Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Chemiresistive sensing with functionalized carbon nanotubes

Abstract

Chemical sensing has a vital role in promoting security and welfare. Functionalized carbon nanotubes (CNTs) possess unique electronic, mechanical and chemical properties, rendering them as exceptional transducers for developing highly sensitive, selective and robust chemical sensors. In this Primer, we discuss the progress and challenges associated with chemiresistive sensing using functionalized CNTs, providing an introductory overview, spanning from theoretical to experimental aspects. Various covalent and non-covalent CNT functionalization strategies that contribute to enhancing the sensitivity and selectivity of chemiresistive sensors are discussed, along with their respective merits and drawbacks. Additionally, this Primer focuses on the critical facets of experimental design, including material selection, device architecture and fabrication and best practices for sensor testing. This Primer also discusses the significance of rigorous data interpretation, analysis and reporting, ensuring reproducibility and reliability. Finally, this Primer highlights the existing limitations of CNT-based chemiresistive sensors and investigates potential strategies for enhancing sensor selectivity and sensitivity that may broaden their applicability in diverse fields, from environmental monitoring to biomedical diagnostics. By emphasizing the need to understand the molecular interactions between the sensor and target analyte to improve selectivity, this Primer aims to offer a comprehensive understanding of the current state of CNT-based chemiresistive sensing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural configurations of carbon nanotubes.
Fig. 2: Schematic illustration of two single-walled carbon nanotubes bridging two electrodes.
Fig. 3: Comparison between covalent and non-covalent functionalizations of carbon nanotube.
Fig. 4: Design schemes of carbon nanotube-based chemiresistive devices.
Fig. 5: Design schemes of chemiresistive-sensing experiments.
Fig. 6: Typical characterization of sensor performance.
Fig. 7: Evaluation of sensing mechanism by Raman spectroscopy and transfer characteristics of carbon nanotube-field-effect transistor.

Similar content being viewed by others

References

  1. Mittal, M. & Kumar, A. Carbon nanotube (CNT) gas sensors for emissions from fossil fuel burning. Sens. Actuators B Chem. 203, 349–362 (2014).

    Google Scholar 

  2. Baron, R. & Saffell, J. Amperometric gas sensors as a low cost emerging technology platform for air quality monitoring applications: a review. ACS Sens. 2, 1553–1566 (2017).

    Google Scholar 

  3. Gautam, Y. K. et al. Nanostructured metal oxide semiconductor-based sensors for greenhouse gas detection: progress and challenges. R. Soc. Open. Sci. 8, 201324 (2021).

    ADS  Google Scholar 

  4. Turner, A. P. F. & Magan, N. Electronic noses and disease diagnostics. Nat. Rev. Microbiol. 2, 161–166 (2004).

    Google Scholar 

  5. Konvalina, G. & Haick, H. Sensors for breath testing: from nanomaterials to comprehensive disease detection. Acc. Chem. Res. 47, 66–76 (2014).

    Google Scholar 

  6. Patel, P. D. Biosensors for measurement of analytes implicated in food safety: a review. Trends Anal. Chem. 21, 96–115 (2022).

    Google Scholar 

  7. Giannoukos, S., Brkić, B., Taylor, S., Marshall, A. & Verbeck, G. F. Chemical sniffing instrumentation for security applications. Chem. Rev. 116, 8146–8172 (2016).

    Google Scholar 

  8. Srinivasan, P., Ezhilan, M., Kulandaisamy, A. J., Babu, K. J. & Rayappan, J. B. B. Room temperature chemiresistive gas sensors: challenges and strategies — a mini review. J. Mater. Sci. Mater. Electron. 30, 15825–15847 (2019).

    Google Scholar 

  9. Peng, G. et al. Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat. Nanotechnol. 4, 669–673 (2009).

    ADS  Google Scholar 

  10. Farré, M., Petrovic, M. & Barceló, D. Recently developed GC/MS and LC/MS methods for determining NSAIDs in water samples. Anal. Bioanal. Chem. 387, 1203–1214 (2007).

    Google Scholar 

  11. Bruderer, T. et al. On-line analysis of exhaled breath. Chem. Rev. 119, 10803–10828 (2019).

    Google Scholar 

  12. Comini, E., Faglia, G., Sberveglieri, G., Comini, E., Faglia, G. & Sberveglieri, G. Solid State Gas Sensing 1–61 (Springer, 2009).

  13. Sun, Y.-F. et al. Metal oxide nanostructures and their gas sensing properties: a review. Sensors 12, 2610–2631 (2012).

    ADS  Google Scholar 

  14. Seiyama, T., Kato, A., Fujiishi, K. & Nagatani, M. A new detector for gaseous components using semiconductive thin films. Anal. Chem. 34, 1502–1503 (1962).

    Google Scholar 

  15. Franco, M. A., Conti, P. P., Andre, R. S. & Correa, D. S. A review on chemiresistive ZnO gas sensors. Sens. Actuators Rep. 4, 100100 (2022).

    Google Scholar 

  16. Koo, W.-T., Jang, J.-S. & Kim, I.-D. Metal-organic frameworks for chemiresistive sensors. Chem 5, 1938–1963 (2019).

    Google Scholar 

  17. Dey, A. Semiconductor metal oxide gas sensors: a review. Mater. Sci. Eng. B 229, 206–217 (2018).

    Google Scholar 

  18. Franke, M. E., Koplin, T. J. & Simon, U. Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2, 36–50 (2006).

    Google Scholar 

  19. Mirzaei, A., Kim, S. S. & Kim, H. W. Resistance-based H2S gas sensors using metal oxide nanostructures: a review of recent advances. J. Hazard. Mater. 357, 314–331 (2018).

    ADS  Google Scholar 

  20. Janata, J. & Josowicz, M. Conducting polymers in electronic chemical sensors. Nat. Mater. 2, 19–24 (2003).

    ADS  Google Scholar 

  21. Schroeder, V., Savagatrup, S., He, M., Lin, S. & Swager, T. M. Carbon nanotube chemical sensors. Chem. Rev. 119, 599–663 (2019). This paper gives a comprehensive summary of CNT-based chemical sensors from mechanism to applications.

    Google Scholar 

  22. Akbari-Saatlu, M. et al. Silicon nanowires for gas sensing: a review. Nanomaterials 10, 2215 (2020).

    Google Scholar 

  23. Chen, X., Wong, C. K. Y., Yuan, C. A. & Zhang, G. Nanowire-based gas sensors. Sens. Actuators B Chem. 177, 178–195 (2013).

    Google Scholar 

  24. Ramgir, N. S., Yang, Y. & Zacharias, M. Nanowire-based sensors. Small 6, 1705–1722 (2010).

    Google Scholar 

  25. Varghese, S. S., Lonkar, S., Singh, K. K., Swaminathan, S. & Abdala, A. Recent advances in graphene based gas sensors. Sens. Actuators B Chem. 218, 160–183 (2015).

    Google Scholar 

  26. Joshi, N. et al. A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Mikrochim. Acta 185, 213 (2018).

    Google Scholar 

  27. Ho, D. H., Choi, Y. Y., Jo, S. B., Myoung, J.-M. & Cho, J. H. Sensing with MXenes: progress and prospects. Adv. Mater. 33, 2005846 (2021).

    Google Scholar 

  28. Rath, R. J., Farajikhah, S., Oveissi, F., Dehghani, F. & Naficy, S. Chemiresistive sensor arrays for gas/volatile organic compounds monitoring: a review. Adv. Eng. Mater. 25, 2200830 (2023).

    Google Scholar 

  29. Bandodkar, A. J., Jeerapan, I. & Wang, J. Wearable chemical sensors: present challenges and future prospects. ACS Sens. 1, 464–482 (2016).

    Google Scholar 

  30. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991). To the best of our knowledge, this is the seminal paper that describes the synthesis of CNTs.

    ADS  Google Scholar 

  31. Schnorr, J. M. & Swager, T. M. Emerging applications of carbon nanotubes. Chem. Mater. 23, 646–657 (2011).

    Google Scholar 

  32. Wu, Y. et al. Application-driven carbon nanotube functional materials. ACS Nano 15, 7946–7974 (2021).

    Google Scholar 

  33. Herrero, M. A., Vazquez, E. & Prato, M. in Handbook of Carbon Nano Materials Vols 1 & 2, World Scientific Series on Carbon Nanoscience 271–323 (World Scientific, 2011).

  34. Yu, M.-F., Files, B. S., Arepalli, S. & Ruoff, R. S. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84, 5552–5555 (2000).

    ADS  Google Scholar 

  35. Terrones, M. et al. Electronic, thermal and mechanical properties of carbon nanotubes. Phil. Trans. R. Soc. A 362, 2065–2098 (2004).

    ADS  Google Scholar 

  36. Journet, C. et al. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388, 756–758 (1997).

    ADS  Google Scholar 

  37. Dai, H. Carbon nanotubes: synthesis, integration, and properties. Acc. Chem. Res. 35, 1035–1044 (2002).

    Google Scholar 

  38. Paradise, M. & Goswami, T. Carbon nanotubes — production and industrial applications. Mater. Des. 28, 1477–1489 (2007).

    Google Scholar 

  39. Yan, Y. et al. Carbon nanotube catalysts: recent advances in synthesis, characterization and applications. Chem. Soc. Rev. 44, 3295–3346 (2015).

    ADS  Google Scholar 

  40. Kalamkarov, A. L., Georgiades, A. V., Rokkam, S. K., Veedu, V. P. & Ghasemi-Nejhad, M. N. Analytical and numerical techniques to predict carbon nanotubes properties. Int. J. Solids Struct. 43, 6832–6854 (2006).

    MATH  Google Scholar 

  41. Harris, P. J. F. in Carbon Nanotube Science: Synthesis, Properties and Applications 146–178 (Cambridge Univ. Press, 2009).

  42. Zhou, X., Park, J.-Y., Huang, S., Liu, J. & McEuen, P. L. Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 95, 146805 (2005).

    ADS  Google Scholar 

  43. Kong, J. et al. Nanotube molecular wires as chemical sensors. Science 287, 622–625 (2000).

    ADS  Google Scholar 

  44. Yin, F. et al. Carbon-based nanomaterials for the detection of volatile organic compounds: a review. Carbon 180, 274–297 (2021).

    Google Scholar 

  45. Norizan, M. N. et al. Carbon nanotubes: functionalisation and their application in chemical sensors. RSC Adv. 10, 43704–43732 (2020).

    ADS  Google Scholar 

  46. Boyd, A., Dube, I., Fedorov, G., Paranjape, M. & Barbara, P. Gas sensing mechanism of carbon nanotubes: from single tubes to high-density networks. Carbon 69, 417–423 (2014).

    Google Scholar 

  47. Bondavalli, P., Legagneux, P. & Pribat, D. Carbon nanotubes based transistors as gas sensors: state of the art and critical review. Sens. Actuators B Chem. 140, 304–318 (2009).

    Google Scholar 

  48. Heller, I. et al. Identifying the mechanism of biosensing with carbon nanotube transistors. Nano Lett. 8, 591–595 (2008).

    ADS  Google Scholar 

  49. Saito, R., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 60, 2204–2206 (1992). This paper gives a comprehensive study of the electronic structures of CNTs.

    ADS  Google Scholar 

  50. Lavigne, J. J. & Anslyn, E. V. Sensing a paradigm shift in the field of molecular recognition: from selective to differential receptors. Angew. Chem. Int. Ed. 40, 3118–3130 (2001).

    Google Scholar 

  51. Boehr, D. D., Nussinov, R. & Wright, P. E. The role of dynamic conformational ensembles in biomolecular recognition. Nat. Chem. Biol. 5, 789–796 (2009).

    Google Scholar 

  52. Schroeder, V. & Swager, T. M. Translating catalysis to chemiresistive sensing. J. Am. Chem. Soc. 140, 10721–10725 (2018). This paper pioneers the idea of translating molecular catalysis to chemiresistive sensing with CNTs.

    Google Scholar 

  53. Ma, P.-C., Siddiqui, N. A., Marom, G. & Kim, J.-K. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos. A Appl. Sci. Manuf. 41, 1345–1367 (2010).

    Google Scholar 

  54. Bag, A. & Lee, N.-E. Gas sensing with heterostructures based on two-dimensional nanostructured materials: a review. J. Mater. Chem. C 7, 13367–13383 (2019).

    Google Scholar 

  55. Koo, W.-T. et al. Porous ion exchange polymer matrix for ultrasmall Au nanoparticle-decorated carbon nanotube chemiresistors. Chem. Mater. 31, 5413–5420 (2019).

    Google Scholar 

  56. Liu, Y., Xiao, S. & Du, K. Chemiresistive gas sensors based on hollow heterojunction: a review. Adv. Mater. Interfaces 8, 2002122 (2021).

    Google Scholar 

  57. Tasis, D., Tagmatarchis, N., Bianco, A. & Prato, M. Chemistry of carbon nanotubes. Chem. Rev. 106, 1105–1136 (2006). This paper provides a comprehensive summary of covalent functionalization of CNTs.

    Google Scholar 

  58. Karousis, N., Tagmatarchis, N. & Tasis, D. Current progress on the chemical modification of carbon nanotubes. Chem. Rev. 110, 5366–5397 (2010).

    Google Scholar 

  59. Hirsch, A. Functionalization of single-walled carbon nanotubes. Angew. Chem. Int. Ed. 41, 1853–1859 (2002).

    Google Scholar 

  60. Zhao, Y.-L. & Stoddart, J. F. Noncovalent functionalization of single-walled carbon nanotubes. Acc. Chem. Res. 42, 1161–1171 (2009).

    Google Scholar 

  61. Huang, J. et al. Covalently functionalized double-walled carbon nanotubes combine high sensitivity and selectivity in the electrical detection of small molecules. J. Am. Chem. Soc. 135, 2306–2312 (2013).

    Google Scholar 

  62. Wang, F. & Swager, T. M. Diverse chemiresistors based upon covalently modified multiwalled carbon nanotubes. J. Am. Chem. Soc. 133, 11181–11193 (2011).

    Google Scholar 

  63. Ishihara, S. et al. Metallic versus semiconducting SWCNT chemiresistors: a case for separated SWCNTs wrapped by a metallosupramolecular polymer. ACS Appl. Mater. Interfaces 9, 38062–38067 (2017).

    Google Scholar 

  64. Savagatrup, S. et al. Bio-inspired carbon monoxide sensors with voltage-activated sensitivity. Angew. Chem. Int. Ed. 56, 14066–14070 (2017).

    Google Scholar 

  65. Liu, S. F., Moh, L. C. H. & Swager, T. M. Single-walled carbon nanotube–metalloporphyrin chemiresistive gas sensor arrays for volatile organic compounds. Chem. Mater. 27, 3560–3563 (2015).

    Google Scholar 

  66. Liu, S. F., Lin, S. & Swager, T. M. An organocobalt–carbon nanotube chemiresistive carbon monoxide detector. ACS Sens. 1, 354–357 (2016).

    Google Scholar 

  67. Liu, S. F., Petty, A. R., Sazama, G. T. & Swager, T. M. Single-walled carbon nanotube/metalloporphyrin composites for the chemiresistive detection of amines and meat spoilage. Angew. Chem. Int. Ed. 54, 6554–6557 (2015).

    Google Scholar 

  68. Lin, S. & Swager, T. M. Carbon nanotube formic acid sensors using a nickel bis(ortho-diiminosemiquinonate) selector. ACS Sens. 3, 569–573 (2018).

    Google Scholar 

  69. Esser, B., Schnorr, J. M. & Swager, T. M. Selective detection of ethylene gas using carbon nanotube-based devices: utility in determination of fruit ripeness. Angew. Chem. Int. Ed. 51, 5752–5756 (2012).

    Google Scholar 

  70. Alam, A. U., Qin, Y., Howlader, M. M. R., Hu, N.-X. & Deen, M. J. Electrochemical sensing of acetaminophen using multi-walled carbon nanotube and β-cyclodextrin. Sens. Actuators B Chem. 254, 896–909 (2018).

    Google Scholar 

  71. Abbaspour, A. & Noori, A. A cyclodextrin host–guest recognition approach to an electrochemical sensor for simultaneous quantification of serotonin and dopamine. Biosens. Bioelectron. 26, 4674–4680 (2011).

    Google Scholar 

  72. Wang, F., Yang, Y. & Swager, T. M. Molecular recognition for high selectivity in carbon nanotube/polythiophene chemiresistors. Angew. Chem. Int. Ed. 47, 8394–8396 (2008).

    Google Scholar 

  73. Kumar, S., Chawla, S. & Zou, M. C. Calixarenes based materials for gas sensing applications: a review. J. Incl. Phenom. Macrocycl. Chem. 88, 129–158 (2017).

    Google Scholar 

  74. Weizmann, Y., Chenoweth, D. M. & Swager, T. M. DNA−CNT nanowire networks for DNA detection. J. Am. Chem. Soc. 133, 3238–3241 (2011).

    Google Scholar 

  75. Staii, C., Johnson, A. T., Chen, M. & Gelperin, A. DNA-decorated carbon nanotubes for chemical sensing. Nano Lett. 5, 1774–1778 (2005).

    ADS  Google Scholar 

  76. So, H.-M. et al. Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements. J. Am. Chem. Soc. 127, 11906–11907 (2005).

    Google Scholar 

  77. Maehashi, K. et al. Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. Anal. Chem. 79, 782–787 (2007).

    Google Scholar 

  78. Bhardwaj, J., Devarakonda, S., Kumar, S. & Jang, J. Development of a paper-based electrochemical immunosensor using an antibody-single walled carbon nanotubes bio-conjugate modified electrode for label-free detection of foodborne pathogens. Sens. Actuators B Chem. 253, 115–123 (2017).

    Google Scholar 

  79. Lerner, M. B. et al. Hybrids of a genetically engineered antibody and a carbon nanotube transistor for detection of prostate cancer biomarkers. ACS Nano 6, 5143–5149 (2012).

    Google Scholar 

  80. Wang, J., Liu, G. & Jan, M. R. Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J. Am. Chem. Soc. 126, 3010–3011 (2004).

    Google Scholar 

  81. Barik, M. A., Sarma, M. K., Sarkar, C. R. & Dutta, J. C. Highly sensitive potassium-doped polypyrrole/carbon nanotube-based enzyme field effect transistor (EnFET) for cholesterol detection. Appl. Biochem. Biotechnol. 174, 1104–1114 (2014).

    Google Scholar 

  82. Besteman, K., Lee, J.-O., Wiertz, F. G. M., Heering, H. A. & Dekker, C. Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett. 3, 727–730 (2003).

    ADS  Google Scholar 

  83. Fong, D., Luo, S.-X. L., Andre, R. S. & Swager, T. M. Trace ethylene sensing via Wacker oxidation. ACS Cent. Sci. 6, 507–512 (2020).

    Google Scholar 

  84. Ishihara, S. et al. Cascade reaction-based chemiresistive array for ethylene sensing. ACS Sens. 5, 1405–1410 (2020).

    Google Scholar 

  85. Bezdek, M. J., Luo, S.-X. L., Ku, K. H. & Swager, T. M. A chemiresistive methane sensor. Proc. Natl Acad. Sci. USA 118, e2022515118 (2021).

    Google Scholar 

  86. Bezdek, M. J., Luo, S.-X. L., Liu, R. Y., He, Q. & Swager, T. M. Trace hydrogen sulfide sensing inspired by polyoxometalate-mediated aerobic oxidation. ACS Cent. Sci. 7, 1572–1580 (2021).

    Google Scholar 

  87. Shi, Z., Zhang, C., Tang, C. & Jiao, N. Recent advances in transition-metal catalyzed reactions using molecular oxygen as the oxidant. Chem. Soc. Rev. 41, 3381–3430 (2012).

    Google Scholar 

  88. Schießl, S. P. et al. Polymer-sorted semiconducting carbon nanotube networks for high-performance ambipolar field-effect transistors. ACS Appl. Mater. Interfaces 7, 682–689 (2015).

    Google Scholar 

  89. Talsma, W. et al. Efficient selective sorting of semiconducting carbon nanotubes using ultra-narrow-band-gap polymers. ACS Appl. Mater. Interfaces 14, 38056–38066 (2022).

    Google Scholar 

  90. Brady, G. J. et al. Polyfluorene-sorted, carbon nanotube array field-effect transistors with increased current density and high on/off ratio. ACS Nano 8, 11614–11621 (2014).

    Google Scholar 

  91. Fong, D. & Adronov, A. Recent developments in the selective dispersion of single-walled carbon nanotubes using conjugated polymers. Chem. Sci. 8, 7292–7305 (2017). This paper gives a comprehensive summary on CNT sorting with conjugated polymers.

    Google Scholar 

  92. Samanta, S. K. et al. Conjugated polymer-assisted dispersion of single-wall carbon nanotubes: the power of polymer wrapping. Acc. Chem. Res. 47, 2446–2456 (2014).

    Google Scholar 

  93. Wang, X. et al. Large-area flexible printed thin-film transistors with semiconducting single-walled carbon nanotubes for NO2 sensors. ACS Appl. Mater. Interfaces 12, 51797–51807 (2020).

    Google Scholar 

  94. Zhou, C. et al. Printed thin-film transistors and NO2 gas sensors based on sorted semiconducting carbon nanotubes by isoindigo-based copolymer. Carbon 108, 372–380 (2016).

    Google Scholar 

  95. Luo, S.-X. L. et al. Chemiresistive hydrogen sensing with size-limited palladium nanoparticles in iptycene-containing poly(arylene ether)s. ACS Nano 17, 2679–2688 (2023).

    Google Scholar 

  96. Tang, X. et al. ‘Dragging mode’ electrohydrodynamic jet printing of polymer-wrapped semiconducting single-walled carbon nanotubes for NO gas-sensing field-effect transistors. J. Mater. Chem. C 9, 15804–15812 (2021).

    Google Scholar 

  97. Ozawa, H., Ide, N., Fujigaya, T., Niidome, Y. & Nakashima, N. One-pot separation of highly enriched (6,5)-single-walled carbon nanotubes using a fluorene-based copolymer. Chem. Lett. 40, 239–241 (2011).

    Google Scholar 

  98. Kang, Y. K. et al. Helical wrapping of single-walled carbon nanotubes by water soluble poly(p-phenyleneethynylene). Nano Lett. 9, 1414–1418 (2009).

    ADS  Google Scholar 

  99. Guo, X., Gorodetsky, A. A., Hone, J., Barton, J. K. & Nuckolls, C. Conductivity of a single DNA duplex bridging a carbon nanotube gap. Nat. Nanotechnol. 3, 163–167 (2008).

    ADS  Google Scholar 

  100. Goldsmith, B. R., Coroneus, J. G., Kane, A. A., Weiss, G. A. & Collins, P. G. Monitoring single-molecule reactivity on a carbon nanotube. Nano Lett. 8, 189–194 (2008).

    ADS  Google Scholar 

  101. Vernick, S. et al. Electrostatic melting in a single-molecule field-effect transistor with applications in genomic identification. Nat. Commun. 8, 15450 (2017).

    ADS  Google Scholar 

  102. Roberts, M. E., LeMieux, M. C. & Bao, Z. Sorted and aligned single-walled carbon nanotube networks for transistor-based aqueous chemical sensors. ACS Nano 3, 3287–3293 (2009).

    Google Scholar 

  103. Ishikawa, F. N. et al. Importance of controlling nanotube density for highly sensitive and reliable biosensors functional in physiological conditions. ACS Nano 4, 6914–6922 (2010).

    Google Scholar 

  104. Niu, L., Luo, Y. & Li, Z. A highly selective chemical gas sensor based on functionalization of multi-walled carbon nanotubes with poly(ethylene glycol). Sens. Actuators B Chem. 126, 361–367 (2007).

    Google Scholar 

  105. Zhu, R., Azzarelli, J. M. & Swager, T. M. Wireless hazard badges to detect nerve-agent simulants. Angew. Chem. Int. Ed. 55, 9662–9666 (2016).

    Google Scholar 

  106. Ishihara, S., Azzarelli, J. M., Krikorian, M. & Swager, T. M. Ultratrace detection of toxic chemicals: triggered disassembly of supramolecular nanotube wrappers. J. Am. Chem. Soc. 138, 8221–8227 (2016).

    Google Scholar 

  107. Azzarelli, J. M., Mirica, K. A., Ravnsbæk, J. B. & Swager, T. M. Wireless gas detection with a smartphone via RF communication. Proc. Natl Acad. Sci. USA 111, 18162–18166 (2014). This paper demonstrates how a CNT-based chemiresistor can be applied in accessible wireless sensing.

    ADS  Google Scholar 

  108. Zhu, R., Desroches, M., Yoon, B. & Swager, T. M. Wireless oxygen sensors enabled by Fe(II)-polymer wrapped carbon nanotubes. ACS Sens. 2, 1044–1050 (2017).

    Google Scholar 

  109. Abe, M. et al. Quantitative detection of protein using a top-gate carbon nanotube field effect transistor. J. Phys. Chem. C 111, 8667–8670 (2007).

    Google Scholar 

  110. Rosenblatt, S. et al. High performance electrolyte gated carbon nanotube transistors. Nano Lett. 2, 869–872 (2002).

    ADS  Google Scholar 

  111. Silva, G. O. et al. Nanoelectronic discrimination of nonmalignant and malignant cells using nanotube field-effect transistors. ACS Sens. 2, 1128–1132 (2017).

    Google Scholar 

  112. Xue, M. et al. Integrated biosensor platform based on graphene transistor arrays for real-time high-accuracy ion sensing. Nat. Commun. 13, 5064 (2022).

    ADS  Google Scholar 

  113. Kong, J., Soh, H. T., Cassell, A. M., Quate, C. F. & Dai, H. Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395, 878–881 (1998).

    ADS  Google Scholar 

  114. Shah, K. A. & Tali, B. A. Synthesis of carbon nanotubes by catalytic chemical vapour deposition: a review on carbon sources, catalysts and substrates. Mater. Sci. Semicond. Process. 41, 67–82 (2016).

    Google Scholar 

  115. Jiang, K. & Gerhardt, R. A. Fabrication and supercapacitor applications of multiwall carbon nanotube thin films. C 7, 70 (2021).

    Google Scholar 

  116. Soylemez, S., Yoon, B., Toppare, L. & Swager, T. M. Quaternized polymer–single-walled carbon nanotube scaffolds for a chemiresistive glucose sensor. ACS Sens. 2, 1123–1127 (2017).

    Google Scholar 

  117. Qu, F., Yang, M., Jiang, J., Shen, G. & Yu, R. Amperometric biosensor for choline based on layer-by-layer assembled functionalized carbon nanotube and polyaniline multilayer film. Anal. Biochem. 344, 108–114 (2005).

    Google Scholar 

  118. Junya, S., Guangbin, Z. & Masanori, H. Fabrication of a carbon nanotube-based gas sensor using dielectrophoresis and its application for ammonia detection by impedance spectroscopy. J. Phys. D 36, L109 (2003).

    Google Scholar 

  119. Zhang, Y., Zhang, Y., Xian, X., Zhang, J. & Liu, Z. Sorting out semiconducting single-walled carbon nanotube arrays by preferential destruction of metallic tubes using xenon-lamp irradiation. J. Phys. Chem. C 112, 3849–3856 (2008).

    Google Scholar 

  120. Drozdowska, K. et al. Effects of UV light irradiation on fluctuation enhanced gas sensing by carbon nanotube networks. Sens. Actuators B Chem. 352, 131069 (2022).

    Google Scholar 

  121. Mirica, K. A., Azzarelli, J. M., Weis, J. G., Schnorr, J. M. & Swager, T. M. Rapid prototyping of carbon-based chemiresistive gas sensors on paper. Proc. Natl Acad. Sci. USA 110, E3265–E3270 (2013).

    ADS  Google Scholar 

  122. Kim, C. B. et al. Facile supramolecular processing of carbon nanotubes and polymers for electromechanical sensors. Angew. Chem. Int. Ed. 56, 16180–16185 (2017).

    Google Scholar 

  123. Luo, S.-X. L., Lin, C.-J., Ku, K. H., Yoshinaga, K. & Swager, T. M. Pentiptycene polymer/single-walled carbon nanotube complexes: applications in benzene, toluene, and o-xylene detection. ACS Nano 14, 7297–7307 (2020).

    Google Scholar 

  124. He, M., Croy, R. G., Essigmann, J. M. & Swager, T. M. Chemiresistive carbon nanotube sensors for N-nitrosodialkylamines. ACS Sens. 4, 2819–2824 (2019).

    Google Scholar 

  125. Choi, S.-J. et al. Chemiresistors for the real-time wireless detection of anions. Adv. Funct. Mater. 30, 1907087 (2020).

    Google Scholar 

  126. Choi, S.-J., Yoon, B., Lin, S. & Swager, T. M. Functional single-walled carbon nanotubes for anion sensing. ACS Appl. Mater. Interfaces 12, 28375–28382 (2020).

    Google Scholar 

  127. Yu, L., Xinghui, L., Mehmet, R. D. & Ming, L. W. Carbon nanotube sensors integrated inside a microfluidic channel for water quality monitoring. in Proceedings of SPIE 7981 Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 79811l (SPIE, 2011).

  128. Li, C. A., Han, K. N., Pham, X.-H. & Seong, G. H. A single-walled carbon nanotube thin film-based pH-sensing microfluidic chip. Analyst 139, 2011–2015 (2014).

    ADS  Google Scholar 

  129. Ghanbarian, M., Zeinali, S. & Mostafavi, A. A novel MIL-53(Cr-Fe)/Ag/CNT nanocomposite based resistive sensor for sensing of volatile organic compounds. Sens. Actuators B Chem. 267, 381–391 (2018).

    Google Scholar 

  130. Kaur, A. et al. Enhancement in the performance of multi-walled carbon nanotube: poly(methylmethacrylate) composite thin film ethanol sensors through appropriate nanotube functionalization. Mater. Sci. Semicond. Process. 31, 166–174 (2015).

    Google Scholar 

  131. Fennell, J. F. Jr et al. Nanowire chemical/biological sensors: status and a roadmap for the future. Angew. Chem. Int. Ed. 55, 1266–1281 (2016).

    Google Scholar 

  132. Zeininger, L., He, M., Hobson, S. T. & Swager, T. M. Resistive and capacitive γ-ray dosimeters based on triggered depolymerization in carbon nanotube composites. ACS Sens. 3, 976–983 (2018).

    Google Scholar 

  133. Danzer, K. & Currie, L. A. Guidelines for calibration in analytical chemistry. Part I. Fundamentals and single component calibration (IUPAC recommendations 1998). Pure Appl. Chem. 70, 993–1014 (1998).

    Google Scholar 

  134. Harris, D. C. Quantitative Chemical Analysis (Macmillan, 2010).

  135. Urban, P. L. Please avoid plotting analytical response against logarithm of concentration. Anal. Chem. 92, 10210–10212 (2020).

    Google Scholar 

  136. Kong, D., Zhao, J., Tang, S., Shen, W. & Lee, H. K. Logarithmic data processing can be used justifiably in the plotting of a calibration curve. Anal. Chem. 93, 12156–12161 (2021).

    Google Scholar 

  137. Evard, H., Kruve, A. & Leito, I. Tutorial on estimating the limit of detection using LC-MS analysis, part I: theoretical review. Anal. Chim. Acta 942, 23–39 (2016).

    Google Scholar 

  138. Ernesto, B. in Advances in Gas Chromatography (ed. Guo, X.) Ch. 3 (IntechOpen, 2014).

  139. Ammu, S. et al. Flexible, all-organic chemiresistor for detecting chemically aggressive vapors. J. Am. Chem. Soc. 134, 4553–4556 (2012).

    Google Scholar 

  140. Li, J. et al. Carbon nanotube sensors for gas and organic vapor detection. Nano Lett. 3, 929–933 (2003).

    ADS  Google Scholar 

  141. Torsi, L., Magliulo, M., Manoli, K. & Palazzo, G. Organic field-effect transistor sensors: a tutorial review. Chem. Soc. Rev. 42, 8612–8628 (2013).

    Google Scholar 

  142. Koo, W.-T. et al. Chemiresistive hydrogen sensors: fundamentals, recent advances, and challenges. ACS Nano 14, 14284–14322 (2020).

    Google Scholar 

  143. Ellis, J. E. & Star, A. Carbon nanotube based gas sensors toward breath analysis. ChemPlusChem 81, 1248–1265 (2016).

    Google Scholar 

  144. Ziyatdinov, A. et al. Drift compensation of gas sensor array data by common principal component analysis. Sens. Actuators B Chem. 146, 460–465 (2010).

    Google Scholar 

  145. Lee, C. Y., Baik, S., Zhang, J., Masel, R. I. & Strano, M. S. Charge transfer from metallic single-walled carbon nanotube sensor arrays. J. Phys. Chem. B 110, 11055–11061 (2006).

    Google Scholar 

  146. Zhou, X. et al. Cementing mesoporous ZnO with silica for controllable and switchable gas sensing selectivity. Chem. Mater. 31, 8112–8120 (2019).

    Google Scholar 

  147. Zhao, D. et al. C-doped TiO2 nanoparticles to detect alcohols with different carbon chains and their sensing mechanism analysis. Sens. Actuators B Chem. 312, 127942 (2020).

    Google Scholar 

  148. de Lacy Costello, B. P. J., Ewen, R. J., Jones, P. R. H., Ratcliffe, N. M. & Wat, R. K. M. A study of the catalytic and vapour-sensing properties of zinc oxide and tin dioxide in relation to 1-butanol and dimethyldisulphide. Sens. Actuators B Chem. 61, 199–207 (1999).

    Google Scholar 

  149. Mazzotta, E., Rella, S., Turco, A. & Malitesta, C. XPS in development of chemical sensors. RSC Adv. 5, 83164–83186 (2015).

    ADS  Google Scholar 

  150. Gurlo, A. & Riedel, R. In situ and operando spectroscopy for assessing mechanisms of gas sensing. Angew. Chem. Int. Ed. 46, 3826–3848 (2007). This paper gives an overview of spectroscopic methods to investigate gas-sensing mechanisms.

    Google Scholar 

  151. Elger, A.-K. & Hess, C. Application of Raman spectroscopy to working gas sensors: from in situ to operando studies. Sensors 19, 5075 (2019).

    ADS  Google Scholar 

  152. Rao, A. M., Eklund, P. C., Bandow, S., Thess, A. & Smalley, R. E. Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering. Nature 388, 257–259 (1997).

    ADS  Google Scholar 

  153. Panchakarla, L. S., Govindaraj, A. & Rao, C. N. R. Nitrogen- and boron-doped double-walled carbon nanotubes. ACS Nano 1, 494–500 (2007).

    Google Scholar 

  154. Voggu, R., Rout, C. S., Franklin, A. D., Fisher, T. S. & Rao, C. N. R. Extraordinary sensitivity of the electronic structure and properties of single-walled carbon nanotubes to molecular charge-transfer. J. Phys. Chem. C 112, 13053–13056 (2008).

    Google Scholar 

  155. Shin, H.-J. et al. Tailoring electronic structures of carbon nanotubes by solvent with electron-donating and -withdrawing groups. J. Am. Chem. Soc. 130, 2062–2066 (2008).

    Google Scholar 

  156. Dresselhaus, M. S., Dresselhaus, G., Jorio, A., Souza Filho, A. G. & Saito, R. Raman spectroscopy on isolated single wall carbon nanotubes. Carbon 40, 2043–2061 (2002).

    Google Scholar 

  157. Rebelo, S. L. H. et al. Progress in the Raman spectra analysis of covalently functionalized multiwalled carbon nanotubes: unraveling disorder in graphitic materials. Phys. Chem. Chem. Phys. 18, 12784–12796 (2016).

    Google Scholar 

  158. Martel, R. et al. Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. Phys. Rev. Lett. 87, 256805 (2001).

    ADS  Google Scholar 

  159. Star, A., Han, T. R., Joshi, V., Gabriel, J. C. P. & Grüner, G. Nanoelectronic carbon dioxide sensors. Adv. Mater. 16, 2049–2052 (2004).

    Google Scholar 

  160. Star, A., Joshi, V., Skarupo, S., Thomas, D. & Gabriel, J.-C. P. Gas sensor array based on metal-decorated carbon nanotubes. J. Phys. Chem. B 110, 21014–21020 (2006).

    Google Scholar 

  161. Wang, F., Gu, H. & Swager, T. M. Carbon nanotube/polythiophene chemiresistive sensors for chemical warfare agents. J. Am. Chem. Soc. 130, 5392–5393 (2008).

    Google Scholar 

  162. Heinze, S. et al. Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett. 89, 106801 (2002).

    ADS  Google Scholar 

  163. Balasubramanian, K. & Burghard, M. Biosensors based on carbon nanotubes. Anal. Bioanal. Chem. 385, 452–468 (2006).

    Google Scholar 

  164. Liu, S. & Guo, X. Carbon nanomaterials field-effect-transistor-based biosensors. NPG Asia Mater. 4, e23 (2012).

    ADS  Google Scholar 

  165. Yang, N., Chen, X., Ren, T., Zhang, P. & Yang, D. Carbon nanotube based biosensors. Sens. Actuators B Chem. 207, 690–715 (2015).

    Google Scholar 

  166. Allen, B. L., Kichambare, P. D. & Star, A. Carbon nanotube field-effect-transistor-based biosensors. Adv. Mater. 19, 1439–1451 (2007).

    Google Scholar 

  167. Musameh, M. M., Hickey, M. & Kyratzis, I. L. Carbon nanotube-based extraction and electrochemical detection of heavy metals. Res. Chem. Intermed. 37, 675–689 (2011).

    Google Scholar 

  168. Wang, J. Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17, 7–14 (2005).

    Google Scholar 

  169. Goldoni, A., Larciprete, R., Petaccia, L. & Lizzit, S. Single-wall carbon nanotube interaction with gases:  sample contaminants and environmental monitoring. J. Am. Chem. Soc. 125, 11329–11333 (2003).

    Google Scholar 

  170. Rigoni, F. et al. Enhancing the sensitivity of chemiresistor gas sensors based on pristine carbon nanotubes to detect low-ppb ammonia concentrations in the environment. Analyst 138, 7392–7399 (2013).

    ADS  Google Scholar 

  171. Quang, N. H., Van Trinh, M., Lee, B.-H. & Huh, J.-S. Effect of NH3 gas on the electrical properties of single-walled carbon nanotube bundles. Sens. Actuators B Chem. 113, 341–346 (2006).

    Google Scholar 

  172. Feng, X. et al. Sensitivity of ammonia interaction with single-walled carbon nanotube bundles to the presence of defect sites and functionalities. J. Am. Chem. Soc. 127, 10533–10538 (2005).

    Google Scholar 

  173. Robinson, J. A., Snow, E. S., Bǎdescu, Ş. C., Reinecke, T. L. & Perkins, F. K. Role of defects in single-walled carbon nanotube chemical sensors. Nano Lett. 6, 1747–1751 (2006).

    ADS  Google Scholar 

  174. Penza, M. et al. Enhancement of sensitivity in gas chemiresistors based on carbon nanotube surface functionalized with noble metal (Au, Pt) nanoclusters. Appl. Phys. Lett. 90, 173123 (2007).

    ADS  Google Scholar 

  175. Yoon, B., Liu, S. F. & Swager, T. M. Surface-anchored poly(4-vinylpyridine)–single-walled carbon nanotube–metal composites for gas detection. Chem. Mater. 28, 5916–5924 (2016).

    Google Scholar 

  176. Ghaddab, B. et al. Detection of O3 and NH3 using hybrid tin dioxide/carbon nanotubes sensors: influence of materials and processing on sensor’s sensitivity. Sens. Actuators B Chem. 170, 67–74 (2012).

    Google Scholar 

  177. Lu, G., Ocola, L. E. & Chen, J. Room-temperature gas sensing based on electron transfer between discrete tin oxide nanocrystals and multiwalled carbon nanotubes. Adv. Mater. 21, 2487–2491 (2009).

    Google Scholar 

  178. Hoa, N. D., Van Quy, N. & Kim, D. Nanowire structured SnOx–SWNT composites: high performance sensor for NOx detection. Sens. Actuators B Chem. 142, 253–259 (2009).

    Google Scholar 

  179. Bekyarova, E. et al. Mechanism of ammonia detection by chemically functionalized single-walled carbon nanotubes:  in situ electrical and optical study of gas analyte detection. J. Am. Chem. Soc. 129, 10700–10706 (2007).

    Google Scholar 

  180. Li, Y., Wang, H.-c & Yang, M.-J. N-type gas sensing characteristics of chemically modified multi-walled carbon nanotubes and PMMA composite. Sens. Actuators B Chem. 121, 496–500 (2007).

    Google Scholar 

  181. An, K. H., Jeong, S. Y., Hwang, H. R. & Lee, Y. H. Enhanced sensitivity of a gas sensor incorporating single-walled carbon nanotube–polypyrrole nanocomposites. Adv. Mater. 16, 1005–1009 (2004).

    Google Scholar 

  182. Liang, X. et al. Enhanced NH3-sensing behavior of 2,9,16,23-tetrakis(2,2,3,3-tetrafluoropropoxy) metal(II) phthalocyanine/multi-walled carbon nanotube hybrids: an investigation of the effects of central metals. Carbon 80, 268–278 (2014).

    Google Scholar 

  183. Kaya, E. N. et al. Hybrid materials of pyrene substituted phthalocyanines with single-walled carbon nanotubes: structure and sensing properties. RSC Adv. 5, 91855–91862 (2015).

    ADS  Google Scholar 

  184. Mubeen, S. et al. Sensitive detection of H2S using gold nanoparticle decorated single-walled carbon nanotubes. Anal. Chem. 82, 250–257 (2010).

    Google Scholar 

  185. Ding, M., Sorescu, D. C., Kotchey, G. P. & Star, A. Welding of gold nanoparticles on graphitic templates for chemical sensing. J. Am. Chem. Soc. 134, 3472–3479 (2012).

    Google Scholar 

  186. Dilonardo, E. et al. Electrophoretic deposition of Au NPs on MWCNT-based gas sensor for tailored gas detection with enhanced sensing properties. Sens. Actuators B Chem. 223, 417–428 (2016).

    Google Scholar 

  187. Asad, M. & Sheikhi, M. H. Highly sensitive wireless H2S gas sensors at room temperature based on CuO-SWCNT hybrid nanomaterials. Sens. Actuators B Chem. 231, 474–483 (2016).

    Google Scholar 

  188. Asad, M., Sheikhi, M. H., Pourfath, M. & Moradi, M. High sensitive and selective flexible H2S gas sensors based on Cu nanoparticle decorated SWCNTs. Sens. Actuators B Chem. 210, 1–8 (2015).

    Google Scholar 

  189. Liu, H. et al. Solution-processed gas sensors employing SnO2 quantum dot/MWCNT nanocomposites. ACS Appl. Mater. Interfaces 8, 840–846 (2016).

    ADS  Google Scholar 

  190. Mendoza, F. et al. Room temperature gas sensor based on tin dioxide-carbon nanotubes composite films. Sens. Actuators B Chem. 190, 227–233 (2014).

    Google Scholar 

  191. Yao, F. et al. Humidity-assisted selective reactivity between NO2 and SO2 gas on carbon nanotubes. J. Mater. Chem. 21, 4502–4508 (2011).

    Google Scholar 

  192. Penner, R. M. A nose for hydrogen gas: fast, sensitive H2 sensors using electrodeposited nanomaterials. Acc. Chem. Res. 50, 1902–1910 (2017).

    Google Scholar 

  193. Sawyer, W. J. et al. Methane emissions and global warming: mitigation technologies, policy ambitions, and global efforts. MIT Sci. Policy Rev. 3, 73–84 (2022).

    Google Scholar 

  194. Kong, J., Chapline, M. G. & Dai, H. Functionalized carbon nanotubes for molecular hydrogen sensors. Adv. Mater. 13, 1384–1386 (2001).

    Google Scholar 

  195. Li, X. et al. Sub-6 nm palladium nanoparticles for faster, more sensitive H2 detection using carbon nanotube ropes. ACS Sens. 2, 282–289 (2017).

    Google Scholar 

  196. Lu, Y. et al. Room temperature methane detection using palladium loaded single-walled carbon nanotube sensors. Chem. Phys. Lett. 391, 344–348 (2004).

    ADS  Google Scholar 

  197. Shukla, P., Saxena, P., Madhwal, D., Bhardwaj, N. & Jain, V. K. Electrostatically functionalized CVD grown multiwalled carbon nanotube/ palladium polymer nanocomposite (MWCNT/Pd) for methane detection at room temperature. Chem. Eng. Sci. 264, 118191 (2022).

    Google Scholar 

  198. Peng, S. & Cho, K. Ab initio study of doped carbon nanotube sensors. Nano Lett. 3, 513–517 (2003).

    ADS  Google Scholar 

  199. Hannon, A., Lu, Y., Li, J. & Meyyappan, M. Room temperature carbon nanotube based sensor for carbon monoxide detection. J. Sens. Sens. Syst. 3, 349–354 (2014).

    ADS  Google Scholar 

  200. Fu, D. et al. Differentiation of gas molecules using flexible and all-carbon nanotube devices. J. Phys. Chem. C 112, 650–653 (2008).

    Google Scholar 

  201. Choi, S.-W., Kim, J., Lee, J.-H. & Byun, Y. T. Remarkable improvement of CO-sensing performances in single-walled carbon nanotubes due to modification of the conducting channel by functionalization of Au nanoparticles. Sens. Actuators B Chem. 232, 625–632 (2016).

    Google Scholar 

  202. Leghrib, R. et al. Gas sensors based on multiwall carbon nanotubes decorated with tin oxide nanoclusters. Sens. Actuators B Chem. 145, 411–416 (2010).

    Google Scholar 

  203. Dong, X. et al. Heme-enabled electrical detection of carbon monoxide at room temperature using networked carbon nanotube field-effect transistors. Chem. Mater. 19, 6059–6061 (2007).

    Google Scholar 

  204. Rushi, A. D., Datta, K. P., Ghosh, P. S., Mulchandani, A. & Shirsat, M. D. Selective discrimination among benzene, toluene, and xylene: probing metalloporphyrin-functionalized single-walled carbon nanotube-based field effect transistors. J. Phys. Chem. C 118, 24034–24041 (2014).

    Google Scholar 

  205. Im, J., Sterner, E. S. & Swager, T. M. Integrated gas sensing system of SWCNT and cellulose polymer concentrator for benzene, toluene, and xylenes. Sensors 16, 183 (2016).

    ADS  Google Scholar 

  206. Kim, T. H., Lee, J. & Hong, S. Highly selective environmental nanosensors based on anomalous response of carbon nanotube conductance to mercury ions. J. Phys. Chem. C 113, 19393–19396 (2009).

    Google Scholar 

  207. Gou, P., Kraut, N. D., Feigel, I. M. & Star, A. Rigid versus flexible ligands on carbon nanotubes for the enhanced sensitivity of cobalt ions. Macromolecules 46, 1376–1383 (2013).

    ADS  Google Scholar 

  208. Forzani, E. S. et al. Tuning the chemical selectivity of SWNT-FETs for detection of heavy-metal ions. Small 2, 1283–1291 (2006).

    Google Scholar 

  209. Szinicz, L. History of chemical and biological warfare agents. Toxicology 214, 167–181 (2005).

    Google Scholar 

  210. Noort, D., Benschop, H. P. & Black, R. M. Biomonitoring of exposure to chemical warfare agents: a review. Toxicol. Appl. Pharmacol. 184, 116–126 (2002).

    Google Scholar 

  211. Novak, J. P. et al. Nerve agent detection using networks of single-walled carbon nanotubes. Appl. Phys. Lett. 83, 4026–4028 (2003).

    ADS  Google Scholar 

  212. Wang, Y. et al. Flexible gas sensors with assembled carbon nanotube thin films for DMMP vapor detection. Sens. Actuators B Chem. 150, 708–714 (2010).

    ADS  Google Scholar 

  213. Lee, C. Y., Sharma, R., Radadia, A. D., Masel, R. I. & Strano, M. S. On-chip micro gas chromatograph enabled by a noncovalently functionalized single-walled carbon nanotube sensor array. Angew. Chem. Int. Ed. 47, 5018–5021 (2008).

    Google Scholar 

  214. Fennell, J. F., Hamaguchi, H., Yoon, B. & Swager, T. M. Chemiresistor devices for chemical warfare agent detection based on polymer wrapped single-walled carbon nanotubes. Sensors 17, 982 (2017).

    ADS  Google Scholar 

  215. Snow, E. S., Perkins, F. K., Houser, E. J., Badescu, S. C. & Reinecke, T. L. Chemical detection with a single-walled carbon nanotube capacitor. Science 307, 1942–1945 (2005).

    ADS  Google Scholar 

  216. Kumar, D. et al. 4-(Hexafluoro-2-hydroxy isopropyl)aniline functionalized highly sensitive flexible SWCNT sensor for detection of nerve agent simulant dimethyl methylphosphonate. Mater. Chem. Phys. 181, 487–494 (2016).

    Google Scholar 

  217. Wei, L. et al. Hole doping and surface functionalization of single-walled carbon nanotube chemiresistive sensors for ultrasensitive and highly selective organophosphor vapor detection. Nanotechnology 22, 425501 (2011).

    ADS  Google Scholar 

  218. Li, J., Lu, Y. & Meyyappan, M. Nano chemical sensors with polymer-coated carbon nanotubes. IEEE Sens. J. 6, 1047–1051 (2006).

    ADS  Google Scholar 

  219. Gohier, A. et al. Optimized network of multi-walled carbon nanotubes for chemical sensing. Nanotechnology 22, 105501 (2011).

    ADS  Google Scholar 

  220. Lee, C. Y. & Strano, M. S. Amine basicity (pKb) controls the analyte binding energy on single walled carbon nanotube electronic sensor arrays. J. Am. Chem. Soc. 130, 1766–1773 (2008).

    Google Scholar 

  221. Choi, S.-W., Kim, B.-M., Oh, S.-H. & Byun, Y. T. Selective detection of chlorine at room temperature utilizing single-walled carbon nanotubes functionalized with platinum nanoparticles synthesized via ultraviolet irradiation. Sens. Actuators B Chem. 249, 414–422 (2017).

    Google Scholar 

  222. Sharma, A. K. et al. Non-covalently anchored multi-walled carbon nanotubes with hexa-decafluorinated zinc phthalocyanine as ppb level chemiresistive chlorine sensor. Appl. Surf. Sci. 427, 202–209 (2018).

    ADS  Google Scholar 

  223. Zhang, Y. et al. Oligomer-coated carbon nanotube chemiresistive sensors for selective detection of nitroaromatic explosives. ACS Appl. Mater. Interfaces 7, 7471–7475 (2015).

    Google Scholar 

  224. Wei, L. et al. Highly sensitive detection of trinitrotoluene in water by chemiresistive sensor based on noncovalently amino functionalized single-walled carbon nanotube. Sens. Actuators B Chem. 190, 529–534 (2014).

    Google Scholar 

  225. Liu, Y. et al. SWNT based nanosensors for wireless detection of explosives and chemical warfare agents. IEEE Sens. J. 13, 202–210 (2013).

    ADS  Google Scholar 

  226. Lai, H., Leung, A., Magee, M. & Almirall, J. R. Identification of volatile chemical signatures from plastic explosives by SPME-GC/MS and detection by ion mobility spectrometry. Anal. Bioanal. Chem. 396, 2997–3007 (2010).

    Google Scholar 

  227. Schnorr, J. M., van der Zwaag, D., Walish, J. J., Weizmann, Y. & Swager, T. M. Sensory arrays of covalently functionalized single-walled carbon nanotubes for explosive detection. Adv. Funct. Mater. 23, 5285–5291 (2013).

    Google Scholar 

  228. Frazier, K. M. & Swager, T. M. Robust cyclohexanone selective chemiresistors based on single-walled carbon nanotubes. Anal. Chem. 85, 7154–7158 (2013).

    Google Scholar 

  229. Yoon, B., Choi, S.-J., Swager, T. M. & Walsh, G. F. Flexible chemiresistive cyclohexanone sensors based on single-walled carbon nanotube–polymer composites. ACS Sens. 6, 3056–3062 (2021).

    Google Scholar 

  230. Lelièvre, J.-M., Latchè, A., Jones, B., Bouzayen, M. & Pech, J.-C. Ethylene and fruit ripening. Physiol. Plant. 101, 727–739 (1997).

    Google Scholar 

  231. Shaalan, N. M. et al. Monitoring food spoilage based on a defect-induced multiwall carbon nanotube sensor at room temperature: preventing food waste. ACS Omega 5, 30531–30537 (2020).

    Google Scholar 

  232. Klein, H. et al. Covalent immobilization of polyaniline doped with Ag+ or Cu2+ on carbon nanotubes for ethylene chemical sensing. Nanomaterials 11, 1993 (2021).

    Google Scholar 

  233. Son, M., Kim, D., Ko, H. J., Hong, S. & Park, T. H. A portable and multiplexed bioelectronic sensor using human olfactory and taste receptors. Biosens. Bioelectron. 87, 901–907 (2017).

    Google Scholar 

  234. Andre, R. S., Ngo, Q. P., Fugikawa-Santos, L., Correa, D. S. & Swager, T. M. Wireless tags with hybrid nanomaterials for volatile amine detection. ACS Sens. 6, 2457–2464 (2021).

    Google Scholar 

  235. Lim, J. H. et al. A peptide receptor-based bioelectronic nose for the real-time determination of seafood quality. Biosens. Bioelectron. 39, 244–249 (2013).

    ADS  Google Scholar 

  236. Lee, M. et al. Discrimination of umami tastants using floating electrode-based bioelectronic tongue mimicking insect taste systems. ACS Nano 9, 11728–11736 (2015).

    Google Scholar 

  237. Kim, T. H. et al. Single-carbon-atomic-resolution detection of odorant molecules using a human olfactory receptor-based bioelectronic nose. Adv. Mater. 21, 91–94 (2009).

    Google Scholar 

  238. Peng, G., Tisch, U. & Haick, H. Detection of nonpolar molecules by means of carrier scattering in random networks of carbon nanotubes: toward diagnosis of diseases via breath samples. Nano Lett. 9, 1362–1368 (2009).

    ADS  Google Scholar 

  239. Peng, G., Trock, E. & Haick, H. Detecting simulated patterns of lung cancer biomarkers by random network of single-walled carbon nanotubes coated with nonpolymeric organic materials. Nano Lett. 8, 3631–3635 (2008).

    ADS  Google Scholar 

  240. Sarkar, T., Srinives, S., Sarkar, S., Haddon, R. C. & Mulchandani, A. Single-walled carbon nanotube–poly(porphyrin) hybrid for volatile organic compounds detection. J. Phys. Chem. C 118, 1602–1610 (2014).

    Google Scholar 

  241. Abdulla, S., Mathew, T. L. & Pullithadathil, B. Highly sensitive, room temperature gas sensor based on polyaniline-multiwalled carbon nanotubes (PANI/MWCNTs) nanocomposite for trace-level ammonia detection. Sens. Actuators B Chem. 221, 1523–1534 (2015).

    Google Scholar 

  242. Yoon, B., Choi, S.-J., Swager, T. M. & Walsh, G. F. Switchable single-walled carbon nanotube–polymer composites for CO2 sensing. ACS Appl. Mater. Interfaces 10, 33373–33379 (2018).

    Google Scholar 

  243. Suhail, M. H., Abdullah, O. G. & Kadhim, G. A. Hydrogen sulfide sensors based on PANI/f-SWCNT polymer nanocomposite thin films prepared by electrochemical polymerization. J. Sci. Adv. Mater. Dev. 4, 143–149 (2019).

    Google Scholar 

  244. Narasimhan, L. R., Goodman, W. & Patel, C. K. N. Correlation of breath ammonia with blood urea nitrogen and creatinine during hemodialysis. Proc. Natl Acad. Sci. USA 98, 4617–4621 (2001).

    ADS  Google Scholar 

  245. Feng, D. et al. Highly sensitive and selective NiO/WO3 composite nanoparticles in detecting H2S biomarker of halitosis. ACS Sens. 6, 733–741 (2021).

    Google Scholar 

  246. Suzuki, Y., Saito, J., Munakata, M. & Shibata, Y. Hydrogen sulfide as a novel biomarker of asthma and chronic obstructive pulmonary disease. Allergol. Int. 70, 181–189 (2021).

    Google Scholar 

  247. Attene-Ramos, M. S., Wagner, E. D., Plewa, M. J. & Gaskins, H. R. Evidence that hydrogen sulfide is a genotoxic agent. Mol. Cancer Res. 4, 9–14 (2006).

    Google Scholar 

  248. Lee, D. & Cui, T. Low-cost, transparent, and flexible single-walled carbon nanotube nanocomposite based ion-sensitive field-effect transistors for pH/glucose sensing. Biosens. Bioelectron. 25, 2259–2264 (2010).

    Google Scholar 

  249. Lerner, M. B. et al. Scalable, non-invasive glucose sensor based on boronic acid functionalized carbon nanotube transistors. Appl. Phys. Lett. 102, 183113 (2013).

    ADS  Google Scholar 

  250. Cella, L. N., Chen, W., Myung, N. V. & Mulchandani, A. Single-walled carbon nanotube-based chemiresistive affinity biosensors for small molecules: ultrasensitive glucose detection. J. Am. Chem. Soc. 132, 5024–5026 (2010).

    Google Scholar 

  251. Star, A. et al. Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. Proc. Natl Acad. Sci. USA 103, 921–926 (2006).

    ADS  Google Scholar 

  252. Fonollosa, J., Rodríguez-Luján, I. & Huerta, R. Chemical gas sensor array dataset. Data Br. 3, 85–89 (2015).

    Google Scholar 

  253. Jeffrey, C. M. & Kimberly, F. S. in Advances in Chemical Sensors (ed. Wang, W.) Ch. 15 (IntechOpen, 2012).

  254. Teh, H. Y., Kempa-Liehr, A. W. & Wang, K. I. K. Sensor data quality: a systematic review. J. Big Data 7, 11 (2020).

    Google Scholar 

  255. Chen, G., Paronyan, T. M., Pigos, E. M. & Harutyunyan, A. R. Enhanced gas sensing in pristine carbon nanotubes under continuous ultraviolet light illumination. Sci. Rep. 2, 343 (2012).

    ADS  Google Scholar 

  256. Cheng, H. M. et al. Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons. Appl. Phys. Lett. 72, 3282–3284 (1998).

    ADS  Google Scholar 

  257. Yang, Y. & Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 48, 1465–1491 (2019).

    Google Scholar 

  258. Yuk, H., Lu, B. & Zhao, X. Hydrogel bioelectronics. Chem. Soc. Rev. 48, 1642–1667 (2019).

    Google Scholar 

  259. Lipomi, D. J. et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 6, 788–792 (2011).

    ADS  Google Scholar 

  260. Schroeder, V. et al. Chemiresistive sensor array and machine learning classification of food. ACS Sens. 4, 2101–2108 (2019).

    Google Scholar 

  261. Peveler, W. J., Yazdani, M. & Rotello, V. M. Selectivity and specificity: pros and cons in sensing. ACS Sens. 1, 1282–1285 (2016).

    Google Scholar 

  262. Bishop, M. D. et al. Fabrication of carbon nanotube field-effect transistors in commercial silicon manufacturing facilities. Nat. Electron. 3, 492–501 (2020). This paper describes a robust scaled-up fabrication of CNT-FETs in commercial manufacturing facilities.

    Google Scholar 

  263. Pardo, M., Sisk, B. C., Sberveglieri, G. & Lewis, N. S. Comparison of Fisher’s linear discriminant to multilayer perceptron networks in the classification of vapors using sensor array data. Sens. Actuators B Chem. 115, 647–655 (2006).

    Google Scholar 

  264. Azadmanjiri, J. et al. Two- and three-dimensional graphene-based hybrid composites for advanced energy storage and conversion devices. J. Mater. Chem. A 6, 702–734 (2018).

    Google Scholar 

  265. Kang, D., Park, N., Ko, J. H., Bae, E. & Park, W. Oxygen-induced p-type doping of a long individual single-walled carbon nanotube. Nanotechnology 16, 1048 (2005).

    ADS  Google Scholar 

  266. Yim, W.-L., Gong, X. G. & Liu, Z.-F. Chemisorption of NO2 on carbon nanotubes. J. Phys. Chem. B 107, 9363–9369 (2003).

    Google Scholar 

  267. Li, C., Thostenson, E. T. & Chou, T.-W. Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube–based composites. Appl. Phys. Lett. 91, 223114 (2007).

    ADS  Google Scholar 

  268. Lobez, J. M. & Swager, T. M. Radiation detection: resistivity responses in functional poly(olefin sulfone)/carbon nanotube composites. Angew. Chem. Int. Ed. 49, 95–98 (2010).

    Google Scholar 

  269. Peng, N., Zhang, Q., Chow, C. L., Tan, O. K. & Marzari, N. Sensing mechanisms for carbon nanotube based NH3 gas detection. Nano Lett. 9, 1626–1630 (2009).

    ADS  Google Scholar 

  270. Zhang, J., Boyd, A., Tselev, A., Paranjape, M. & Barbara, P. Mechanism of NO2 detection in carbon nanotube field effect transistor chemical sensors. Appl. Phys. Lett. 88, 123112 (2006).

    ADS  Google Scholar 

  271. Liu, X. et al. Band engineering of carbon nanotube field-effect transistors via selected area chemical gating. Appl. Phys. Lett. 86, 243501 (2005).

    ADS  Google Scholar 

  272. Zhang, M. et al. Palladium/single-walled carbon nanotube back-to-back Schottky contact-based hydrogen sensors and their sensing mechanism. ACS Appl. Mater. Interfaces 6, 319–326 (2014).

    Google Scholar 

  273. Sacco, L., Forel, S., Florea, I. & Cojocaru, C.-S. Ultra-sensitive NO2 gas sensors based on single-wall carbon nanotube field effect transistors: monitoring from ppm to ppb level. Carbon 157, 631–639 (2020).

    Google Scholar 

  274. Balasubramanian, K. & Burghard, M. Chemically functionalized carbon nanotubes. Small 1, 180–192 (2005).

    Google Scholar 

  275. Chen, Z. et al. Soluble ultra-short single-walled carbon nanotubes. J. Am. Chem. Soc. 128, 10568–10571 (2006).

    Google Scholar 

  276. Avilés, F., Cauich-Rodríguez, J. V., Moo-Tah, L., May-Pat, A. & Vargas-Coronado, R. Evaluation of mild acid oxidation treatments for MWCNT functionalization. Carbon 47, 2970–2975 (2009).

    Google Scholar 

  277. Hamwi, A., Alvergnat, H., Bonnamy, S. & Béguin, F. Fluorination of carbon nanotubes. Carbon 35, 723–728 (1997).

    Google Scholar 

  278. Żarska, S., Kulawik, D., Drabowicz, J. & Ciesielski, W. A review of procedures of purification and chemical modification of carbon nanotubes with bromine. Fuller. Nanotub. Carbon Nanostructures 25, 563–569 (2017).

    ADS  Google Scholar 

  279. Pekker, S., Salvetat, J. P., Jakab, E., Bonard, J. M. & Forró, L. Hydrogenation of carbon nanotubes and graphite in liquid ammonia. J. Phys. Chem. B 105, 7938–7943 (2001).

    Google Scholar 

  280. Khare, B. N., Meyyappan, M., Cassell, A. M., Nguyen, C. V. & Han, J. Functionalization of carbon nanotubes using atomic hydrogen from a glow discharge. Nano Lett. 2, 73–77 (2002).

    ADS  Google Scholar 

  281. Graupner, R. et al. Nucleophilic−alkylation−reoxidation: a functionalization sequence for single-wall carbon nanotubes. J. Am. Chem. Soc. 128, 6683–6689 (2006).

    Google Scholar 

  282. Wunderlich, D., Hauke, F. & Hirsch, A. Preferred functionalization of metallic and small-diameter single-walled carbon nanotubes by nucleophilic addition of organolithium and -magnesium compounds followed by reoxidation. Chem. Eur. J. 14, 1607–1614 (2008).

    Google Scholar 

  283. Syrgiannis, Z. et al. Covalent sidewall functionalization of SWNTs by nucleophilic addition of lithium amides. Eur. J. Org. Chem. 2008, 2544–2550 (2008).

    Google Scholar 

  284. He, M. & Swager, T. M. Covalent functionalization of carbon nanomaterials with iodonium salts. Chem. Mater. 28, 8542–8549 (2016).

    Google Scholar 

  285. Holzinger, M. et al. Sidewall functionalization of carbon nanotubes. Angew. Chem. Int. Ed. 40, 4002–4005 (2001).

    Google Scholar 

  286. Bahr, J. L. et al. Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts:  a bucky paper electrode. J. Am. Chem. Soc. 123, 6536–6542 (2001).

    Google Scholar 

  287. Bahr, J. L. & Tour, J. M. Highly functionalized carbon nanotubes using in situ generated diazonium compounds. Chem. Mater. 13, 3823–3824 (2001).

    Google Scholar 

  288. Wei, L. & Zhang, Y. Covalent sidewall functionalization of single-walled carbon nanotubes via one-electron reduction of benzophenone by potassium. Chem. Phys. Lett. 446, 142–144 (2007).

    ADS  Google Scholar 

  289. Luo, S.-X. L., Liu, R. Y., Lee, S. & Swager, T. M. Electrocatalytic isoxazoline–nanocarbon metal complexes. J. Am. Chem. Soc. 143, 10441–10453 (2021).

    Google Scholar 

  290. Georgakilas, V. et al. Organic functionalization of carbon nanotubes. J. Am. Chem. Soc. 124, 760–761 (2002).

    Google Scholar 

  291. Zhang, W. et al. Modular functionalization of carbon nanotubes and fullerenes. J. Am. Chem. Soc. 131, 8446–8454 (2009).

    Google Scholar 

  292. Holzinger, M. et al. Functionalization of single-walled carbon nanotubes with (R-)oxycarbonyl nitrenes. J. Am. Chem. Soc. 125, 8566–8580 (2003).

    Google Scholar 

  293. Chen, J. et al. Solution properties of single-walled carbon nanotubes. Science 282, 95–98 (1998).

    ADS  Google Scholar 

  294. Kahn, M. G. C., Banerjee, S. & Wong, S. S. Solubilization of oxidized single-walled carbon nanotubes in organic and aqueous solvents through organic derivatization. Nano Lett. 2, 1215–1218 (2002).

    ADS  Google Scholar 

  295. Wilson, H. et al. Electrical monitoring of sp3 defect formation in individual carbon nanotubes. J. Phys. Chem. C 120, 1971–1976 (2016).

    Google Scholar 

  296. Cognet, L. et al. Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions. Science 316, 1465–1468 (2007).

    ADS  Google Scholar 

  297. Piao, Y. et al. Brightening of carbon nanotube photoluminescence through the incorporation of sp3 defects. Nat. Chem. 5, 840–845 (2013).

    Google Scholar 

  298. Lee, Y.-S. & Marzari, N. Cycloaddition functionalizations to preserve or control the conductance of carbon nanotubes. Phys. Rev. Lett. 97, 116801 (2006).

    ADS  Google Scholar 

  299. Setaro, A. et al. Preserving π-conjugation in covalently functionalized carbon nanotubes for optoelectronic applications. Nat. Commun. 8, 14281 (2017).

    ADS  Google Scholar 

  300. O’Connell, M. J. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002).

    ADS  Google Scholar 

  301. Pajootan, E. & Arami, M. Structural and electrochemical characterization of carbon electrode modified by multi-walled carbon nanotubes and surfactant. Electrochim. Acta 112, 505–514 (2013).

    Google Scholar 

  302. Kruss, S. et al. Neurotransmitter detection using corona phase molecular recognition on fluorescent single-walled carbon nanotube sensors. J. Am. Chem. Soc. 136, 713–724 (2014).

    Google Scholar 

  303. Zheng, M. et al. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302, 1545–1548 (2003).

    ADS  Google Scholar 

  304. Nish, A., Hwang, J.-Y., Doig, J. & Nicholas, R. J. Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nat. Nanotechnol. 2, 640–646 (2007).

    ADS  Google Scholar 

  305. Chen, R. J., Zhang, Y., Wang, D. & Dai, H. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 123, 3838–3839 (2001).

    Google Scholar 

  306. Murakami, H., Nomura, T. & Nakashima, N. Noncovalent porphyrin-functionalized single-walled carbon nanotubes in solution and the formation of porphyrin–nanotube nanocomposites. Chem. Phys. Lett. 378, 481–485 (2003).

    ADS  Google Scholar 

  307. Kharisov, B. I., Kharissova, O. V., Ortiz Méndez, U. & De La Fuente, I. G. Decoration of carbon nanotubes with metal nanoparticles: recent trends. Syn. React. Inorg. Metaorg. Nanometal. Chem. 46, 55–76 (2016).

    Google Scholar 

  308. Abdelhalim, A., Abdellah, A., Scarpa, G. & Lugli, P. Metallic nanoparticles functionalizing carbon nanotube networks for gas sensing applications. Nanotechnology 25, 055208 (2014).

    ADS  Google Scholar 

  309. Zheng, M. et al. DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2, 338–342 (2003).

    ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Science Foundation (DMR-2207299).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Timothy M. Swager.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Christian Brückner, Takahiro Namazu, Howard Katz, Sasikumar Mayarambakam and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Matlab: https://www.mathworks.com/products/matlab.html

OriginLab: https://www.originlab.com/

Glossary

Arc discharge

A method for synthesizing carbon nanotubes through arc-vaporization of two adjacent graphite electrodes in an inert gas.

Chiral (roll-up) vector

A lattice vector in the hexagonal graphene sheet that defines the structure of a carbon nanotube by specifying the direction and distance of the rolling/wrapping of the graphene sheet.

Device hysteresis

The phenomenon in which the output of a device depends not only on its current input but also on its past inputs, resulting in a lag or variance in response.

Dosimeters

Sensors that provide an integrated measure of exposure over a time period and are ideal for applications such as monitoring cumulative exposure of an individual to toxic chemicals.

Intra-CNT interactions

Sensing mechanisms involve interactions between the analyte and individual carbon nanotubes (CNTs) or CNT bundles, which modify the number and mobility of charge carriers.

Inter-CNT interactions

Sensing mechanisms originate from the changes in the intertubular electron transfer.

Pristine CNTs

Carbon nanotubes (CNTs) in their original, unmodified state, without any functionalization or doping, often used as a baseline for comparison in sensor performance studies.

Recovery time

The time required to accomplish a 90% recovery on removal of the target analyte under the background gas or liquid.

Response time

The time needed for the sensor to achieve 90% of its maximum response.

Schottky barrier modulations

The effects on the junction between carbon nanotubes and metal electrodes to modulate the measured conductance.

Selectors

A component of a sensor system that provides specificity, enabling the sensor to distinguish between different analytes in a complex mixture.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, SX.L., Swager, T.M. Chemiresistive sensing with functionalized carbon nanotubes. Nat Rev Methods Primers 3, 73 (2023). https://doi.org/10.1038/s43586-023-00255-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-023-00255-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing