Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Key principles and operational practices for improved nanotechnology environmental exposure assessment

Abstract

Nanotechnology is identified as a key enabling technology due to its potential to contribute to economic growth and societal well-being across industrial sectors. Sustainable nanotechnology requires a scientifically based and proportionate risk governance structure to support innovation, including a robust framework for environmental risk assessment (ERA) that ideally builds on methods established for conventional chemicals to ensure alignment and avoid duplication. Exposure assessment developed as a tiered approach is equally beneficial to nano-specific ERA as for other classes of chemicals. Here we present the developing knowledge, practical considerations and key principles need to support exposure assessment for engineered nanomaterials for regulatory and research applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of release pathways of engineered nanomaterials (ENMs) along their life cycle, showing entries to environmental reactors.
Fig. 2: Conceptualization of the functional fate pathway and functional fate grouping approaches.
Fig. 3: A general illustration of the trend in PEC across the three tiers of the illustrative risk assessment.

Similar content being viewed by others

References

  1. Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives (European Comission, 2009).

  2. Koelmans, A. A. et al. Guidance for the prognostic risk assessment of nanomaterials in aquatic ecosystems. Sci. Total Environ. 535, 141–149 (2015).

    CAS  Google Scholar 

  3. Crane, M., Handy, R. D., Garrod, J. & Owen, R. Ecotoxicity test methods and environmental hazard assessment for engineered nanoparticles. Ecotoxicology 17, 421–437 (2008).

    CAS  Google Scholar 

  4. von der Kammer, F. et al. Analysis of engineered nanomaterials in complex matrices (environment and biota): General considerations and conceptual case studies. Environ. Toxicol. Chem. 31, 32–49 (2012).

    Google Scholar 

  5. Cornelis, G., Tuoriniemi, J., Montano, M., Wagner, S. & Gallego-Urrea, J A. in New Approaches for Monitoring Environmental Contaminants Vol. 2 (eds Boxall, A. & Johnson, S.) (Elsevier S&T Books, 2020).

  6. Lowry, G. V., Avellan, A. & Gilbertson, L. M. Opportunities and challenges for nanotechnology in the agri-tech revolution. Nat. Nanotechnol. 14, 517–522 (2019).

    CAS  Google Scholar 

  7. Kah, M., Tufenkji, N. & White, J. C. Nano-enabled strategies to enhance crop nutrition and protection. Nat. Nanotechnol. 14, 532–540 (2019).

    CAS  Google Scholar 

  8. Kookana, R. S., Boxall, A. B. A., Reeves, P. T., Ashauer, R. & Beulke, S. et al. Nanopesticides: Guiding principles for regulatory evaluation of environmental risks. J. Agric. Food Chem. 62, 4227–4240 (2014).

    CAS  Google Scholar 

  9. Sanchis, J., Bosch-Orea, C., Farre, M. & Barcelo, D. Nanoparticle tracking analysis characterisation and parts-per-quadrillion determination of fullerenes in river samples from Barcelona catchment area. Anal. Bioanal. Chem. 407, 4261–4275 (2015).

    CAS  Google Scholar 

  10. Tuoriniemi, J., Jurgens, M. D., Hassellov, M. & Cornelis, G. Size dependence of silver nanoparticle removal in a wastewater treatment plant mesocosm measured by FAST single particle ICP-MS. Environ. Sci. Nano. 4, 1189–1197 (2017).

    CAS  Google Scholar 

  11. Navratilova, J. et al. Detection of engineered copper nanoparticles in soil using single particle ICP-MS. Int. J. Environ. Res. Public Health 12, 15756–15768 (2015).

    CAS  Google Scholar 

  12. Laughton, S. et al. Persistence of copper-based nanoparticle-containing foliar sprays in Lactuca sativa (lettuce) characterized by spICP-MS. J. Nanopart. Res. 21, 13 (2019).

    Google Scholar 

  13. Cui, X. J. et al. Core-shell NaHoF4@TiO2 NPs: A labeling method to trace engineered nanomaterials of ubiquitous elements in the environment. ACS Appl. Mat. Interf. 11, 19452–19461 (2019).

    CAS  Google Scholar 

  14. Praetorius, A. et al. Heteroaggregation of titanium dioxide nanoparticles with model natural colloids under environmentally relevant conditions. Environ. Sci. Technol. 48, 10690–10698 (2014).

    CAS  Google Scholar 

  15. Dubus, I. G., Brown, C. D. & Beulke, S. in Pesticide Behaviour in Soils and Water (ed Walker, A.) 239–244 (British Crop Protection Council, 2001).

  16. van den Berg, F., Tiktak, A, Boesten, J. J. T. I. & van der Linden, A. M. A. Pearl Model for Pesticide Behaviour and Emissions in Soil-Plant Systems (Wageningen University, 2016).

  17. Decorte, L., Joris, I., van Looy, S. & Bronders, J. User Manual to The Software Tool (PERSAM) For Calculating Predicted Environmental Concentrations (Pecs) Of Plant Protection Products (Ppps) In Soil for Annual Crops (Vito, 2012).

  18. Tufenkji, N. & Elimelech, M. Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. Environ. Sci. Technol. 38, 529–536 (2004).

    CAS  Google Scholar 

  19. Praetorius, A., Scheringer, M. & Hungerbuehler, K. Development of environmental fate models for engineered nanoparticles - A case study of TiO2 nanoparticles in the rhine river. Environ. Sci. Technol. 46, 6705–6713 (2012).

    CAS  Google Scholar 

  20. Ma, R. et al. Size-controlled dissolution of organic-coated silver nanoparticles. Environ. Sci. Technol. 46, 752–759 (2012).

    CAS  Google Scholar 

  21. Liu, J. Y., Pennell, K. G. & Hurt, R. H. Kinetics and mechanisms of nanosilver oxysulfidation. Environ. Sci. Technol. 45, 7345–7353 (2011).

    CAS  Google Scholar 

  22. Praetorius, A. et al. The road to nowhere: equilibrium partition coefficients for nanoparticles. Environ. Sci. Nano 1, 317–323 (2014).

    CAS  Google Scholar 

  23. Adam, V. & Nowack, B. European country-specific probabilistic assessment of nanomaterial flows towards landfilling, incineration and recycling. Environ. Sci. Nano 4, 1961–1973 (2017).

    CAS  Google Scholar 

  24. Vílchez, A., Fernández-Rosas, E., González-Gálvez, D. & Vázquez-Campos, S. in Indoor and Outdoor Nanoparticles: Determinants of Release and Exposure Scenarios 1st edn (eds Viana, M.) 1–32 (Springer, 2015).

  25. Mitrano, D. M., Limpiteeprakan, P., Babel, S. & Nowack, B. Durability of nano-enhanced textiles through the life cycle: releases from landfilling after washing. Environ. Sci. Nano 3, 375–387 (2016).

    CAS  Google Scholar 

  26. Reed, R. B. et al. Potential environmental impacts and antimicrobial efficacy of silver and nanosilver-containing textiles. Environ. Sci. Technol. 50, 4018–4026 (2016).

    CAS  Google Scholar 

  27. Truffier-Boutry, D. et al. Characterization of photocatalytic paints: a relationship between the photocatalytic properties - release of nanoparticles and volatile organic compounds. Environ. Sci. Nano 4, 1998–2009 (2017).

    CAS  Google Scholar 

  28. Lagerstrom, M., Lindgren, J. F., Holmqvist, A., Dahlstrom, M. & Ytreberg, E. In situ release rates of Cu and Zn from commercial antifouling paints at different salinities. Mar. Pollut. Bull. 127, 289–296 (2018).

    Google Scholar 

  29. Fernandez-Rosas, E. et al. Influence of nanomaterial compatibilization strategies on polyamide nanocomposites properties and nanomaterial release during the use phase. Environ. Sci. Technol. 50, 2584–2594 (2016).

    CAS  Google Scholar 

  30. Kim, Y. S., Davis, R., Uddin, N., Nyden, M. & Rabb, S. A. Quantification of nanoparticle release from polymer nanocomposite coatings due to environmental stressing. J. Occupat. Environ. Hyg. 13, 307–317 (2016).

    Google Scholar 

  31. Mackevica, A. & Hansen, S. F. Release of nanomaterials from solid nanocomposites and consumer exposure assessment - a forward-looking review. Nanotoxicology 10, 641–653 (2016).

    CAS  Google Scholar 

  32. Nguyen, T. et al. Impact of UV irradiation on multiwall carbon nanotubes in nanocomposites: Formation of entangled surface layer and mechanisms of release resistance. Carbon 116, 191–200 (2017).

    CAS  Google Scholar 

  33. Wohlleben, W. et al. NanoRelease: Pilot interlaboratory comparison of a weathering protocol applied to resilient and labile polymers with and without embedded carbon nanotubes. Carbon 113, 346–360 (2017).

    CAS  Google Scholar 

  34. Amorim, M. J. B. et al. Environmental impacts by fragments released from nanoenabled products: A multiassay, multimaterial exploration by the SUN approach. Environ. Sci. Technol. 52, 1514–1524 (2018).

    CAS  Google Scholar 

  35. Gomez, V. et al. Comparison of dust release from epoxy and paint nanocomposites and conventional products during sanding and sawing. Ann. Occup. Hyg. 58, 983–994 (2014).

    CAS  Google Scholar 

  36. Saber, A. T. et al. Epoxy composite dusts with and without carbon nanotubes cause similar pulmonary responses, but differences in liver histology in mice following pulmonary deposition. Part. Fibre Tox. 13, 37 (2016).

    Google Scholar 

  37. Wohlleben, W. et al. Elastic CNT-polyurethane nanocomposite: synthesis, performance and assessment of fragments released during use. Nanoscale 5, 369–380 (2013).

    CAS  Google Scholar 

  38. Adam, V., Caballero-Guzman, A. & Nowack, B. Considering the forms of released engineered nanomaterials in probabilistic material flow analysis. Environ. Pollut. 243, 17–27 (2018).

    CAS  Google Scholar 

  39. Kaegi, R. et al. Transformation of AgCl nanoparticles in a sewer system - A field study. Sci. Total Environ. 535, 20–27 (2015).

    CAS  Google Scholar 

  40. Ma, R. et al. Fate of zinc oxide and silver nanoparticles in a pilot wastewater treatment plant and in processed biosolids. Environ. Sci. Technol. 48, 104–112 (2014).

    CAS  Google Scholar 

  41. Thalmann, B., Voegelin, A., Morgenroth, E. & Kaegi, R. Effect of humic acid on the kinetics of silver nanoparticle sulfidation. Environ. Sci. Nano 3, 203–212 (2016).

    CAS  Google Scholar 

  42. Gogos, A., Thalmann, B., Voegelin, A. & Kaegi, R. Sulfidation kinetics of copper oxide nanoparticles. Environ. Sci. Nano 4, 1733–1741 (2017).

    CAS  Google Scholar 

  43. Gogos, A., Voegelin, A. & Kaegi, R. Influence of organic compounds on the sulfidation of copper oxide nanoparticles. Environ. Sci. Nano 5, 2560–2569 (2018).

    CAS  Google Scholar 

  44. Meier, C. et al. Transformation of silver nanoparticles in sewage sludge during incineration. Environ. Sci. Technol. 50, 3503–3510 (2016).

    CAS  Google Scholar 

  45. Gogos, A., Wielinski, J., Voegelin, A., Emerich, H. & Kaegi, R. Transformation of cerium dioxide nanoparticles during sewage sludge incineration. Environ. Sci. Nano 6, 1765–1776 (2019).

    CAS  Google Scholar 

  46. Jarvie, H. P. et al. Fate of silica nanoparticles in simulated primary wastewater treatment. Environ. Sci. Technol. 43, 8622–8628 (2009).

    CAS  Google Scholar 

  47. Westerhoff, P. K., Kiser, A. & Hristovski, K. Nanomaterial removal and transformation during biological wastewater treatment. Environ. Eng. Sci. 30, 109–117 (2013).

    CAS  Google Scholar 

  48. Fonseca, A. S. et al. Process-generated nanoparticles from ceramic tile sintering: Emissions, exposure and environmental release. Sci. Total Environ. 565, 922–932 (2016).

    CAS  Google Scholar 

  49. Fonseca, A. S. et al. Characterization of exposure to carbon nanotubes in an industrial setting. Ann. Occup. Hyg. 59, 586–599 (2015).

    CAS  Google Scholar 

  50. John, A. C. et al. Emissions and possible environmental implication of engineered nanomaterials (ENMs) in the atmosphere. Atmosphere 8, 84 (2017).

    Google Scholar 

  51. Johnson, A. C. et al. An assessment of the fate, behaviour and environmental risk associated with sunscreen TiO2 nanoparticles in UK field scenarios. Sci. Total Environ. 409, 2503–2510 (2011).

    CAS  Google Scholar 

  52. Dale, A. L., Lowry, G. V. & Casman, E. A. Modeling nanosilver transformations in freshwater sediments. Environ. Sci. Technol. 47, 12920–12928 (2013).

    CAS  Google Scholar 

  53. Wielinski, J. et al. Transformation of nanoscale and ionic Cu and Zn during the incineration of digested sewage sludge (biosolids). Environ. Sci. Technol. 53, 11704–11713 (2019).

    CAS  Google Scholar 

  54. Aneggi, E., Boaro, M., de Leitenburg, C., Dolcetti, G. & Trovarelli, A. Insights into the redox properties of ceria-based oxides and their implications in catalysis. J. Alloy. Comp. 408, 1096–1102 (2006).

    Google Scholar 

  55. Huang, Y., Risha, G. A., Yang, V. & Yetter, R. A. Effect of particle size on combustion of aluminum particle dust in air. Combust. Flame 156, 5–13 (2009).

    CAS  Google Scholar 

  56. Hedberg, J., Blomberg, E. & Wallinder, I. O. In the search for nanospecific effects of dissolution of metallic nanoparticles at freshwater-like conditions: A critical review. Environ. Sci. Technol. 53, 4030–4044 (2019).

    CAS  Google Scholar 

  57. Liu, J. Y. & Hurt, R. H. Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ. Sci. Technol. 44, 2169–2175 (2010).

    CAS  Google Scholar 

  58. Manders, A. M. M. et al. Curriculum vitae of the LOTOS-EUROS (v2.0) chemistry transport model. Geosci. Model Dev. 10, 4145–4173 (2017).

    Google Scholar 

  59. Seipenbusch, M., Binder, A. & Kasper, G. Temporal evolution of nanoparticle aerosols in workplace exposure. Ann. Occup. Hyg. 52, 707–716 (2008).

    CAS  Google Scholar 

  60. Friedlander, S. Smoke Dust and Haze (Oxford University Press, 2000).

  61. Georgantzopoulou, A. et al. Ecotoxicological effects of transformed silver and titanium dioxide nanoparticles in the effluent from a lab-scale wastewater treatment system. Environ. Sci. Technol. 52, 9431–9441 (2018).

    CAS  Google Scholar 

  62. Kaegi, R. et al. Fate and transformation of silver nanoparticles in urban wastewater systems. Wat. Res. 47, 3866–3877 (2013).

    CAS  Google Scholar 

  63. Wang, Y. F., Westerhoff, P. & Hristovski, K. D. Fate and biological effects of silver, titanium dioxide, and C-60 (fullerene) nanomaterials during simulated wastewater treatment processes. J. Hazard. Mat. 201, 16–22 (2012).

    Google Scholar 

  64. Westerhoff, P., Song, G. X., Hristovski, K. & Kiser, M. A. Occurrence and removal of titanium at full scale wastewater treatment plants: implications for TiO2 nanomaterials. J. Environ. Mon. 13, 1195–1203 (2011).

    CAS  Google Scholar 

  65. Gondikas, A. et al. Where is the nano? Analytical approaches for the detection and quantification of TiO2 engineered nanoparticles in surface waters. Environ. Sci. Nano 5, 313–326 (2018).

    CAS  Google Scholar 

  66. Quik, J. T. K., Velzeboer, I., Wouterse, M., Koelmans, A. A. & van de Meent, D. Heteroaggregation and sedimentation rates for nanomaterials in natural waters. Wat. Res. 48, 269–279 (2014).

    CAS  Google Scholar 

  67. Quik, J. T. K. et al. Effect of natural organic matter on cerium dioxide nanoparticles settling in model fresh water. Chemosphere 81, 711–715 (2010).

    CAS  Google Scholar 

  68. Cornelis, G., Hund-Rinke, K., Kuhlbusch, T., Van den Brink, N. & Nickel, C. Fate and bioavailability of engineered nanoparticles in soils: A review. Crit. Rev. Environ. Sci. Technol. 44, 2720–2764 (2014).

    CAS  Google Scholar 

  69. Makselon, J., Siebers, N., Meier, F., Vereecken, H. & Klumpp, E. Role of rain intensity and soil colloids in the retention of surfactant-stabilized silver nanoparticles in soil. Environ. Pollut. 238, 1027–1034 (2018).

    CAS  Google Scholar 

  70. Meesters, J. A. J., Peijnenburg, W., Hendriks, A. J., Van de Meent, D. & Quik, J. T. K. A model sensitivity analysis to determine the most important physicochemical properties driving environmental fate and exposure of engineered nanoparticles. Environ. Sci. Nano 6, 2049–2060 (2019).

    CAS  Google Scholar 

  71. Geitner, N. K. et al. Size-based differential transport, uptake, and mass distribution of ceria (CeO2) nanoparticles in wetland mesocosms. Environ. Sci. Technol. 52, 9768–9776 (2018).

    CAS  Google Scholar 

  72. Dale, A. L. et al. Modeling nanomaterial environmental fate in aquatic systems. Environ. Sci. Technol. 49, 2587–2593 (2015).

    CAS  Google Scholar 

  73. Cornelis, G., Forsberg-Grivogiannis, A. M., Skold, N. P., Rauch, S. & Perez-Holmberg, J. Sludge concentration, shear rate and nanoparticle size determine silver nanoparticle removal during wastewater treatment. Environ. Sci. Nano 4, 2225–2234 (2017).

    CAS  Google Scholar 

  74. Zheng, Y. F., Mutzner, L., Ort, C., Kaegi, R. & Gottschalk, F. Modelling engineered nanomaterials in wet-weather discharges. Nanoimpact 16, 100188 (2019).

    Google Scholar 

  75. Praetorius, A. et al. Strategies for determining heteroaggregation attachment efficiencies of engineered nanoparticles in aquatic environments. Environ. Sci. Nano. 7, 351–367 (2020).

    Google Scholar 

  76. Nickel, C. et al. Mobility of coated and uncoated TiO2 nanomaterials in soil columns - Applicability of the tests methods of OECD TG 312 and 106 for nanomaterials. J. Environ. Man. 157, 230–237 (2015).

    CAS  Google Scholar 

  77. Degryse, F., Smolders, E. & Parker, D. R. Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils: concepts, methodologies, prediction and applications - a review. Eur. J. Soil Sci. 60, 590–612 (2009).

    CAS  Google Scholar 

  78. Babakhani, P., Bridge, J., Doong, R. A. & Phenrat, T. Parameterization and prediction of nanoparticle transport in porous media: A reanalysis using artificial neural network. Wat. Resour. Res. 53, 4564–4585 (2017).

    Google Scholar 

  79. Dale, A. L., Lowry, G. V. & Casman, E. A. Much ado about alpha: reframing the debate over appropriate fate descriptors in nanoparticle environmental risk modeling. Environ. Sci. Nano 2, 27–32 (2015).

    CAS  Google Scholar 

  80. Geitner, N. K., O’Brien, N. J., Turner, A. A., Cummins, E. J. & Wiesner, M. R. Measuring nanoparticle attachment efficiency in complex systems. Environ. Sci. Technol. 51, 13288–13294 (2017).

    CAS  Google Scholar 

  81. Baccaro, M. et al. Bioturbation of Ag2S-NPs in soil columns by earthworms. Environ. Pollut. 252, 155–162 (2019).

    CAS  Google Scholar 

  82. Liu, X. et al. Interaction between Al2O3 and different sizes of GO in aqueous environment. Environ. Pollut. 243, 1802–1809 (2018).

    CAS  Google Scholar 

  83. Surette, M. C. & Nason, J. A. Nanoparticle aggregation in a freshwater river: the role of engineered surface coatings. Environ. Sci. Nano 6, 540–553 (2019).

    CAS  Google Scholar 

  84. He, J. Z., Wang, D. J. & Zhou, D. M. Transport and retention of silver nanoparticles in soil: Effects of input concentration, particle size and surface coating. Sci. Total Environ. 648, 102–108 (2019).

    CAS  Google Scholar 

  85. Cornelis, G., Pang, L. P., Doolette, C., Kirby, J. K. & McLaughlin, M. J. Transport of silver nanoparticles in saturated columns of natural soils. Sci. Total Environ. 463, 120–130 (2013).

    Google Scholar 

  86. Buchanan, C. M., Beverland, I. J. & Heal, M. R. The influence of weather-type and long-range transport on airborne particle concentrations in Edinburgh, UK. Atmos. Environ. 36, 5343–5354 (2002).

    CAS  Google Scholar 

  87. Prospero, J. M. Long-range transport of mineral dust in the global atmosphere: Impact of African dust on the environment of the southeastern United States. Proc. Natl Acad. Sci. USA 96, 3396–3403 (1999).

    CAS  Google Scholar 

  88. Behra, R. et al. Bioavailability of silver nanoparticles and ions: from a chemical and biochemical perspective. J. R. Soc. Int. 10, 20130396 (2013).

    Google Scholar 

  89. van den Brink, N. W. et al. Tools and rules for modelling uptake and bioaccumulation of nanomaterials in invertebrate organisms. Environ. Sci. Nano 6, 1985–2001 (2019).

    Google Scholar 

  90. Starnes, D. L. et al. Impact of sulfidation on the bioavailability and toxicity of silver nanoparticles to Caenorhabditis elegans. Environ. Pollut. 196, 239–246 (2015).

    CAS  Google Scholar 

  91. Geitner, N. K., Marinakos, S. M., Guo, C., O’Brien, N. & Wiesner, M. R. Nanoparticle surface affinity as a predictor of trophic transfer. Environ. Sci. Technol. 50, 6663–6669 (2016).

    CAS  Google Scholar 

  92. Baccaro, M. et al. Ageing, dissolution and biogenic formation of nanoparticles: how do these factors affect the uptake kinetics of silver nanoparticles in earthworms? Environ. Sci. Nano 5, 1107–1116 (2018).

    CAS  Google Scholar 

  93. Geitner, N. K., Bossa, N. & Wiesner, M. R. Formulation and validation of a functional assay-driven model of nanoparticle aquatic transport. Environ. Sci. Technol. 53, 3104–3109 (2019).

    CAS  Google Scholar 

  94. Misra, S. K., Dybowska, A., Berhanu, D., Luoma, S. N. & Valsami-Jones, E. The complexity of nanoparticle dissolution and its importance in nanotoxicological studies. Sci. Total Environ. 438, 225–232 (2012).

    CAS  Google Scholar 

  95. Adam, N., Schmitt, C., De Bruyn, L., Knapen, D. & Blust, R. Aquatic acute species sensitivity distributions of ZnO and CuO nanoparticles. Sci. Total Environ. 526, 233–242 (2015).

    CAS  Google Scholar 

  96. Diez-Ortiz, M. et al. Short-term soil bioassays may not reveal the full toxicity potential for nanomaterials; bioavailability and toxicity of silver ions (AgNO3) and silver nanoparticles to earthworm Eisenia fetida in long-term aged soils. Environ. Pollut. 203, 191–198 (2015).

    CAS  Google Scholar 

  97. Gao, X. et al. Cuo nanoparticle dissolution and toxicity to wheat (Triticum aestivum) in rhizosphere soil. Environ. Sci. Technol. 52, 2888–2897 (2018).

    CAS  Google Scholar 

  98. Kirschling, T. L. et al. Microbial bioavailability of covalently bound polymer coatings on model engineered nanomaterials. Environ. Sci. Technol. 45, 5253–5259 (2011).

    CAS  Google Scholar 

  99. Louie, S. M., Tilton, R. D. & Lowry, G. V. Critical review: impacts of macromolecular coatings on critical physicochemical processes controlling environmental fate of nanomaterials. Environ. Sci. Nano 3, 283–310 (2016).

    CAS  Google Scholar 

  100. Nasser, F. & Lynch, I. Secreted protein eco-corona mediates uptake and impacts of polystyrene nanoparticles on Daphnia magna. J. Proteom. 137, 45–51 (2016).

    CAS  Google Scholar 

  101. Briffa, S. M., Nasser, F., Valsami-Jones, E. & Lynch, I. Uptake and impacts of polyvinylpyrrolidone (PVP) capped metal oxide nanoparticles on Daphnia magna: role of core composition and acquired corona. Environ. Sci. Nano 5, 1745–1756 (2018).

    CAS  Google Scholar 

  102. Surette, M. C., Nason, J. A. & Kaegi, R. The influence of surface coating functionality on the aging of nanoparticles in wastewater. Environ. Sci. Nano 6, 2470–2483 (2019).

    CAS  Google Scholar 

  103. Spurgeon, D. J., Keith, A. M., Schmidt, O., Lammertsma, D. R. & Faber, J. H. Land-use and land-management change: relationships with earthworm and fungi communities and soil structural properties. BMC Ecol. 13, 46 (2013).

    Google Scholar 

  104. Sturzenbaum, S. R. et al. Biosynthesis of luminescent quantum dots in an earthworm. Nat. Nanotechnol. 8, 57–60 (2013).

    CAS  Google Scholar 

  105. Groenenberg, J. E., Dijkstra, J. J., Bonten, L. T. C., de Vries, W. & Comans, R. N. J. Evaluation of the performance and limitations of empirical partition-relations and process based multisurface models to predict trace element solubility in soils. Environ. Pollut. 166, 98–107 (2012).

    CAS  Google Scholar 

  106. Hofmann, T. & von der Kammer, F. Estimating the relevance of engineered carbonaceous nanoparticle facilitated transport of hydrophobic organic contaminants in porous media. Environ. Pollut. 157, 1117–1126 (2009).

    CAS  Google Scholar 

  107. Kretzschmar, R., Borkovec, M., Grolimund, D. & Elimelech, M. Mobile subsurface colloids and their role in contaminant transport. Adv. Agron. 66, 121–193 (1999).

    CAS  Google Scholar 

  108. Keller, A. A. et al. Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ. Sci. Technol. 44, 1962–1967 (2010).

    CAS  Google Scholar 

  109. Ottofuelling, S., Von Der Kammer, F. & Hofmann, T. Commercial titanium dioxide nanoparticles in both natural and synthetic water: Comprehensive multidimensional testing and prediction of aggregation behavior. Environ. Sci. Technol. 45, 10045–10052 (2011).

    CAS  Google Scholar 

  110. Heggelund, L. R. et al. Soil pH effects on the comparative toxicity of dissolved zinc, non-nano and nano ZnO to the earthworm Eisenia fetida. Nanotoxicology 8, 559–572 (2014).

    CAS  Google Scholar 

  111. Predelus, D. et al. Nanoparticle transport in water-unsaturated porous media: effects of solution ionic strength and flow rate. J. Nanopart. Res. 19, 104 (2017).

    Google Scholar 

  112. Matocha, C, Scheckel, K, Sparks, D. Kinetics and Mechanisms of Soil Biogeochemical Processes. In: Tabatabai MA, Sparks DL (eds). Chemical processes in soils. Soil Science Society of America Special Publication Book Series: Madison, USA, 205, pp 309–342.

  113. Loza, K. et al. The dissolution and biological effects of silver nanoparticles in biological media. J. Mat. Chem. B 2, 1634–1643 (2014).

    CAS  Google Scholar 

  114. Taylor, C. et al. Toxic interactions of different silver forms with freshwater green algae and cyanobacteria and their effects on mechanistic endpoints and the production of extracellular polymeric substances. Environ. Sci. Nano 3, 396–408 (2016).

    CAS  Google Scholar 

  115. Geitner, N. K. et al. Harmonizing across environmental nanomaterial testing media for increased comparability of nanomaterial datasets. Environ. Sci. Nano 7, 13–36 (2020).

    CAS  Google Scholar 

  116. Williams, R. J. et al. Models for assessing engineered nanomaterial fate and behaviour in the aquatic environment. Curr. Opin. Environ. Sustain. 36, 105–115 (2019).

    Google Scholar 

  117. Baalousha, M. et al. Modeling nanomaterial fate and uptake in the environment: current knowledge and future trends. Environ. Sci. Nano 3, 323–345 (2016).

    CAS  Google Scholar 

  118. Quik, J. T. K., de Klein, J. J. M. & Koelmans, A. A. Spatially explicit fate modelling of nanomaterials in natural waters. Wat. Res. 80, 200–208 (2015).

    CAS  Google Scholar 

  119. Liu, H. H. & Cohen, Y. Multimedia environmental distribution of engineered nanomaterials. Environ. Sci. Technol. 48, 3281–3292 (2014).

    CAS  Google Scholar 

  120. Meesters, J. A. J., Koelmans, A. A., Quik, J. T. K., Hendriks, A. J. & van de Meentt, D. Multimedia modeling of engineered nanoparticles with SimpleBox4nano: Model definition and evaluation. Environ. Sci. Technol. 48, 5726–5736 (2014).

    CAS  Google Scholar 

  121. Garner, K. L., Suh, S. & Keller, A. A. Assessing the risk of engineered nanomaterials in the environment: Development and application of the nanoFATE model. Environ. Sci. Technol. 51, 5541–5551 (2017).

    CAS  Google Scholar 

  122. Höck, J. et al. Guidelines on the Precautionary Matrix for Synhtetic Nanomaterials Version 2. (Berne: Swiss Federal Office for Public Health and Federal Office for the Environment, 2010).

  123. van Harmelen, T. et al. LICARA nanoSCAN - A tool for the self-assessment of benefits and risks of nanoproducts. Environ. Int. 91, 150–160 (2016).

    Google Scholar 

  124. Sorensen, S. N. et al. Evaluating environmental risk assessment models for nanomaterials according to requirements along the product innovation Stage-Gate process. Environ. Sci. Nano 6, 505–518 (2019).

    Google Scholar 

  125. Sun, T. Y. et al. Probabilistic modelling of engineered nanomaterial emissions to the environment: a spatio-temporal approach. Environ. Sci. Nano 2, 340–351 (2015).

    CAS  Google Scholar 

  126. Gottschalk, F., Scholz, R. W. & Nowack, B. Probabilistic material flow modeling for assessing the environmental exposure to compounds: Methodology and an application to engineered nano-TiO2 particles. Environ. Model. Softw. 25, 320–332 (2010).

    Google Scholar 

  127. Sun, T. Y. et al. Envisioning nano release dynamics in a changing world: Using dynamic probabilistic modeling to assess future environmental emissions of engineered nanomaterials. Environ. Sci. Technol. 51, 2854–2863 (2017).

    CAS  Google Scholar 

  128. Hendren, C. O., Lowry, G. V., Unrine, J. M. & Wiesner, M. R. A functional assay-based strategy for nanomaterial risk forecasting. Sci. Total Environ. 536, 1029–1037 (2015).

    CAS  Google Scholar 

Download references

Acknowledgements

All authors received support from the NanoFASE project under the European Union’s Horizon 2020 Research and Innovation programme (grant agreement no. 646002); C.S., E.L., S.L., I.L. and D.S. also received funding from UKRI Natural Environment Research Council Highlight Topic project (grant no. NE/N006224/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Spurgeon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Enzo Lombi and Mark Wiesner for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svendsen, C., Walker, L.A., Matzke, M. et al. Key principles and operational practices for improved nanotechnology environmental exposure assessment. Nat. Nanotechnol. 15, 731–742 (2020). https://doi.org/10.1038/s41565-020-0742-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-020-0742-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing