Nat. Biotechnol. 38, 747–755 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Zhao, S. & Zhang, B. A comprehensive evaluation of ensembl, RefSeq, and UCSC annotations in the context of RNA-seq read mapping and gene quantification. BMC Genomics 16, 97 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cunningham, F. et al. Ensembl 2022. Nucleic Acids Res. 50, D988–D995 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2016).

    Article  PubMed  Google Scholar 

  17. Nassar, L. R. et al. The UCSC Genome Browser database: 2023 update. Nucleic Acids Res. 51, D1188–D1195 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Brüning, R. S., Tombor, L., Schulz, M. H., Dimmeler, S. & John, D. Comparative analysis of common alignment tools for single-cell RNA sequencing. Gigascience 11, giac001 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  19. 10x Genomics. Cell Ranger. 10x Genomics https://support.10xgenomics.com/single-cell-vdj/software/pipelines/latest/what-is-cell-ranger (2020).

  20. Kaminow, B., Yunusov, D. & Dobin, A. STARsolo: accurate, fast and versatile mapping/quantification of single-cell and single-nucleus RNA-seq data. Preprint at bioRxiv https://doi.org/10.1101/2021.05.05.442755 (2021).

  21. Slovin, S. et al. Single-cell RNA sequencing analysis: a step-by-step overview. Methods Mol. Biol. 2284, 343–365 (2021). This review covers the main considerations on the laboratory and computational sides of scRNA-seq data generation and analysis with pipelines for data processing.

    Article  CAS  PubMed  Google Scholar 

  22. McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xi, N. M. & Li, J. J. Benchmarking computational doublet-detection methods for single-cell RNA sequencing data. Cell Syst. 12, 176–194.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Young, M. D. & Behjati, S. SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data. Gigascience 9, giaa151 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lytal, N., Ran, D. & An, L. Normalization methods on single-cell RNA-seq data: an empirical survey. Front. Genet. 11, 41 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen, W. et al. A comparison of methods accounting for batch effects in differential expression analysis of UMI count based single cell RNA sequencing. Comput. Struct. Biotechnol. J. 18, 861–873 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tran, H. T. N. et al. A benchmark of batch-effect correction methods for single-cell RNA sequencing data. Genome Biol. 21, 12 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Luecken, M. D. et al. Benchmarking atlas-level data integration in single-cell genomics. Nat. Methods 19, 41–50 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. Kobak, D. & Berens, P. The art of using t-SNE for single-cell transcriptomics. Nat. Commun. 10, 5416 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  30. Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44 (2019).

    Article  CAS  Google Scholar 

  31. Moon, K. R. et al. Visualizing structure and transitions in high-dimensional biological data. Nat. Biotechnol. 37, 1482–1492 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xiang, R. et al. A comparison for dimensionality reduction methods of single-cell RNA-seq data. Front. Genet. 12, 646936 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Duò, A., Robinson, M. D. & Soneson, C. A systematic performance evaluation of clustering methods for single-cell RNA-seq data. F1000Research 7, 1141 (2018).

    Article  PubMed  Google Scholar 

  34. Kiselev, V. Y., Andrews, T. S. & Hemberg, M. Challenges in unsupervised clustering of single-cell RNA-seq data. Nat. Rev. Genet. 20, 273–282 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Pasquini, G., Rojo Arias, J. E., Schäfer, P. & Busskamp, V. Automated methods for cell type annotation on scRNA-seq data. Comput. Struct. Biotechnol. J. 19, 961–969 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huang, Q., Liu, Y., Du, Y. & Garmire, L. X. Evaluation of cell type annotation R packages on single-cell RNA-seq data. Genomics Proteomics Bioinformatics 19, 267–281 (2021).

    Article  PubMed  Google Scholar 

  37. Yi, H., Plotkin, A. & Stanley, N. Benchmarking differential abundance methods for finding condition-specific prototypical cells in multi-sample single-cell datasets. Preprint at bioRxiv https://doi.org/10.1101/2023.02.24.529894 (2023).

  38. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wang, T., Li, B., Nelson, C. E. & Nabavi, S. Comparative analysis of differential gene expression analysis tools for single-cell RNA sequencing data. BMC Bioinformatics 20, 40 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739–1740 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Culhane, A. C. et al. GeneSigDB: a manually curated database and resource for analysis of gene expression signatures. Nucleic Acids Res. 40, D1060–D1066 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  44. Deconinck, L., Cannoodt, R., Saelens, W., Deplancke, B. & Saeys, Y. Recent advances in trajectory inference from single-cell omics data. Curr. Opin. Syst. Biol. 27, 100344 (2021).

    Article  CAS  Google Scholar 

  45. Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat. Biotechnol. 38, 1408–1414 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Gorin, G., Fang, M., Chari, T. & Pachter, L. RNA velocity unraveled. PLoS Comput. Biol. 18, e1010492 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  47. Weiler, P., Van den Berge, K., Street, K. & Tiberi, S. in Single Cell Transcriptomics Methods and Protocols (eds Calogero, R. A. & Benes, V.) 269–292 (Springer, 2022).

  48. Alemany, A., Florescu, M., Baron, C. S., Peterson-Maduro, J. & Van Oudenaarden, A. Whole-organism clone tracing using single-cell sequencing. Nature 556, 108–112 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  49. Shlyakhtina, Y., Bloechl, B. & Portal, M. M. BdLT-Seq as a barcode decay-based method to unravel lineage-linked transcriptome plasticity. Nat. Commun. 14, 1085 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  50. Pratapa, A., Jalihal, A. P., Law, J. N., Bharadwaj, A. & Murali, T. M. Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data. Nat. Methods 17, 147–154 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen, S. & Mar, J. C. Evaluating methods of inferring gene regulatory networks highlights their lack of performance for single cell gene expression data. BMC Bioinformatics 19, 232 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. Nat. Protoc. 15, 1484–1506 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Browaeys, R., Saelens, W. & Saeys, Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat. Methods 17, 159–162 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Shao, X., Lu, X., Liao, J., Chen, H. & Fan, X. New avenues for systematically inferring cell-cell communication: through single-cell transcriptomics data. Protein Cell 11, 866–880 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Almet, A. A., Cang, Z., Jin, S. & Nie, Q. The landscape of cell–cell communication through single-cell transcriptomics. Curr. Opin. Syst. Biol. 26, 12–23 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fischer, D. S., Schaar, A. C. & Theis, F. J. Modeling intercellular communication in tissues using spatial graphs of cells. Nat. Biotechnol. 41, 332–336 (2023).

    Article  CAS  PubMed  Google Scholar 

  57. Jerby-Arnon, L. & Regev, A. DIALOGUE maps multicellular programs in tissue from single-cell or spatial transcriptomics data. Nat. Biotechnol. 40, 1467–1477 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Clark, I. C. et al. Barcoded viral tracing of single-cell interactions in central nervous system inflammation. Science 372, eabf1230 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Giladi, A. et al. Dissecting cellular crosstalk by sequencing physically interacting cells. Nat. Biotechnol. 38, 629–637 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. Nat. Biotechnol. 39, 313–319 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Wei, X. et al. Single-cell Stereo-seq reveals induced progenitor cells involved in axolotl brain regeneration. Science 377, eabp9444 (2022). This article reports the development of a high-resolution, single-cell spatial transcriptomics approach Stereo-seq to profile developmental and post-injury regenerative neurogenesis in axolotl telencephalon.

    Article  CAS  PubMed  Google Scholar 

  62. Moffitt, J. R. et al. High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization. Proc. Natl Acad. Sci. USA 113, 11046–11051 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  63. Alon, S. et al. Expansion sequencing: spatially precise in situ transcriptomics in intact biological systems. Science 371, eaax2656 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lee, J., Yoo, M. & Choi, J. Recent advances in spatially resolved transcriptomics: challenges and opportunities. BMB Rep. 55, 113–124 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Williams, C. G., Lee, H. J., Asatsuma, T., Vento-Tormo, R. & Haque, A. An introduction to spatial transcriptomics for biomedical research. Genome Med. 14, 68 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Thomas, S. M., Ackert-Bicknell, C. L., Zuscik, M. J. & Payne, K. A. Understanding the Transcriptomic Landscape to Drive New Innovations in Musculoskeletal Regenerative Medicine. Curr. Osteoporos. Rep. 20, 141–152 (2022).

    Article  PubMed  Google Scholar 

  67. Rai, M. F. et al. Single cell omics for musculoskeletal research. Curr. Osteoporos. Rep. 19, 131–140 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Sarmiento, P. & Little, D. Tendon and multiomics: advantages, advances, and opportunities. NPJ Regen. Med. 6, 61 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Baldwin, M. J., Cribbs, A. P., Guilak, F. & Snelling, S. J. B. Mapping the musculoskeletal system one cell at a time. Nat. Rev. Rheumatol. 17, 247–248 (2021).

    Article  PubMed  Google Scholar 

  70. Paik, D. T., Cho, S., Tian, L., Chang, H. Y. & Wu, J. C. Single-cell RNA sequencing in cardiovascular development, disease and medicine. Nat. Rev. Cardiol. 17, 457–473 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chaudhry, F. et al. Single-cell RNA sequencing of the cardiovascular system: new looks for old diseases. Front. Cardiovasc. Med. 6, 173 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  72. Schreibing, F. & Kramann, R. Mapping the human kidney using single-cell genomics. Nat. Rev. Nephrol. 18, 347–360 (2022).

    Article  PubMed  Google Scholar 

  73. Clark, A. R. & Greka, A. The power of one: advances in single-cell genomics in the kidney. Nat. Rev. Nephrol. 16, 73–74 (2020).

    Article  PubMed  Google Scholar 

  74. Alexander, M. J., Budinger, G. R. S. & Reyfman, P. A. Breathing fresh air into respiratory research with single-cell RNA sequencing. Eur. Resp. Rev. 29, 200060 (2020).

    Article  Google Scholar 

  75. Theocharidis, G., Tekkela, S., Veves, A., McGrath, J. A. & Onoufriadis, A. Single‐cell transcriptomics in human skin research: available technologies, technical considerations and disease applications. Exp. Dermatol. 31, 655–673 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Dubois, A., Gopee, N., Olabi, B. & Haniffa, M. Defining the skin cellular community using single-cell genomics to advance precision medicine. J. Invest. Dermatol. 141, 255–264 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Colonna, M. & Brioschi, S. Neuroinflammation and neurodegeneration in human brain at single-cell resolution. Nat. Rev. Immunol. 20, 81–82 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Cao, Y., Zhu, S., Yu, B. & Yao, C. Single‐cell RNA sequencing for traumatic spinal cord injury. FASEB J. 36, e22656 (2022).

    Article  PubMed  Google Scholar 

  79. Guerrero-Juarez, C. F. et al. Single-cell analysis reveals fibroblast heterogeneity and myeloid-derived adipocyte progenitors in murine skin wounds. Nat. Commun. 10, 650 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  80. Oprescu, S. N., Yue, F., Qiu, J., Brito, L. F. & Kuang, S. Temporal dynamics and heterogeneity of cell populations during skeletal muscle regeneration. iScience 23, 100993 (2020). This study reports the use of scRNA-seq and cell lineage tracing to profile the kinetics and transcriptional dynamics of skeletal muscle regeneration, considering both the stromal and immune cell compartments in various tissue injury phases (uninjured to 21 days post-injury).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  81. Farbehi, N. et al. Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury. eLife 8, e43882 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Dick, S. A. et al. Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction. Nat. Immunol. 20, 29–39 (2019).

    Article  CAS  PubMed  Google Scholar 

  83. Vafadarnejad, E. et al. Dynamics of cardiac neutrophil diversity in murine myocardial infarction. Circ. Res. 127, e232–e249 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. Ruiz-Villalba, A. et al. Single-cell RNA sequencing analysis reveals a crucial role for CTHRC1 (collagen triple helix repeat containing 1) cardiac fibroblasts after myocardial infarction. Circulation 142, 1831–1847 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kirita, Y., Wu, H., Uchimura, K., Wilson, P. C. & Humphreys, B. D. Cell profiling of mouse acute kidney injury reveals conserved cellular responses to injury. Proc. Natl Acad. Sci. USA 117, 15874–15883 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  86. Abbasi, S. et al. Distinct regulatory programs control the latent regenerative potential of dermal fibroblasts during wound healing. Cell Stem Cell 27, 396–412.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  87. Lin, Y. et al. Single-cell RNA-seq of UVB-radiated skin reveals landscape of photoaging-related inflammation and protection by vitamin D. Gene 831, 146563 (2022).

    Article  CAS  PubMed  Google Scholar 

  88. Foster, D. S. et al. Integrated spatial multiomics reveals fibroblast fate during tissue repair. Proc. Natl Acad. Sci. USA 118, e2110025118 (2021). This article reports the use of multi-modal integration (scRNA-seq, scATAC-seq and spatial transcriptomics) to map the kinetics of splinted excisional skin injury to compare cell populations at various wound locations (inner or outer) over the wound-healing time course (uninjured to 14 days post-injury).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Croft, A. P. et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature 570, 246–251 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  90. Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Alivernini, S. et al. Distinct synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid arthritis. Nat. Med. 26, 1295–1306 (2020).

    Article  CAS  PubMed  Google Scholar 

  92. Wei, K. et al. Notch signalling drives synovial fibroblast identity and arthritis pathology. Nature 582, 259–264 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  93. Knights, A. J. et al. Synovial fibroblasts assume distinct functional identities and secrete R-spondin 2 in osteoarthritis. Ann. Rheum. Dis. 82, 272–282 (2023).

    Article  CAS  PubMed  Google Scholar 

  94. Habermann, A. C. et al. Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis. Sci. Adv. 6, eaba1972 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  95. Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhao, C. Q. et al. Heterogeneity of T cells and macrophages in chlorine-induced acute lung injury in mice using single-cell RNA sequencing. Inhal. Toxicol. 34, 399–411 (2022).

    Article  CAS  PubMed  Google Scholar 

  97. Peyser, R. et al. Defining the activated fibroblast population in lung fibrosis using single-cell sequencing. Am. J. Respir. Cell Mol. Biol. 61, 74–85 (2019).

    Article  CAS  PubMed  Google Scholar 

  98. Milich, L. M. et al. Single-cell analysis of the cellular heterogeneity and interactions in the injured mouse spinal cord. J. Exp. Med. 218, e20210040 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hammond, T. R. et al. Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50, 253–271.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  100. Jordão, M. J. C. et al. Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science 363, eaat7554 (2019).

    Article  PubMed  Google Scholar 

  101. Dell’Orso, S. et al. Single cell analysis of adult mouse skeletal muscle stem cells in homeostatic and regenerative conditions. Development 146, dev174177 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Reyes, N. S. et al. Sentinel p16INK4a+ cells in the basement membrane form a reparative niche in the lung. Science 378, 192–201 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  103. Leigh, N. D. et al. Transcriptomic landscape of the blastema niche in regenerating adult axolotl limbs at single-cell resolution. Nat. Commun. 9, 5153 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  104. Gerber, T. et al. Single-cell analysis uncovers convergence of cell identities during axolotl limb regeneration. Science 362, eaaq0681 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  105. Benhar, I. et al. Temporal single-cell atlas of non-neuronal retinal cells reveals dynamic, coordinated multicellular responses to central nervous system injury. Nat. Immunol. 24, 700–713 (2023).

    Article  CAS  PubMed  Google Scholar 

  106. Lust, K. et al. Single-cell analyses of axolotl telencephalon organization, neurogenesis, and regeneration. Science 377, eabp9262 (2022).

    Article  CAS  PubMed  Google Scholar 

  107. Armingol, E., Officer, A., Harismendy, O. & Lewis, N. E. Deciphering cell–cell interactions and communication from gene expression. Nat. Rev. Genet. 22, 71–88 (2021).

    Article  CAS  PubMed  Google Scholar 

  108. De Micheli, A. J. et al. Single-cell analysis of the muscle stem cell hierarchy identifies heterotypic communication signals involved in skeletal muscle regeneration. Cell Rep. 30, 3583–3595.e5 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Linnerbauer, M. et al. Intranasal delivery of a small-molecule ErbB inhibitor promotes recovery from acute and late-stage CNS inflammation. JCI Insight 7, e154824 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Theocharidis, G. et al. Single cell transcriptomic landscape of diabetic foot ulcers. Nat. Commun. 13, 181 (2022). This study reports the use of scRNA-seq to profile the cellular landscape of human DFU injuries (local tissue biopsies and peripheral blood) and identify unique populations enriched in patients with effective wound healing.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  111. Mascharak, S. et al. Multi-omic analysis reveals divergent molecular events in scarring and regenerative wound healing. Cell Stem Cell 29, 315–327.e6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Phan, Q. M., Sinha, S., Biernaskie, J. & Driskell, R. R. Single‐cell transcriptomic analysis of small and large wounds reveals the distinct spatial organization of regenerative fibroblasts. Exp. Dermatol. 30, 92–101 (2021).

    Article  CAS  PubMed  Google Scholar 

  113. Cui, M. et al. Dynamic transcriptional responses to injury of regenerative and non-regenerative cardiomyocytes revealed by single-nucleus RNA sequencing. Dev. Cell 53, 102–116.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wang, Z. et al. Cell-type-specific gene regulatory networks underlying murine neonatal heart regeneration at single-cell resolution. Cell Rep. 33, 108472 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Aztekin, C. et al. Identification of a regeneration-organizing cell in the Xenopus tail. Science 364, 653–658 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  116. Londono, R. et al. Single cell sequencing analysis of lizard phagocytic cell populations and their role in tail regeneration. J. Immunol. Regen. Med. 8, 100029 (2020).

    PubMed  PubMed Central  Google Scholar 

  117. Qin, T. et al. A population of stem cells with strong regenerative potential discovered in deer antlers. Science 379, 840–847 (2023).

    Article  CAS  PubMed  ADS  Google Scholar 

  118. Chen, T. et al. A road map from single-cell transcriptome to patient classification for the immune response to trauma. JCI Insight 6, e145108 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Gaudilliere, B. et al. Coordinated surgical immune signatures contain correlates of clinical recovery. Sci. Transl Med. 6, 255ra131 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Pummerer, C. L. et al. Identification of cardiac myosin peptides capable of inducing autoimmune myocarditis in BALB/c mice. J. Clin. Invest. 97, 2057–2062 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Rieckmann, M. et al. Myocardial infarction triggers cardioprotective antigen-specific T helper cell responses. J. Clin. Invest. 129, 4922–4936 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Xia, N. et al. A unique population of regulatory T cells in heart potentiates cardiac protection from myocardial infarction. Circulation 142, 1956–1973 (2020).

    Article  CAS  PubMed  Google Scholar 

  123. Delgobo, M. et al. Myocardial milieu favors local differentiation of regulatory T cells. Circ. Res. 132, 565–582 (2023).

    Article  CAS  PubMed  Google Scholar 

  124. Guo, F. et al. Distinct injury responsive regulatory T cells identified by multi-dimensional phenotyping. Front. Immunol. 13, 833100 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hanna, B. S. et al. The gut microbiota promotes distal tissue regeneration via RORγ+ regulatory T cell emissaries. Immunity 56, 829–846.e8 (2023).

    Article  CAS  PubMed  Google Scholar 

  126. Boland, B. S. et al. Heterogeneity and clonal relationships of adaptive immune cells in ulcerative colitis revealed by single-cell analyses. Sci. Immunol. 5, eabb4432 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Koda, Y. et al. CD8+ tissue-resident memory T cells promote liver fibrosis resolution by inducing apoptosis of hepatic stellate cells. Nat. Commun. 12, 4474 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  128. Melo Ferreira, R. et al. Integration of spatial and single-cell transcriptomics localizes epithelial cell–immune cross-talk in kidney injury. JCI Insight 6, e147703 (2021).

    Article  PubMed  Google Scholar 

  129. McKellar, D. W. et al. Large-scale integration of single-cell transcriptomic data captures transitional progenitor states in mouse skeletal muscle regeneration. Commun. Biol. 4, 1280 (2021). This article reports the integration of new and publicly available scRNA-seq and snRNA-seq data sets to create a large-scale atlas of murine skeletal muscle injury for in-depth exploration of rare MuSC differentiation states, and it serves as cell cluster annotation reference for muscle-injury spatial transcriptomics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Konieczny, P. et al. Interleukin-17 governs hypoxic adaptation of injured epithelium. Science 377, eabg9302 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kim, H. K., Ha, T. W. & Lee, M. R. Single-cell transcriptome analysis as a promising tool to study pluripotent stem cell reprogramming. Int. J. Mol. Sci. 22, 5988 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Camp, J. G., Wollny, D. & Treutlein, B. Single-cell genomics to guide human stem cell and tissue engineering. Nat. Methods 15, 661–667 (2018).

    Article  CAS  PubMed  Google Scholar 

  133. Chen, K. et al. Disrupting mechanotransduction decreases fibrosis and contracture in split-thickness skin grafting. Sci. Transl Med. 14, eabj9152 (2022).

    Article  CAS  PubMed  Google Scholar 

  134. Henn, D. et al. Xenogeneic skin transplantation promotes angiogenesis and tissue regeneration through activated Trem2+ macrophages. Sci. Adv. 7, eabi4528 (2021). This study reports the use of scRNA-seq to investigate the innate immune response to xenogeneic skin transplants, identify unique TREM2+ regenerative macrophages and develop a new cell-laden hydrogel construct to mitigate fibrosis and improve healing of complex skin wounds.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  135. Wang, H. et al. Decoding the annulus fibrosus cell atlas by scRNA-seq to develop an inducible composite hydrogel: a novel strategy for disc reconstruction. Bioact. Mater. 14, 350–363 (2022).

    PubMed  PubMed Central  Google Scholar 

  136. Zhang, X. et al. Msx1+ stem cells recruited by bioactive tissue engineering graft for bone regeneration. Nat. Commun. 13, 5211 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  137. Xiao, W. et al. Recombinant DTβ4-inspired porous 3D vascular graft enhanced antithrombogenicity and recruited circulating CD93+/CD34+ cells for endothelialization. Sci. Adv. 8, eabn1958 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Jiang, Y. et al. Wireless, closed-loop, smart bandage with integrated sensors and stimulators for advanced wound care and accelerated healing. Nat. Biotechnol. 41, 652–662 (2022).

    Article  PubMed  Google Scholar 

  139. Hu, C. et al. Dissecting the microenvironment around biosynthetic scaffolds in murine skin wound healing. Sci. Adv. 7, eabf0787 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  140. Liang, R. et al. Silk gel recruits specific cell populations for scarless skin regeneration. Appl. Mater. Today 23, 101004 (2021).

    Article  Google Scholar 

  141. Huang, J. et al. Single-cell RNA-seq reveals functionally distinct biomaterial degradation-related macrophage populations. Biomaterials 277, 121116 (2021).

    Article  CAS  PubMed  Google Scholar 

  142. Sadtler, K. et al. Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells. Science 352, 366–370 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  143. Heredia, J. E. et al. Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell 153, 376–388 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Brown, B. N. et al. Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater. 8, 978–987 (2012).

    Article  CAS  PubMed  Google Scholar 

  145. Chung, L. et al. Interleukin 17 and senescent cells regulate the foreign body response to synthetic material implants in mice and humans. Sci. Transl Med. 12, eaax3799 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Sadtler, K. et al. Divergent immune responses to synthetic and biological scaffolds. Biomaterials 192, 405–415 (2019).

    Article  CAS  PubMed  Google Scholar 

  147. Sommerfeld, S. D. et al. Interleukin-36γ–producing macrophages drive IL-17–mediated fibrosis. Sci. Immunol. 4, eaax4783 (2019). This article reports the use of scRNA-seq to profile macrophages from various muscle injury and biomaterial (pro-regenerative ECM scaffold and pro-fibrotic synthetic scaffold) environments to identify unique phenotypes and mechanistic drivers of divergent wound-healing outcomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wang, J. et al. Break monopoly of polarization: CD301b+ macrophages play positive roles in osteoinduction of calcium phosphate ceramics. Appl. Mater. Today 24, 101111 (2021).

    Article  Google Scholar 

  149. Wang, J. et al. CD301b+ macrophages mediate angiogenesis of calcium phosphate bioceramics by CaN/NFATc1/VEGF axis. Bioact. Mater. 15, 446–455 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Anderson, J. M. Inflammatory response to implants. ASAIO Trans. 34, 101–107 (1988).

    Article  CAS  PubMed  Google Scholar 

  151. Henderson, N. C., Rieder, F. & Wynn, T. A. Fibrosis: from mechanisms to medicines. Nature 587, 555–566 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  152. Doloff, J. C. et al. The surface topography of silicone breast implants mediates the foreign body response in mice, rabbits and humans. Nat. Biomed. Eng. 5, 1115–1130 (2021).

    Article  CAS  PubMed  Google Scholar 

  153. Padmanabhan, J., Chen, K., Sivaraj, D. et al. Allometrically scaling tissue forces drive pathological foreign-body responses to implants via Rac2-activated myeloid cells. Nat. Biomed. Eng. 7, 1419–1436 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sivaraj, D. et al. IQGAP1‐mediated mechanical signaling promotes the foreign body response to biomedical implants. FASEB J. 36, e22007 (2022).

    Article  CAS  PubMed  Google Scholar 

  155. Cherry, C. et al. Transfer learning in a biomaterial fibrosis model identifies in vivo senescence heterogeneity and contributions to vascularization and matrix production across species and diverse pathologies. Geroscience 45, 2559–2587 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Cherry, C. et al. Computational reconstruction of the signalling networks surrounding implanted biomaterials from single-cell transcriptomics. Nat. Biomed. Eng. 5, 1228–1238 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Jones, R. C. et al. The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science 376, eabl4896 (2022).

    Article  CAS  PubMed  Google Scholar 

  158. Schaum, N. et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367–372 (2018).

    Article  PubMed Central  ADS  Google Scholar 

  159. Almanzar, N. et al. A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature 583, 590–595 (2020).

    Article  CAS  Google Scholar 

  160. Buechler, M. B. et al. Cross-tissue organization of the fibroblast lineage. Nature 593, 575–579 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  161. Cao, J. et al. A human cell atlas of fetal gene expression. Science 370, eaba7721 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Domcke, S. et al. A human cell atlas of fetal chromatin accessibility. Science 370, eaba7612 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Sanchez-Vega, F. et al. Oncogenic signaling pathways in the cancer genome atlas. Cell 173, 321–337.e10 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Prieto, C., Barrios, D. & Villaverde, A. SingleCAnalyzer: interactive analysis of single cell RNA-Seq data on the cloud. Front. Bioinform. 2, 793309 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Megill, C. et al. Cellxgene: a performant, scalable exploration platform for high dimensional sparse matrices. Preprint at bioRxiv https://doi.org/10.1101/2021.04.05.438318 (2021).

  166. Speir, M. L. et al. UCSC cell browser: visualize your single-cell data. Bioinformatics 37, 4578–4580 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Reich, M. et al. GenePattern 2.0. Nat. Genet. 38, 500–501 (2006).

    Article  CAS  PubMed  Google Scholar 

  168. Luecken, M. D. & Theis, F. J. Current best practices in single‐cell RNA‐seq analysis: a tutorial. Mol. Syst. Biol. 15, e8746 (2019). This review describes best practices and commonly used tools for scRNA-seq analysis and applies them to a publicly available data set as a guide; it also provides recommendations and points out potential pitfalls at each step of the process.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Cirulli, E. T. et al. A missense variant in PTPN22 is a risk factor for drug-induced liver injury. Gastroenterology 156, 1707–1716.e2 (2019).

    Article  CAS  PubMed  Google Scholar 

  170. Delacher, M. et al. Single-cell chromatin accessibility landscape identifies tissue repair program in human regulatory T cells. Immunity 54, 702–720.e17 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Llorens-Bobadilla, E. et al. A latent lineage potential in resident neural stem cells enables spinal cord repair. Science 370, eabb8795 (2020).

    Article  CAS  PubMed  Google Scholar 

  172. Wang, L. et al. Serum proteomics identifies biomarkers associated with the pathogenesis of idiopathic pulmonary fibrosis. Mol. Cell. Proteom. 22, 100524 (2023).

    Article  CAS  Google Scholar 

  173. Ogbeide, S., Giannese, F., Mincarelli, L. & Macaulay, I. C. Into the multiverse: advances in single-cell multiomic profiling. Trends Genet. 38, 831–843 (2022).

    Article  CAS  PubMed  Google Scholar 

  174. Rodriguez-Meira, A. et al. Unravelling intratumoral heterogeneity through high-sensitivity single-cell mutational analysis and parallel RNA sequencing. Mol. Cell 73, 1292–1305.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Zhu, C. et al. An ultra high-throughput method for single-cell joint analysis of open chromatin and transcriptome. Nat. Struct. Mol. Biol. 26, 1063–1070 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Bock, C. et al. High-content CRISPR screening. Nat. Rev. Methods Primers 2, 9 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Tian, F. et al. Core transcription programs controlling injury-induced neurodegeneration of retinal ganglion cells. Neuron 110, 2607–2624.e8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  179. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181 (2014).

    Article  CAS  PubMed  Google Scholar 

  181. Hashimshony, T. et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq. Genome Biol. 17, 77 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).

    Article  CAS  PubMed  Google Scholar 

  183. Grandi, F. et al. popsicleR: a R package for pre-processing and quality control analysis of single cell RNA-seq data. J. Mol. Biol. 434, 167560 (2022).

    Article  CAS  PubMed  Google Scholar 

  184. Hong, R. et al. Comprehensive generation, visualization, and reporting of quality control metrics for single-cell RNA sequencing data. Nat. Commun. 13, 1688 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  185. Hippen, A. A. et al. miQC: an adaptive probabilistic framework for quality control of single-cell RNA-sequencing data. PLoS Comput. Biol. 17, e1009290 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 8, 281–291.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Bernstein, N. J. et al. Solo: doublet identification in single-cell RNA-seq via semi-supervised deep learning. Cell Syst. 11, 95–101.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  188. Yang, S. et al. Decontamination of ambient RNA in single-cell RNA-seq with DecontX. Genome Biol. 21, 57 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Berg, M. et al. FastCAR: fast Correction for Ambient RNA to facilitate differential gene expression analysis in single-cell RNA-sequencing datasets. Preprint at bioRxiv https://doi.org/10.1101/2022.07.19.500594 (2022).

  190. Lun, A. T. L., McCarthy, D. J. & Marioni, J. C. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor. F1000Research 5, 2122 (2016).

    PubMed  PubMed Central  Google Scholar 

  191. Bacher, R. et al. SCnorm: robust normalization of single-cell RNA-seq data. Nat. Methods 14, 584–586 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Yip, S. H., Wang, P., Kocher, J.-P. A., Sham, P. C. & Wang, J. Linnorm: improved statistical analysis for single cell RNA-seq expression data. Nucleic Acids Res. 45, e179 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Hie, B., Bryson, B. & Berger, B. Efficient integration of heterogeneous single-cell transcriptomes using Scanorama. Nat. Biotechnol. 37, 685–691 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. van Dijk, D. et al. Recovering gene interactions from single-cell data using data diffusion. Cell 174, 716–729.e27 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Wagner, F., Yan, Y. & Yanai, I. K-nearest neighbor smoothing for high-throughput single-cell RNA-Seq data. Preprint at bioRxiv https://doi.org/10.1101/217737 (2018).

  198. Huang, M. et al. SAVER: gene expression recovery for single-cell RNA sequencing. Nat. Methods 15, 539–542 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).

    Google Scholar 

  200. McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: uniform manifold approximation and projection. J. Open Source Softw. 3, 861 (2018).

    Article  Google Scholar 

  201. Kiselev, V. Y. et al. SC3: consensus clustering of single-cell RNA-seq data. Nat. Methods 14, 483–486 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Žurauskienė, J. & Yau, C. pcaReduce: hierarchical clustering of single cell transcriptional profiles. BMC Bioinformatics 17, 140 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Levine, J. H. et al. Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 162, 184–197 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Hou, R., Denisenko, E. & Forrest, A. R. R. scMatch: a single-cell gene expression profile annotation tool using reference datasets. Bioinformatics 35, 4688–4695 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Fu, R. et al. clustifyr: an R package for automated single-cell RNA sequencing cluster classification. F1000Research 9, 223 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Tan, Y. & Cahan, P. SingleCellNet: a computational tool to classify single cell RNA-seq data across platforms and across species. Cell Syst. 9, 207–213.e2 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Kharchenko, P. V., Silberstein, L. & Scadden, D. T. Bayesian approach to single-cell differential expression analysis. Nat. Methods 11, 740–742 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 278 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Korthauer, K. D. et al. A statistical approach for identifying differential distributions in single-cell RNA-seq experiments. Genome Biol. 17, 222 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Ji, Z. & Ji, H. TSCAN: pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis. Nucleic Acids Res. 44, e117 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 19, 477 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  212. La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  213. Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 12, 1088 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  215. Chou, C.-H. et al. Synovial cell cross-talk with cartilage plays a major role in the pathogenesis of osteoarthritis. Sci. Rep. 10, 10868 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  216. do Valle Duraes, F. et al. Immune cell landscaping reveals a protective role for regulatory T cells during kidney injury and fibrosis. JCI Insight 5, e130651 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Rudman-Melnick, V. et al. Single-cell profiling of AKI in a murine model reveals novel transcriptional signatures, profibrotic phenotype, and epithelial-to-stromal crosstalk. J. Am. Soc. Nephrol. 31, 2793–2814 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Misra, A. et al. Characterizing neonatal heart maturation, regeneration, and scar resolution using spatial transcriptomics. J. Cardiovasc. Dev. Dis. 9, 1 (2022).

    CAS  Google Scholar 

  219. Conlon, T. M. et al. Inhibition of LTβR signalling activates WNT-induced regeneration in lung. Nature 588, 151–156 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  220. Tran, N. M. et al. Single-cell profiles of retinal ganglion cells differing in resilience to injury reveal neuroprotective genes. Neuron 104, 1039–1055.e12 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Wheeler, M. A. et al. MAFG-driven astrocytes promote CNS inflammation. Nature 578, 593–599 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  222. Schirmer, L. et al. Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature 573, 75–82 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  223. Henn, D. et al. Cas9-mediated knockout of Ndrg2 enhances the regenerative potential of dendritic cells for wound healing. Nat. Commun. 14, 4729 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  224. Jin, R. M., Warunek, J. & Wohlfert, E. A. Chronic infection stunts macrophage heterogeneity and disrupts immune-mediated myogenesis. JCI Insight 3, e121459 (2018).

    Article  Google Scholar 

  225. Vu, R. et al. Wound healing in aged skin exhibits systems-level alterations in cellular composition and cell-cell communication. Cell Rep. 40, 111155 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Han, J. et al. Age-associated senescent - T cell signaling promotes type 3 immunity that inhibits regenerative response. Preprint at bioRxiv https://doi.org/10.1101/2021.08.17.456641 (2022).

  227. Zhang, C. et al. Age‐related decline of interferon‐gamma responses in macrophage impairs satellite cell proliferation and regeneration. J. Cachexia Sarcopenia Muscle 11, 1291–1305 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded in part by the National Institutes of Health (NIH) Pioneer Award DP1AR076959 (to J.H.E.), Bloomberg~Kimmel Institute and Morton Goldberg Professorship (to J.H.E.). A.R. is funded through NSF GRFP DGE-1746891.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding author

Correspondence to Jennifer H. Elisseeff.

Ethics declarations

Competing interests

J.H.E. holds equity in Unity Biotechnology and Aegeria Soft Tissue, and is an advisor for Tessera Therapeutics, HapInScience and Font Bio. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Omer Bayraktar and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruta, A., Krishnan, K. & Elisseeff, J.H. Single-cell transcriptomics in tissue engineering and regenerative medicine. Nat Rev Bioeng 2, 101–119 (2024). https://doi.org/10.1038/s44222-023-00132-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44222-023-00132-7

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research