Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Human and environmental safety of carbon nanotubes across their life cycle

An Author Correction to this article was published on 08 March 2024

This article has been updated

Abstract

Carbon nanotubes are a large family of carbon-based hollow cylindrical structures with unique physicochemical properties that have motivated research for diverse applications; some have reached commercialization. Recent actions in the European Union that propose to ban this entire class of materials highlight an unmet need to precisely define carbon nanotubes, to better understand their toxicological risks for human health and the environment throughout their life cycle, and to communicate science-based policy-driving information regarding their taxonomy, safe sourcing, processing, production, manufacturing, handling, use, transportation and disposal. In this Perspective, we discuss current information and knowledge gaps regarding these issues and make recommendations to provide R&D and regulatory clarity regarding the material properties of different carbon nanotube materials. We highlight the significance of life-cycle assessments of carbon nanotubes and provide a framework to inform policy decisions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of carbon nanotube research, applications, toxicity assessment and policies.
Fig. 2: Physical and chemical diversity of carbon nanotubes.
Fig. 3: Textual analysis of CNT toxicity literature.
Fig. 4: Carbon nanotube life cycle and their environmental pathways and potential exposure routes.

Similar content being viewed by others

Data availability

Textual analysis presented in Figs. 1 and 3, including the search terms and the classification data are available in Supplementary Table 1.

Change history

References

  1. Takakura, A. et al. Strength of carbon nanotubes depends on their chemical structures. Nat. Commun. 10, 3040 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  2. Ruoff, R. S. & Lorents, D. C. Mechanical and thermal properties of carbon nanotubes. Carbon 33, 925–930 (1995).

    Article  CAS  Google Scholar 

  3. Dresselhaus, M. S., Dresselhaus, G. & Saito, R. Physics of carbon nanotubes. Carbon 33, 883–891 (1995).

    Article  CAS  Google Scholar 

  4. Kim, P., Shi, L., Majumdar, A. & McEuen, P. L. Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87, 215502 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Frank, S., Poncharal, P., Wang, Z. L. & Heer, W. A. Carbon nanotube quantum resistors. Science 280, 1744–1746 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Liang, W. et al. Fabry–Perot interference in a nanotube electron waveguide. Nature 411, 665–669 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. O’Connell, M. J. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002).

    Article  ADS  PubMed  Google Scholar 

  8. Yakobson, B. I. & Couchman, L. S. Persistence length and nanomechanics of random bundles of nanotubes. J. Nanopart. Res. 8, 105–110 (2006).

    Article  ADS  CAS  Google Scholar 

  9. Chen, J. S. et al. Room temperature lasing from semiconducting single-walled carbon nanotubes. ACS Nano 16, 16776–16783 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Srivastava, A., Srivastava, O. N., Talapatra, S., Vajtai, R. & Ajayan, P. M. Carbon nanotube filters. Nat. Mater. 3, 610–614 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Galassi, T. V. et al. An optical nanoreporter of endolysosomal lipid accumulation reveals enduring effects of diet on hepatic macrophages in vivo. Sci. Transl. Med. 10, eaar2680 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kim, M. et al. Nanosensor-based monitoring of autophagy-associated lysosomal acidification in vivo. Nat. Chem. Biol. https://doi.org/10.1038/s41589-023-01364-9 (2023).

  13. Kim, M. et al. Detection of ovarian cancer via the spectral fingerprinting of quantum-defect-modified carbon nanotubes in serum by machine learning. Biomed. Eng. 6, 267–275 (2022).

    CAS  Google Scholar 

  14. Tan, J. M., Bullo, S., Fakurazi, S. & Hussein, M. Z. Preparation, characterisation and biological evaluation of biopolymer-coated multi-walled carbon nanotubes for sustained-delivery of silibinin. Sci. Rep. 10, 16941 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, X. A. et al. Dynamic gating of infrared radiation in a textile. Science 363, 619–623 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Safaee, M. M., Gravely, M. & Roxbury, D. A wearable optical microfibrous biomaterial with encapsulated nanosensors enables wireless monitoring of oxidative stress. Adv. Funct. Mater. 31, 2006254 (2021).

    Article  CAS  Google Scholar 

  17. Xu, S., Liu, J. & Li, Q. Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste. Constr. Build. Mater. 76, 16–23 (2015).

    Article  Google Scholar 

  18. Maheswaran, R. & Shanmugavel, B. P. A critical review of the role of carbon nanotubes in the progress of next-generation electronic applications. J. Electron. Mater. 51, 2786–2800 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Choi, C. et al. Twistable and stretchable sandwich structured fiber for wearable sensors and supercapacitors. Nano Lett. 16, 7677–7684 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Global carbon nanotubes market size by type (SWCNT, MWCNT), by application (plastics & composites, electrical & electronics, energy), by geographic scope and forecast. Verified Market Research Report 32499 (Verified Market Research, 2022).

  21. Zeng, L. & Attwood, J. Advanced Materials Primer: Carbon Nanotubes (BloombergNEF, 2021).

  22. Valsami-Jones, E. & Lynch, I. How safe are nanomaterials? Science 350, 388–389 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Heller, D. A. et al. Banning carbon nanotubes would be scientifically unjustified and damaging to innovation. Nat. Nanotechnol. 15, 164–166 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hansen, S. F. & Lennquist, A. SIN List criticism based on misunderstandings. Nat. Nanotechnol. 15, 418–418 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Hansen, S. F. & Lennquist, A. Carbon nanotubes added to the SIN List as a nanomaterial of Very High Concern. Nat. Nanotechnol. 15, 3–4 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Fadeel, B. & Kostarelos, K. Grouping all carbon nanotubes into a single substance category is scientifically unjustified. Nat. Nanotechnol. 15, 164–164 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Castillo, A. P. D. & Krop, H. EU observatory for nanomaterials: A constructive view on future regulation. European Trade Union Institute (ETUI) Research Paper - Policy Brief 4/2017 (ETUI, 2018).

  28. National Institute for Occupational Safety and Health (NIOSH). Occupational exposure to carbon nanotubes and nanofibers. Curr. Intell. Bull. 65 (2013).

  29. Realizing the promise of carbon nanotubes: challenges, opportunities, and the pathway to commercialization. Technical Interchange Proceedings (National Nanotechnology Initiative, 2014).

  30. US Environmental Protection Agency (US EPA).Multi-walled carbon nanotubes; significant new use rule. Fed. Reg. 76, 26186–26192 (2011).

    Google Scholar 

  31. US Environmental Protection Agency (US EPA). Significant new use rule on certain chemical substances. Fed. Reg. 82, 45990–45995 (2017).

    Google Scholar 

  32. US Environmental Protection Agency (US EPA). Toxic substances control act inventory status of carbon nanotubes. Fed. Reg. 73, 64946–64947 (2008).

    Google Scholar 

  33. Castagnola, V. et al. Towards a classification strategy for complex nanostructures. Nanoscale Horiz. 2, 187–198 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. He, M. et al. Precise determination of the threshold diameter for a single-walled carbon nanotube to collapse. ACS Nano 8, 9657–9663 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Zhao, X. et al. Smallest carbon nanotube is 3 A in diameter. Phys. Rev. Lett. 92, 125502 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Balasubramanian, K. & Burghard, M. Chemically functionalized carbon nanotubes. Small 1, 180–192 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Kalbac, M., Green, A. A., Hersam, M. C. & Kavan, L. Probing charge transfer between shells of double-walled carbon nanotubes sorted by outer-wall electronic type. Chemistry 17, 9806–9815 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Moore, K. E., Tune, D. D. & Flavel, B. S. Double-walled carbon nanotube processing. Adv. Mater. 27, 3105–3137 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Shi, W. et al. Superconductivity in bundles of double-wall carbon nanotubes. Sci. Rep. 2, 625 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Noffsinger, J. & Cohen, M. L. Electron-phonon coupling and superconductivity in double-walled carbon nanotubes. Phys. Rev. B 83, 165420 (2011).

    Article  ADS  Google Scholar 

  41. Hecht, D., Hu, L. & Grüner, G. Conductivity scaling with bundle length and diameter in single walled carbon nanotube networks. Appl. Phys. Lett. 89, 133112 (2006).

    Article  ADS  Google Scholar 

  42. Harrah, D. M. & Swan, A. K. The role of length and defects on optical quantum efficiency and exciton decay dynamics in single-walled carbon nanotubes. ACS Nano 5, 647–655 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, R., Zhang, Y. & Wei, F. Controlled synthesis of ultralong carbon nanotubes with perfect structures and extraordinary properties. Acc. Chem. Res. 50, 179–189 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    Article  ADS  CAS  Google Scholar 

  45. Scott, C. D., Arepalli, S., Nikolaev, P. & Smalley, R. E. Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl. Phys. A 72, 573–580 (2001).

    Article  ADS  CAS  Google Scholar 

  46. Nikolaev, P. et al. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 313, 91–97 (1999).

    Article  ADS  CAS  Google Scholar 

  47. Lolli, G. et al. Tailoring (n,m) structure of single-walled carbon nanotubes by modifying reaction conditions and the nature of the support of CoMo catalysts. J. Phys. Chem. B 110, 2108–2115 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Saito, T. et al. Selective diameter control of single-walled carbon nanotubes in the gas-phase synthesis. J. Nanosci. Nanotechnol. 8, 6153–6157 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Graf, A. et al. Large scale, selective dispersion of long single-walled carbon nanotubes with high photoluminescence quantum yield by shear force mixing. Carbon 105, 593–599 (2016).

    Article  CAS  Google Scholar 

  50. Pénicaud, A., Poulin, P., Derré, A., Anglaret, E. & Petit, P. Spontaneous dissolution of a single-wall carbon nanotube salt. J. Am. Chem. Soc. 127, 8–9 (2005).

    Article  PubMed  Google Scholar 

  51. Ramesh, S. et al. Dissolution of pristine single walled carbon nanotubes in superacids by direct protonation. J. Phys. Chem. B 108, 8794–8798 (2004).

    Article  CAS  Google Scholar 

  52. Li, Y.-L., Kinloch, I. A. & Windle, A. H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304, 276–278 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Headrick, R. J. et al. Versatile acid solvents for pristine carbon nanotube assembly. Sci. Adv. 8, eabm3285 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ge, L., Sethi, S., Ci, L., Ajayan, P. M. & Dhinojwala, A. Carbon nanotube-based synthetic gecko tapes. Proc. Natl Acad. Sci. USA 104, 10792–10795 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang, M., Atkinson, K. R. & Baughman, R. H. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 306, 1358–1361 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Vigolo, B. et al. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290, 1331–1334 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Ericson, L. M. et al. Macroscopic, neat, single-walled carbon nanotube fibers. Science 305, 1447–1450 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Ghosh, S., Bachilo, S. M. & Weisman, R. B. Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation. Nat. Nanotechnol. 5, 443–450 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Gao, Z. et al. Optical detection of individual ultra-short carbon nanotubes enables their length characterization down to 10 nm. Sci. Rep. 5, 17093 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fagan, J. A. et al. Isolation of >1 nm diameter single-wall carbon nanotube species using aqueous two-phase extraction. ACS Nano 9, 5377–5390 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Tanaka, T., Jin, H., Miyata, Y. & Kataura, H. High-yield separation of metallic and semiconducting single-wall carbon nanotubes by agarose gel electrophoresis. Appl. Phys. Exp. 1, 114001 (2008).

    Article  ADS  Google Scholar 

  62. Zheng, M. et al. DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2, 338–342 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  63. Liu, H., Nishide, D., Tanaka, T. & Kataura, H. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat. Commun. 2, 309 (2011).

    Article  ADS  PubMed  Google Scholar 

  64. Blanch, A. J., Lenehan, C. E. & Quinton, J. S. Optimizing surfactant concentrations for dispersion of single-walled carbon nanotubes in aqueous solution. J. Phys. Chem. B 114, 9805–9811 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Kato, H., Nakamura, A. & Horie, M. Acceleration of suspending single-walled carbon nanotubes in BSA aqueous solution induced by amino acid molecules. J. Colloid Interface Sci. 437, 156–162 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  66. Yamada, K. et al. Single walled carbon nanotube-based junction biosensor for detection of Escherichia coli. PLoS ONE 9, e105767 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  67. Galassi, T. V. et al. Long-term in vivo biocompatibility of single-walled carbon nanotubes. PLoS ONE 15, e0226791 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Williams, R. M. et al. Noninvasive ovarian cancer biomarker detection via an optical nanosensor implant. Sci. Adv. 4, eaaq1090 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  69. Godin, A. G. et al. Single-nanotube tracking reveals the nanoscale organization of the extracellular space in the live brain. Nat. Nanotechnol. 12, 238–243 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  70. Harvey, J. D. et al. A carbon nanotube reporter of microRNA hybridization events in vivo. Nat. Biomed. Eng. 1, 0041 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lekshmi, G. et al. Recent progress in carbon nanotube polymer composites in tissue engineering and regeneration. Int. J. Mol. Sci. 21, 6640 (2020).

    Article  Google Scholar 

  72. Brozena, A. H., Kim, M., Powell, L. R. & Wang, Y. Controlling the optical properties of carbon nanotubes with organic colour-centre quantum defects. Nat. Rev. Chem. 3, 375–392 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mann, F. A., Galonska, P., Herrmann, N. & Kruss, S. Quantum defects as versatile anchors for carbon nanotube functionalization. Nat. Protoc. 17, 727–747 (2022).

    Article  CAS  PubMed  Google Scholar 

  74. Karousis, N., Tagmatarchis, N. & Tasis, D. Current progress on the chemical modification of carbon nanotubes. Chem. Rev. 110, 5366–5397 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Demirer, G. S. et al. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat. Nanotechnol. 14, 456–464 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kam, N. W., O’Connell, M., Wisdom, J. A. & Dai, H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl Acad. Sci. USA 102, 11600–11605 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lin, Z. et al. DNA-guided lattice remodeling of carbon nanotubes. Science 377, 535–539 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ghosh, S., Bachilo, S. M., Simonette, R. A., Beckingham, K. M. & Weisman, R. B. Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes. Science 330, 1656–1659 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  79. Piao, Y. et al. Brightening of carbon nanotube photoluminescence through the incorporation of sp3 defects. Nat. Chem. 5, 840–845 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Kwon, H. et al. Optical probing of local pH and temperature in complex fluids with covalently functionalized, semiconducting carbon nanotubes. J. Phys. Chem. C 119, 3733–3739 (2015).

    Article  CAS  Google Scholar 

  81. Yu, Q. et al. Mechanical strength improvements of carbon nanotube threads through epoxy cross-linking. Materials 9, 68 (2016).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  82. Vardharajula, S. et al. Functionalized carbon nanotubes: biomedical applications. Int. J. Nanomed. 7, 5361–5374 (2012).

    CAS  Google Scholar 

  83. Taylor, L. W. et al. Improved properties, increased production, and the path to broad adoption of carbon nanotube fibers. Carbon 171, 689–694 (2021).

    Article  CAS  Google Scholar 

  84. Armarego, W. L. F. in Purification of Laboratory Chemicals 8th edn (ed. Armarego, W. L. F.) 1065–1106 (Butterworth-Heinemann, 2017).

  85. Wepasnick, K. A., Smith, B. A., Bitter, J. L. & Howard Fairbrother, D. Chemical and structural characterization of carbon nanotube surfaces. Anal. Bioanal. Chem. 396, 1003–1014 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Suenaga, K. et al. Imaging active topological defects in carbon nanotubes. Nat. Nanotechnol. 2, 358–360 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  87. Parra-Vasquez, A. N. G. et al. Simple length determination of single-walled carbon nanotubes by viscosity measurements in dilute suspensions. Macromolecules 40, 4043–4047 (2007).

    Article  ADS  CAS  Google Scholar 

  88. Tsentalovich, D. E. et al. Relationship of extensional viscosity and liquid crystalline transition to length distribution in carbon nanotube solutions. Macromolecules 49, 681–689 (2016).

    Article  ADS  CAS  Google Scholar 

  89. Kim, P., Odom, T. W., Huang, J. & Lieber, C. M. STM study of single-walled carbon nanotubes. Carbon 38, 1741–1744 (2000).

    Article  CAS  Google Scholar 

  90. Wang, H. et al. Dispersing single-walled carbon nanotubes with surfactants: a small angle neutron scattering study. Nano Lett. 4, 1789–1793 (2004).

    Article  ADS  CAS  Google Scholar 

  91. Mirri, F. et al. Quantification of carbon nanotube liquid crystal morphology via neutron scattering. Macromolecules 51, 6892–6900 (2018).

    Article  ADS  CAS  Google Scholar 

  92. Burian, A., Dore, J. C., Fischer, H. E. & Sloan, J. Structural studies of multiwall carbon nanotubes by neutron diffraction. Phys. Rev. B 59, 1665–1668 (1999).

    Article  ADS  CAS  Google Scholar 

  93. Futaba, D. N., Yamada, T., Kobashi, K., Yumura, M. & Hata, K. Macroscopic wall number analysis of single-walled, double-walled, and few-walled carbon nanotubes by X-ray diffraction. J. Am. Chem. Soc. 133, 5716–5719 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Miyata, Y., Yanagi, K., Maniwa, Y., Tanaka, T. & Kataura, H. Diameter analysis of rebundled single-wall carbon nanotubes using x-ray diffraction: verification of chirality assignment based on optical spectra. J. Phys. Chem. C 112, 15997–16001 (2008).

    Article  CAS  Google Scholar 

  95. Badaire, S., Poulin, P., Maugey, M. & Zakri, C. In situ measurements of nanotube dimensions in suspensions by depolarized dynamic light scattering. Langmuir 20, 10367–10370 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Kolodiazhnyi, T. & Pumera, M. Towards an ultrasensitive method for the determination of metal impurities in carbon nanotubes. Small 4, 1476–1484 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Bom, D. et al. Thermogravimetric analysis of the oxidation of multiwalled carbon nanotubes: evidence for the role of defect sites in carbon nanotube chemistry. Nano Lett. 2, 615–619 (2002).

    Article  ADS  CAS  Google Scholar 

  98. Grinberg, P., Methven, B. A. J., Swider, K. & Mester, Z. Determination of metallic impurities in carbon nanotubes by glow discharge mass spectrometry. ACS Omega 6, 22717–22725 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wörle-Knirsch, J. M., Pulskamp, K. & Krug, H. F. Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett. 6, 1261–1268 (2006).

    Article  ADS  PubMed  Google Scholar 

  100. Szymański, T., Kempa, M., Giersig, M. & Dalibor Rybka, J. Carbon nanotubes interference with luminescence-based assays. Materials 13, 4270 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  101. Harmonised Tiered Approach to Measure and Assess the Potential Exposure to Airborne Emissions of Engineered Nano-objects and Their Agglomerates and Aggregates at Workplaces. Series on the Safety of Manufactured Nanomaterials no. 55 (OECD, 2015).

  102. Faria, M. et al. Minimum information reporting in bio–nano experimental literature. Nat. Nanotechnol. 13, 777–785 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ma-Hock, L. et al. Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months. Toxicol. Sci. 112, 468–481 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Pauluhn, J. Subchronic 13-week inhalation exposure of rats to multiwalled carbon nanotubes: toxic effects are determined by density of agglomerate structures, not fibrillar structures. Toxicol. Sci. 113, 226–242 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Oyabu, T. et al. Biopersistence of inhaled MWCNT in rat lungs in a 4-week well-characterized exposure. Inhalation Toxicol. 23, 784–791 (2011).

    Article  CAS  Google Scholar 

  106. Sakamoto, Y. et al. Induction of mesothelioma by a single intrascrotal administration of multi-wall carbon nanotube in intact male Fischer 344 rats. J. Toxicol. Sci. 34, 65–76 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Takagi, A., Hirose, A., Futakuchi, M., Tsuda, H. & Kanno, J. Dose-dependent mesothelioma induction by intraperitoneal administration of multi-wall carbon nanotubes in p53 heterozygous mice. Cancer Sci. 103, 1440–1444 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Numano, T. et al. MWCNT-7 administered to the lung by intratracheal instillation induces development of pleural mesothelioma in F344 rats. Cancer Sci. 110, 2485–2492 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Beyeler, S. et al. Multi-walled carbon nanotubes activate and shift polarization of pulmonary macrophages and dendritic cells in an in vivo model of chronic obstructive lung disease. Nanotoxicology 14, 77–96 (2020).

    Article  CAS  PubMed  Google Scholar 

  110. Yamashita, K. et al. Carbon nanotubes elicit DNA damage and inflammatory response relative to their size and shape. Inflammation 33, 276–280 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Cole, E. et al. Multiwalled carbon nanotubes of varying size lead to DNA methylation changes that correspond to lung inflammation and injury in a mouse model. Chem. Res. Toxicol. 32, 1545–1553 (2019).

    Article  CAS  PubMed  Google Scholar 

  112. Murphy, F. A., Poland, C. A., Duffin, R. & Donaldson, K. Length-dependent pleural inflammation and parietal pleural responses after deposition of carbon nanotubes in the pulmonary airspaces of mice. Nanotoxicology 7, 1157–1167 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Poland, C. A. et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol. 3, 423–428 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Sweeney, S. et al. Multi-walled carbon nanotube length as a critical determinant of bioreactivity with primary human pulmonary alveolar cells. Carbon 78, 26–37 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Donaldson, K., Murphy, F. A., Duffin, R. & Poland, C. A. Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part. Fibre Toxicol. 7, 5 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Zhou, H. et al. A nano-combinatorial library strategy for the discovery of nanotubes with reduced protein-binding, cytotoxicity, and immune response. Nano Lett. 8, 859–865 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  117. Li, R. et al. Surface charge and cellular processing of covalently functionalized multiwall carbon nanotubes determine pulmonary toxicity. ACS Nano 7, 2352–2368 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hussain, S. et al. Multiwalled carbon nanotube functionalization with high molecular weight hyaluronan significantly reduces pulmonary injury. ACS Nano 10, 7675–7688 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Grosse, Y. et al. Carcinogenicity of fluoro-edenite, silicon carbide fibres and whiskers, and carbon nanotubes. Lancet Oncol. 15, 1427–1428 (2014).

    Article  CAS  PubMed  Google Scholar 

  120. Ge, C. et al. The contributions of metal impurities and tube structure to the toxicity of carbon nanotube materials. NPG Asia Mater. 4, e32–e32 (2012).

    Article  Google Scholar 

  121. Rodríguez-Yáñez, Y. et al. Commercial single-walled carbon nanotubes effects in fibrinolysis of human umbilical vein endothelial cells. Toxicol. Vitr. 29, 1201–1214 (2015).

    Article  Google Scholar 

  122. Ruggiero, A. et al. Paradoxical glomerular filtration of carbon nanotubes. Proc. Natl Acad. Sci. USA 107, 12369–12374 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  123. Fakhri, N., MacKintosh, F. C., Lounis, B., Cognet, L. & Pasquali, M. Brownian motion of stiff filaments in a crowded environment. Science 330, 1804–1807 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  124. Tang, Z. et al. Single-walled carbon nanotube reptation dynamics in submicron sized pores from randomly packed mono-sized colloids. Soft Matter 18, 5509–5517 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  125. Pettitt, M. E. & Lead, J. R. Minimum physicochemical characterisation requirements for nanomaterial regulation. Environ. Int. 52, 41–50 (2013).

    Article  PubMed  Google Scholar 

  126. Trinh, T. X. et al. Quasi-SMILES-based nano-quantitative structure–activity relationship model to predict the cytotoxicity of multiwalled carbon nanotubes to human lung cells. Chem. Res. Toxicol. 31, 183–190 (2018).

    Article  CAS  PubMed  Google Scholar 

  127. Puzyn, T., Leszczynska, D. & Leszczynski, J. Toward the development of ‘nano-QSARs’: advances and challenges. Small 5, 2494–2509 (2009).

    Article  CAS  PubMed  Google Scholar 

  128. Nißler, R. et al. Remote near infrared identification of pathogens with multiplexed nanosensors. Nat. Commun. 11, 5995 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  129. Jaffal, D., Daniels, S., Tang, H.-Y., Ghadimi, H. & Monty, C. N. Electroconductive nylon-6/multi-walled carbon nanotube nanocomposite for sodium sensing applications. Composites C 4, 100116 (2021).

    CAS  Google Scholar 

  130. Mitrano, D. M., Motellier, S., Clavaguera, S. & Nowack, B. Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products. Environ. Int. 77, 132–147 (2015).

    Article  CAS  PubMed  Google Scholar 

  131. Som, C., Wick, P., Krug, H. & Nowack, B. Environmental and health effects of nanomaterials in nanotextiles and façade coatings. Environ. Int. 37, 1131–1142 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. Bergamaschi, E. et al. Occupational exposure to carbon nanotubes and carbon nanofibres: more than a cobweb. Nanomaterials 11, 745 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Guseva Canu, I. et al. Human exposure to carbon-based fibrous nanomaterials: a review. Int. J. Hyg. Environ. Health 219, 166–175 (2016).

    Article  CAS  PubMed  Google Scholar 

  134. Some Nanomaterials and Some Fibres. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans (IARC, 2017).

  135. Brouwer, D. H., Links, I. H. M., De Vreede, S. A. F. & Christopher, Y. Size selective dustiness and exposure; simulated workplace comparisons. Ann. Occup. Hyg. 50, 445–452 (2006).

    CAS  PubMed  Google Scholar 

  136. Evans, D. E., Turkevich, L. A., Roettgers, C. T., Deye, G. J. & Baron, P. A. Dustiness of fine and nanoscale powders. Ann. Occup. Hyg. 57, 261–277 (2013).

    CAS  PubMed  Google Scholar 

  137. Nanomaterials in Waste Streams (OECD, 2016).

  138. Abalansa, S., El Mahrad, B., Icely, J. & Newton, A. Electronic waste, an environmental problem exported to developing countries: the GOOD, the BAD and the UGLY. Sustainability 13, 5302 (2021).

  139. Global Environment Outlook (eds Ekins, P., Gupta, J. & Boileau, P.) (UN Environment, 2019).

  140. Petersen, E. J. et al. Potential release pathways, environmental fate, and ecological risks of carbon nanotubes. Environ. Sci. Technol. 45, 9837–9856 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  141. Nowack, B. et al. Potential release scenarios for carbon nanotubes used in composites. Environ. Int. 59, 1–11 (2013).

    Article  CAS  PubMed  Google Scholar 

  142. Gottschalk, F., Kost, E. & Nowack, B. Engineered nanomaterials in water and soils: a risk quantification based on probabilistic exposure and effect modeling. Environ. Toxicol. Chem. 32, 1278–1287 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Jaisi, D. P. & Elimelech, M. Single-walled carbon nanotubes exhibit limited transport in soil columns. Environ. Sci. Technol. 43, 9161–9166 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  144. Kasel, D. et al. Limited transport of functionalized multi-walled carbon nanotubes in two natural soils. Environ. Pollut. 180, 152–158 (2013).

    Article  CAS  PubMed  Google Scholar 

  145. Zheng, Y. & Nowack, B. Meta-analysis of bioaccumulation data for nondissolvable engineered nanomaterials in freshwater aquatic organisms. Environ. Toxicol. Chem. 41, 1202–1214 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Helland, A., Wick, P., Koehler, A., Schmid, K. & Som, C. Reviewing the environmental and human health knowledge base of carbon nanotubes. Environ. Health Perspect. 115, 1125–1131 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Healy, M. L., Dahlben, L. J. & Isaacs, J. A. Environmental assessment of single-walled carbon nanotube processes. J. Ind. Ecol. 12, 376–393 (2008).

    Article  CAS  Google Scholar 

  148. Gavankar, S., Suh, S. & Keller, A. A. The role of scale and technology maturity in life cycle assessment of emerging technologies: a case study on carbon nanotubes. J. Ind. Ecol. 19, 51–60 (2015).

    Article  CAS  Google Scholar 

  149. Predtechenskiy, M. R. Method and Apparatus for Producing Carbon Nanostructures. US Patent no. US11292720B2 (MCD Technologies SARL, 2022).

  150. Huntsman International LLC. High Value Energy Saving Carbon Products and Clean Hydrogen Gas from Methane (US Department of Energy, Advanced Research Projects Agency — Energy, 2019–2022).

  151. Ouassil, N., Pinals, R. L., Del Bonis-O’Donnell, J. T., Wang, J. W. & Landry, M. P. Supervised learning model predicts protein adsorption to carbon nanotubes. Sci. Adv. 8, eabm0898 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  152. Fourches, D. et al. Computer-aided design of carbon nanotubes with the desired bioactivity and safety profiles. Nanotoxicology 10, 374–383 (2016).

    Article  CAS  PubMed  Google Scholar 

  153. Varsou, D.-D. et al. A safe-by-design tool for functionalised nanomaterials through the Enalos Nanoinformatics Cloud platform. Nanoscale Adv. 1, 706–718 (2019).

    Article  ADS  PubMed  Google Scholar 

  154. Yan, X. et al. Converting nanotoxicity data to information using artificial intelligence and simulation. Chem. Rev. 123, 8575–8637 (2023).

    Article  CAS  PubMed  Google Scholar 

  155. Fadeel, B. et al. Advanced tools for the safety assessment of nanomaterials. Nat. Nanotechnol. 13, 537–543 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  156. Pfister, S., Oberschelp, C. & Sonderegger, T. Regionalized LCA in practice: the need for a universal shapefile to match LCI and LCIA. Int. J. LCA 25, 1867–1871 (2020).

    Article  Google Scholar 

  157. Ku, B. K., Maynard, A. D., Baron, P. A. & Deye, G. J. Observation and measurement of anomalous responses in a differential mobility analyzer caused by ultrafine fibrous carbon aerosols. J. Electrostat. 65, 542–548 (2007).

    Article  Google Scholar 

  158. Brouwer, D. et al. Harmonization of measurement strategies for exposure to manufactured nano-objects; report of a workshop. Ann. Occup. Hyg. 56, 1–9 (2012).

    PubMed  Google Scholar 

  159. Gao, F. et al. Direct prediction of bioaccumulation of organic contaminants in plant roots from soils with machine learning models based on molecular structures. Environ. Sci. Technol. 55, 16358–16368 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  160. Bianco, A., Kostarelos, K. & Prato, M. Making carbon nanotubes biocompatible and biodegradable. Chem. Commun. 47, 10182–10188 (2011).

    Article  CAS  Google Scholar 

  161. Kagan, V. E. et al. Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat. Nanotechnol. 5, 354–359 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  162. Kagan, V. E. et al. Lung macrophages ‘digest’ carbon nanotubes using a superoxide/peroxynitrite oxidative pathway. ACS Nano 8, 5610–5621 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Allen, B. L. et al. Biodegradation of single-walled carbon nanotubes through enzymatic catalysis. Nano Lett. 8, 3899–3903 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  164. Andón, F. T. et al. Biodegradation of single-walled carbon nanotubes by eosinophil peroxidase. Small 9, 2721–2729 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Ren, X., Chen, C., Nagatsu, M. & Wang, X. Carbon nanotubes as adsorbents in environmental pollution management: a review. Chem. Eng. J. 170, 395–410 (2011).

    Article  CAS  Google Scholar 

  166. Wong, K. V. & Bachelier, B. Carbon nanotubes used for renewable energy applications and environmental protection/remediation: a review. J. Energy Resour. Technol. 136, 021601 (2013).

  167. Zheng, M. et al. Carbon nanotube-based materials for lithium–sulfur batteries. J. Mater. Chem. A 7, 17204–17241 (2019).

    Article  CAS  Google Scholar 

  168. Zhang, P., Su, J., Guo, J. & Hu, S. Influence of carbon nanotube on properties of concrete: a review. Constr. Build. Mater. 369, 130388 (2023).

    Article  CAS  Google Scholar 

  169. Licht, S. et al. Amplified CO2 reduction of greenhouse gas emissions with C2CNT carbon nanotube composites. Mater. Today Sustain. 6, 100023 (2019).

    Article  Google Scholar 

  170. Danafar, F. & Kalantari, M. A review of natural rubber nanocomposites based on carbon nanotubes. J. Rubber Res. 21, 293–310 (2018).

    Article  CAS  Google Scholar 

  171. Nagaraju, S. B., Priya, H. C., Girijappa, Y. G. T. & Puttegowda, M. in Lightweight and Sustainable Composite Materials (eds Rangappa, S.M. et al.) 157–178 (Woodhead, 2023).

  172. Transforming our World: The 2030 Agenda for Sustainable Development A/RES/70/1 (UN General Assembly, 2015).

  173. Pasquali, M. & Mesters, C. We can use carbon to decarbonize — and get hydrogen for free. Proc. Natl Acad. Sci. USA 118, e2112089118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Rao, A. M. et al. Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science 275, 187–191 (1997).

    Article  CAS  PubMed  Google Scholar 

  175. Sun, Z. et al. Quantitative evaluation of surfactant-stabilized single-walled carbon nanotubes: dispersion quality and its correlation with zeta potential. J. Phys. Chem. C 112, 10692–10699 (2008).

    Article  CAS  Google Scholar 

  176. Naumov, A. V., Ghosh, S., Tsyboulski, D. A., Bachilo, S. M. & Weisman, R. B. Analyzing absorption backgrounds in single-walled carbon nanotube spectra. ACS Nano 5, 1639–1648 (2011).

    Article  CAS  PubMed  Google Scholar 

  177. Sanchez, S. R., Bachilo, S. M., Kadria-Vili, Y., Lin, C.-W. & Weisman, R. B. (n,m)-specific absorption cross sections of single-walled carbon nanotubes measured by variance spectroscopy. Nano Lett. 16, 6903–6909 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  178. Nair, N., Usrey, M. L., Kim, W.-J., Braatz, R. D. & Strano, M. S. Estimation of the (n,m) concentration distribution of single-walled carbon nanotubes from photoabsorption spectra. Anal. Chem. 78, 7689–7696 (2006).

    Article  CAS  PubMed  Google Scholar 

  179. Sebastian, F. L. et al. Absolute quantification of sp3 defects in semiconducting single-wall carbon nanotubes by Raman spectroscopy. J. Phys. Chem. Lett. 13, 3542–3548 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Ghanbari, F. et al. Mitochondrial oxidative stress and dysfunction induced by single- and multiwall carbon nanotubes: a comparative study. J. Biomed. Mater. Res. A 105, 2047–2055 (2017).

    Article  CAS  PubMed  Google Scholar 

  181. Hillegass, J. M. et al. Assessing nanotoxicity in cells in vitro. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2, 219–231 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Wajant, H., Pfizenmaier, K. & Scheurich, P. Tumor necrosis factor signaling. Cell Death Differ. 10, 45–65 (2003).

    Article  CAS  PubMed  Google Scholar 

  183. Frank, D. & Vince, J. E. Pyroptosis versus necroptosis: similarities, differences, and crosstalk. Cell Death Differ. 26, 99–114 (2019).

    Article  PubMed  Google Scholar 

  184. Wu, L. et al. Tuning cell autophagy by diversifying carbon nanotube surface chemistry. ACS Nano 8, 2087–2099 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Mah, L. J., El-Osta, A. & Karagiannis, T. C. γH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia 24, 679–686 (2010).

    Article  CAS  PubMed  Google Scholar 

  186. Guo, Y.-Y., Zhang, J., Zheng, Y.-F., Yang, J. & Zhu, X.-Q. Cytotoxic and genotoxic effects of multi-wall carbon nanotubes on human umbilical vein endothelial cells in vitro. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 721, 184–191 (2011).

    Article  CAS  Google Scholar 

  187. Sommer, S., Buraczewska, I. & Kruszewski, M. Micronucleus assay: the state of art, and future directions. Int. J. Mol. Sci. 21, 1534 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Horibata, K. et al. In vivo genotoxicity assessment of a multiwalled carbon nanotube in a mouse ex vivo culture. Genes Environ. 44, 24 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Yamaguchi, S.-I. et al. Carbon nanotube recognition by human Siglec-14 provokes inflammation. Nat. Nanotechnol. 18, 628–636 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  190. Koyama, S. et al. In vivo immunological toxicity in mice of carbon nanotubes with impurities. Carbon 47, 1365–1372 (2009).

    Article  CAS  Google Scholar 

  191. Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9, 847–856 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Pal, A. K., Bello, D., Budhlall, B., Rogers, E. & Milton, D. K. Screening for oxidative stress elicited by engineered nanomaterials: evaluation of acellular DCFH assay. Dose Response 10, 308–330 (2012).

    Article  CAS  PubMed  Google Scholar 

  193. Jena, P. V. et al. A carbon nanotube optical reporter maps endolysosomal lipid flux. ACS Nano 11, 10689–10703 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Maejima, I. et al. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO J. 32, 2336–2347 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Gravely, M. & Roxbury, D. Multispectral fingerprinting resolves dynamics of nanomaterial trafficking in primary endothelial cells. ACS Nano 15, 12388–12404 (2021).

    Article  CAS  PubMed  Google Scholar 

  196. Arora, S. et al. In vitro cytotoxicity of multiwalled and single-walled carbon nanotubes on human cell lines. Fuller. Nanotub. Carbon Nanostructures 23, 377–382 (2015).

    Article  ADS  CAS  Google Scholar 

  197. Antonucci, A. et al. Carbon nanotube uptake in cyanobacteria for near-infrared imaging and enhanced bioelectricity generation in living photovoltaics. Nat. Nanotechnol. 17, 1111–1119 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  198. Ishmukhametov, I. & Fakhrullin, R. Dark-field hyperspectral microscopy for carbon nanotubes bioimaging. Appl. Sci. 11, 12132 (2021).

    Article  CAS  Google Scholar 

  199. Zhang, Y. et al. Mechanistic toxicity evaluation of uncoated and PEGylated single-walled carbon nanotubes in neuronal PC12 cells. ACS Nano 5, 7020–7033 (2011).

    Article  CAS  PubMed  Google Scholar 

  200. Liu, X. et al. Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors. Biomaterials 32, 144–151 (2011).

    Article  PubMed  Google Scholar 

  201. Gravely, M., Safaee, M. M. & Roxbury, D. Biomolecular functionalization of a nanomaterial to control stability and retention within live cells. Nano Lett. 19, 6203–6212 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  202. Sanchez-Valencia, J. R. et al. Controlled synthesis of single-chirality carbon nanotubes. Nature 512, 61–64 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  203. Liu, B., Wu, F., Gui, H., Zheng, M. & Zhou, C. Chirality-controlled synthesis and applications of single-wall carbon nanotubes. ACS Nano 11, 31–53 (2017).

    Article  CAS  PubMed  Google Scholar 

  204. Feng, Y., Zhou, G., Wang, G., Qu, M. & Yu, Z. Removal of some impurities from carbon nanotubes. Chem. Phys. Lett. 375, 645–648 (2003).

    Article  ADS  CAS  Google Scholar 

  205. Mercier, G. et al. Selective removal of metal impurities from single walled carbon nanotube samples. New J. Chem. 37, 790–795 (2013).

    Article  CAS  Google Scholar 

  206. Wick, P. et al. The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol. Lett. 168, 121–131 (2007).

    Article  CAS  PubMed  Google Scholar 

  207. Mutlu, G. M. et al. Biocompatible nanoscale dispersion of single-walled carbon nanotubes minimizes in vivo pulmonary toxicity. Nano Lett. 10, 1664–1670 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  208. Fujita, K. et al. Size effects of single-walled carbon nanotubes on in vivo and in vitro pulmonary toxicity. Inhal. Toxicol. 27, 207–223 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Muller, J. et al. Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: toxicological aspects. Chem. Res. Toxicol. 21, 1698–1705 (2008).

    Article  CAS  PubMed  Google Scholar 

  210. Bai, W., Raghavendra, A., Podila, R. & Brown, J. M. Defect density in multiwalled carbon nanotubes influences ovalbumin adsorption and promotes macrophage activation and CD4+ T-cell proliferation. Int. J. Nanomed. 11, 4357–4371 (2016).

    Article  CAS  Google Scholar 

  211. Yamamoto, G. et al. Structure–property relationships in thermally-annealed multi-walled carbon nanotubes. Carbon 66, 219–226 (2014).

    Article  CAS  Google Scholar 

  212. Ren, F. et al. Controlled cutting of single-walled carbon nanotubes and low temperature annealing. Carbon 63, 61–70 (2013).

    Article  CAS  Google Scholar 

  213. Mombini, S. et al. Chitosan-PVA-CNT nanofibers as electrically conductive scaffolds for cardiovascular tissue engineering. Int. J. Biol. Macromol. 140, 278–287 (2019).

    Article  CAS  PubMed  Google Scholar 

  214. Qin, Z. et al. Carbon nanotubes/hydrophobically associated hydrogels as ultrastretchable, highly sensitive, stable strain, and pressure sensors. ACS Appl. Mater. Interfaces 12, 4944–4953 (2020).

    Article  CAS  PubMed  Google Scholar 

  215. McCauley, M. D. et al. In vivo restoration of myocardial conduction with carbon nanotube fibers. Circ. Arrhythm. Electrophysiol. 12, e007256 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Vitale, F., Summerson, S. R., Aazhang, B., Kemere, C. & Pasquali, M. Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes. ACS Nano 9, 4465–4474 (2015).

    Article  CAS  PubMed  Google Scholar 

  217. Yan, J. S. et al. Biocompatibility studies of macroscopic fibers made from carbon nanotubes: implications for carbon nanotube macrostructures in biomedical applications. Carbon 173, 462–476 (2021).

    Article  CAS  Google Scholar 

  218. Zhang, M. et al. A Simple method for removal of carbon nanotubes from wastewater using hypochlorite. Sci. Rep. 9, 1284 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  219. Sun, E. et al. A semi-continuous process for co-production of CO2-free hydrogen and carbon nanotubes via methane pyrolysis. Cell Rep. Phys. Sci. 4, 101338 (2023).

    Article  CAS  Google Scholar 

  220. The Role of Critical Minerals in Clean Energy Transitions (IEA, 2021).

  221. Combating Transnational Organized Crime and Its Links to Illicit Trafficking in Precious Metals and Illegal Mining, Including by Enhancing the Security of Supply Chains of Precious Metals: Resolution/Adopted by the Economic and Social Council. E/2019/100 19c Crime Prevention and Criminal Justice (UN Economic and Social Council, 2019).

  222. Responsible Mining Index Report 2020 (Responsible Mining Foundation, 2020).

Download references

Acknowledgements

The authors thank M. Dennis, J. Wilson, M. A. Schmidt, C. Chen and J. Fagan for discussions. The authors thank J. Junnarkar at Rice University for providing photos of Supplementary Fig. 2. This work was supported in part by the NIH (R01-EB033651, D.A.H. and M.K.; and Cancer Center Support Grant P30-CA008748, D.A.H.), the National Science Foundation CAREER Award (1752506, D.A.H.), the Department of Defense Congressionally Directed Medical Research Program (W81XWH2210563, D.A.H.), the Ara Parseghian Foundation (D.A.H.), the Honorable Tina Brozman Foundation for Ovarian Cancer Research (D.A.H.), the Ovarian Cancer Research Alliance and the Edmée Firth Fund for Research in Ovarian Cancer (D.A.H.), the Air Force Office of Scientific Research grant (FA9550-18-1-0014, M.P.), Robert A. Welch Foundation (C-1668, M.P.), and Department of Energy award (DE-AR0001015, Advanced Research Projects Agency — Energy, M.P.). M.K. was supported by the NIH (K99-EB033580) and the Marie-Josée Kravis Women in Science Endeavor Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

M.K., D.G., P.V.J., E.Z. and R.A.M. researched data for the article. M.K., D.G., P.V.J., M.P., R.A.M. and D.A.H. contributed substantially to discussion of the content. M.K., D.G., R.A.M. and D.A.H. wrote, reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Rachel A. Meidl or Daniel A. Heller.

Ethics declarations

Competing interests

D.A.H. is a co-founder and officer with equity interest in Lime Therapeutics, Inc., and co-founder with equity interest in Selectin Therapeutics, Inc. and Resident Diagnostics, Inc., and a member of the scientific advisory board of Concarlo Therapeutics, Inc., Nanorobotics, Inc. and Mediphage Bioceuticals, Inc. P.V.J. is a co-founder and officer with equity interest in Lime Therapeutics, Inc. M.P. has a financial interest in DexMat Inc., a company commercializing carbon nanotube fibres and films. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Peter Wick and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Bio-based chemistry

The branch of chemistry that uses renewable biological resources, such as plants and microorganisms, to develop and produce chemicals, materials and energy sources.

Chemical Abstracts Service

(CAS). A source of chemical information. The CAS Registry contains information on more than 130 million organic and inorganic substances and more than 64 million protein and nucleic acid sequences and identifies each compound with a specific CAS registry number, index name and graphic representation of its chemical structure.

Chemical valorization of CO2 and other carbon-based emission sources

Conversion of carbon dioxide and other carbon-based emission sources into valuable chemical compounds or fuels through various chemical processes, aiming to reduce greenhouse gas emissions and promote sustainable resource utilization.

Chirality

Conceptualizing a single-walled carbon nanotube (SWCNT) as the rolled-up tube of a hexagonal lattice of carbon atoms, there are a number of vectors it can be rolled up along. A vector is denoted by two integers n and m with nm, and expressed as (n,m). One extreme is the (n,0) CNT, called zigzag. On the other end is the armchair (n,n) CNT. All other CNTs are termed chiral. (n,m) SWCNT is metallic if 2n + m is a multiple of 3 and is semiconducting otherwise.

Dustiness

Dustiness is the tendency of particles to become airborne in response to a mechanical or aerodynamic stimulus.

EU Observatory for Nanomaterials

(EUON). A web-based platform that provides information on nanomaterials, their properties and their safe use in various products. It is managed by the European Chemicals Agency (ECHA) and aims to support the safe and sustainable use of nanomaterials in the EU.

European Chemicals Agency

(ECHA). An agency of the European Union (EU) responsible for implementing regulations related to the registration, evaluation, authorization and restriction of chemical substances to ensure their safe use within the EU.

International Agency for Research on Cancer

(IARC). An intergovernmental agency that is part of the World Health Organization. Its mission is to promote international collaboration in cancer research and to identify causes of cancer and strategies for cancer prevention.

International Chemical Secretariat

(ChemSec). An independent non-profit organization that advocates for the substitution of toxic chemicals with safer alternatives. ChemSec advocates in favour of stricter regulatory controls on potentially hazardous chemicals and works with businesses on reducing the production and use of hazardous substances in their products and supply chains.

International Organization for Standardization Technical Committee 229

(ISO/TC 229). A committee responsible for developing and promoting international standards in the field of nanotechnologies to ensure safe and reliable practices.

Life-cycle assessment

A technique used to assess the environmental impacts of a product or service throughout its entire life cycle, from raw material extraction to end-of-life disposal. It considers factors such as resource use, energy consumption, emissions and waste generation.

Life-cycle management

The process of managing a product, service or system throughout its entire life cycle, from conception and development to retirement and disposal. It involves activities such as planning, designing, manufacturing, marketing and support, with the goal of maximizing value, efficiency and sustainability at each stage while considering environmental, economic and social impacts.

Minimum Information Reporting in Bio-Nano Experimental Literature

(MIRIBEL). A published standard of information reporting to improve reproducibility, increase quantitative comparisons of different bio-nanomaterials, and facilitate meta-analysis and in silico modelling of bio–nano interactions. It consists of materials characterization, biological characterization and details of experimental protocols.

National Institute for Occupational Safety and Health

(NIOSH). A US federal agency responsible for conducting research, providing recommendations, and developing regulations and guidelines to promote safe and healthy working conditions, primarily focusing on protecting workers from occupational hazards.

National Nanotechnology Initiative

A US federal programme that coordinates research and development efforts in nanotechnology across various government agencies to advance understanding and applications of nanoscale science and engineering.

NIOSH Recommended Exposure Limit

The maximum allowable level of exposure to hazardous substances set by the National Institute for Occupational Safety and Health (NIOSH). These limits serve as guidelines to protect workers from the adverse health effects associated with various chemical, physical and biological agents encountered in the workplace.

Resource Conservation and Recovery Act

A US federal law that governs the disposal of hazardous waste. It regulates the generation, transportation, treatment, storage and disposal of hazardous waste, as well as the remediation of contaminated sites.

Scopus

An abstract and citation database that covers a wide range of scientific, technical, medical and social science literature.

The Regulation on the Registration, Evaluation, Authorization, and Restriction of Chemicals

A set of regulations enacted by the European Union to improve the protection of human health and the environment from risks posed by chemical substances, and to enhance the communication of information on their properties and safe use.

TSCA Section 4

A section of the Toxic Substances Control Act (TSCA), a United States federal law, that regulates the manufacturing, importation, use and disposal of chemical substances to protect human health and the environment from unreasonable risks. This section grants the Environmental Protection Agency (EPA) the authority to require testing and reporting of chemical substances to assess their potential risks to human health and the environment.

UN Sustainable Development Goals

A set of 17 goals adopted by the United Nations in 2015 as a universal call to action to end poverty, protect the planet and ensure that all people enjoy peace and prosperity. The goals cover a range of issues, including poverty, health, education, gender equality, clean water and sanitation, climate action, and sustainable cities and communities.

US Environmental Protection Agency Significant New Use Rules

(EPA SNUR). Regulations that require manufacturers and importers to notify the EPA before introducing a new chemical substance or significant new use of an existing substance that may pose a risk to human health or the environment.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Goerzen, D., Jena, P.V. et al. Human and environmental safety of carbon nanotubes across their life cycle. Nat Rev Mater 9, 63–81 (2024). https://doi.org/10.1038/s41578-023-00611-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-023-00611-8

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene