Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Natural antisense transcripts as versatile regulators of gene expression

Abstract

Long non-coding RNAs (lncRNAs) are emerging as a major class of gene products that have central roles in cell and developmental biology. Natural antisense transcripts (NATs) are an important subset of lncRNAs that are expressed from the opposite strand of protein-coding and non-coding genes and are a genome-wide phenomenon in both eukaryotes and prokaryotes. In eukaryotes, a myriad of NATs participate in regulatory pathways that affect expression of their cognate sense genes. Recent developments in the study of NATs and lncRNAs and large-scale sequencing and bioinformatics projects suggest that whether NATs regulate expression, splicing, stability or translation of the sense transcript is influenced by the pattern and degrees of overlap between the sense–antisense pair. Moreover, epigenetic gene regulatory mechanisms prevail in somatic cells whereas mechanisms dependent on the formation of double-stranded RNA intermediates are prevalent in germ cells. The modulating effects of NATs on sense transcript expression make NATs rational targets for therapeutic interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genomic architecture of bidirectionally transcribed genes.
Fig. 2: NAT-mediated gene regulation through transcriptional interference and DNA–RNA triplex formation.
Fig. 3: Co-transcriptional regulation by NATs.
Fig. 4: NATs regulate mRNA stability and can affect translation.
Fig. 5: Genome-wide effect of NATs in testis.

Similar content being viewed by others

References

  1. Mattick, J. S. et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol. 24, 430–447 (2023).

    Article  CAS  PubMed  Google Scholar 

  2. Nordström, K., Wagner, E. G. H., Persson, C., Blomberg, P. & Öhman, M. Translational control by antisense RNA in control of plasmid replication. Gene 72, 237–240 (1988).

    Article  PubMed  Google Scholar 

  3. Lipman, D. J. Making (anti)sense of non-coding sequence conservation. Nucleic Acids Res. 25, 3580–3583 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fahey, M. E., Moore, T. F. & Higgins, D. G. Overlapping antisense transcription in the human genome. Comp. Funct. Genomics 3, 244–253 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shendure, J. & Church, G. M. Computational discovery of sense-antisense transcription in the human and mouse genomes. Genome Biol. 3, RESEARCH0044 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Katayama, S. et al. Antisense transcription in the mammalian transcriptome. Science 309, 1564–1566 (2005).

    Article  PubMed  Google Scholar 

  7. Kiyosawa, H., Yamanaka, I., Osato, N., Kondo, S. & Hayashizaki, Y. Antisense transcripts with FANTOM2 clone set and their implications for gene regulation. Genome Res. 13, 1324–1334 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pillay, S., Takahashi, H., Carninci, P. & Kanhere, A. Antisense RNAs during early vertebrate development are divided in groups with distinct features. Genome Res. 31, 995–1010 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Arnold, M. & Stengel, K. R. Emerging insights into enhancer biology and function. Transcription 14, 68–87 (2023).

    Article  CAS  PubMed  Google Scholar 

  10. Barral, A. & Déjardin, J. The chromatin signatures of enhancers and their dynamic regulation. Nucleus 14, 2160551 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yamanaka, Y. et al. Antisense RNA controls LRP1 sense transcript expression through interaction with a chromatin-associated protein, HMGB2. Cell Rep. 11, 967–976 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cawley, S. et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116, 499–509 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Burd, C. E. et al. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet. 6, e1001233 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hansen, T. B. et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 30, 4414–4422 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Ma, J. et al. An antisense circular RNA circSCRIB enhances cancer progression by suppressing parental gene splicing and translation. Mol. Ther. 29, 2754–2768 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, H. et al. An antisense circular RNA regulates expression of RuBisCO small subunit genes in Arabidopsis. Front. Plant Sci. 12, 665014 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wight, M. & Werner, A. The functions of natural antisense transcripts. Essays Biochem. 54, 91–101 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vangoor, V. R., Gomes-Duarte, A. & Pasterkamp, R. J. Long non-coding RNAs in motor neuron development and disease. J. Neurochem. 156, 777–801 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Salzman, J., Gawad, C., Wang, P. L., Lacayo, N. & Brown, P. O. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7, e30733 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gonzàlez-Porta, M., Frankish, A., Rung, J., Harrow, J. & Brazma, A. Transcriptome analysis of human tissues and cell lines reveals one dominant transcript per gene. Genome Biol. 14, R70 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tung, K.-F., Pan, C.-Y., Chen, C.-H. & Lin, W.-C. Top-ranked expressed gene transcripts of human protein-coding genes investigated with GTEx dataset. Sci. Rep. 10, 16245 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gendrel, A. V. & Heard, E. Noncoding RNAs and epigenetic mechanisms during X-chromosome inactivation. Annu. Rev. Cell Dev. Biol. 30, 561–580 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Hawkins, P. G. & Morris, K. V. Transcriptional regulation of Oct4 by a long non-coding RNA antisense to Oct4-pseudogene 5. Transcription 1, 165–175 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Georg, J. & Hess, W. R. Widespread antisense transcription in Prokaryotes. Microbiol. Spect. 6, https://doi.org/10.1128/microbiolspec.RWR-0029-2018 (2018).

  26. Gunasekera, A. M. et al. Widespread distribution of antisense transcripts in the Plasmodium falciparum genome. Mol. Biochem. Parasitol. 136, 35–42 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Reis, R. S. & Poirier, Y. Making sense of the natural antisense transcript puzzle. Trends Plant. Sci. 26, 1104–1115 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Sun, M., Hurst, L. D., Carmichael, G. G. & Chen, J. Evidence for variation in abundance of antisense transcripts between multicellular animals but no relationship between antisense transcription and organismic complexity. Genome Res. 16, 922–933 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Balbin, O. A. et al. The landscape of antisense gene expression in human cancers. Genome Res. 25, 1068–1079 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Frankish, A. et al. GENCODE: reference annotation for the human and mouse genomes in 2023. Nucleic Acids Res. 51, D942–D949 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Amaral, P. et al. The status of the human gene catalogue. Nature 622, 41–47 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Engström, P. G. et al. Complex loci in human and mouse genomes. PLoS Genet. 2, e47 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  33. He, Y., Vogelstein, B., Velculescu, V. E., Papadopoulos, N. & Kinzler, K. W. The antisense transcriptomes of human cells. Science 322, 1855–1857 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ozsolak, F. et al. Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation. Cell 143, 1018–1029 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen, J. et al. Over 20% of human transcripts might form sense-antisense pairs. Nucleic Acids Res. 32, 4812–4820 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kiyosawa, H. & Abe, K. Speculations on the role of natural antisense transcripts in mammalian X chromosome evolution. Cytogenet. Genome Res. 99, 151–156 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Piatek, M. J., Henderson, V., Zynad, H. S. & Werner, A. Natural antisense transcription from a comparative perspective. Genomics 108, 56–63 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, Y., Liu, X. S., Liu, Q. R. & Wei, L. Genome-wide in silico identification and analysis of cis natural antisense transcripts (cis-NATs) in ten species. Nucleic Acids Res. 34, 3465–3475 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Werner, A., Carlile, M. & Swan, D. What do natural antisense transcripts regulate? RNA Biol. 6, 43–48 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Kim, D. S. & Hahn, Y. Human-specific antisense transcripts induced by the insertion of transposable element. Int. J. Mol. Med. 26, 151–157 (2010).

    CAS  PubMed  Google Scholar 

  41. Faulkner, G. J. et al. The regulated retrotransposon transcriptome of mammalian cells. Nat. Genet. 41, 563–571 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Honda, T. et al. Effects of activation of the LINE-1 antisense promoter on the growth of cultured cells. Sci. Rep. 10, 22136 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fan, J., Martinez-Arguelles, D. B. & Papadopoulos, V. Genome-wide expression analysis of a new class of lncRNAs driven by SINE B2. Gene 768, 145332 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Kapusta, A. et al. Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs. PLoS Genet. 9, e1003470 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Veeramachaneni, V., Makalowski, W., Galdzicki, M., Sood, R. & Makalowska, I. Mammalian overlapping genes: the comparative perspective. Genome Res. 14, 280–286 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ho, M.-R., Tsai, K.-W. & Lin, W.-C. A unified framework of overlapping genes: towards the origination and endogenic regulation. Genomics 100, 231–239 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Wood, E. J., Chin-Inmanu, K., Jia, H. & Lipovich, L. Sense-antisense gene pairs: sequence, transcription, and structure are not conserved between human and mouse. Front. Genet. 4, 183 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hezroni, H. et al. Principles of long noncoding RNA evolution derived from direct comparison of transcriptomes in 17 species. Cell Rep. 11, 1110–1122 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ling, M. H. T., Ban, Y., Wen, H., Wang, S. M. & Ge, S. X. Conserved expression of natural antisense transcripts in mammals. BMC Genomics 14, 243 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jung, J. et al. Bioinformatic analysis of regulation of natural antisense transcripts by transposable elements in human mRNA. Genomics 111, 159–166 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Gebrie, A. Transposable elements as essential elements in the control of gene expression. Mob. DNA 14, 9 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Pheasant, M. & Mattick, J. S. Raising the estimate of functional human sequences. Genome Res. 17, 1245–1253 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Liu, B. et al. The regulatory role of antisense lncRNAs in cancer. Cancer Cell Int. 21, 459 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ouyang, J. et al. Long non-coding RNAs are involved in alternative splicing and promote cancer progression. Br. J. Cancer 126, 1113–1124 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Beiter, T., Reich, E., Williams, R. W. & Simon, P. Antisense transcription: a critical look in both directions. Cell Mol. Life Sci. 66, 94–112 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Pelechano, V. & Steinmetz, L. M. Gene regulation by antisense transcription. Nat. Rev. Genet. 14, 880–893 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Goyal, A. et al. A cautionary tale of sense-antisense gene pairs: independent regulation despite inverse correlation of expression. Nucleic Acids Res. 45, 12496–12508 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tomikawa, J. et al. Single-stranded noncoding RNAs mediate local epigenetic alterations at gene promoters in rat cell lines. J. Biol. Chem. 286, 34788–34799 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Uesaka, M. et al. Bidirectional promoters are the major source of gene activation-associated non-coding RNAs in mammals. BMC Genomics 15, 35 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Prescott, E. M. & Proudfoot, N. J. Transcriptional collision between convergent genes in budding yeast. Proc. Natl Acad. Sci. USA 99, 8796–8801 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Callen, B. P., Shearwin, K. E. & Egan, J. B. Transcriptional interference between convergent promoters caused by elongation over the promoter. Mol. Cell 14, 647–656 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Johnsson, P. et al. Transcriptional kinetics and molecular functions of long noncoding RNAs. Nat. Genet. 54, 306–317 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Patel, H. P. et al. DNA supercoiling restricts the transcriptional bursting of neighboring eukaryotic genes. Mol. Cell 83, 1573–1587 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hao, N., Donnelly, A. J., Dodd, I. B. & Shearwin, K. E. When push comes to shove — RNA polymerase and DNA-bound protein roadblocks. Biophys. Rev. 15, 355–366 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shearwin, K. E., Callen, B. P. & Egan, J. B. Transcriptional interference — a crash course. Trends Genet. 21, 339–345 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Millán-Zambrano, G., Burton, A., Bannister, A. J. & Schneider, R. Histone post-translational modifications — cause and consequence of genome function. Nat. Rev. Genet. 23, 563–580 (2022).

    Article  PubMed  Google Scholar 

  67. Su, W.-Y., Xiong, H. & Fang, J.-Y. Natural antisense transcripts regulate gene expression in an epigenetic manner. Biochem. Biophys. Res. Commun. 396, 177–181 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Liu, Y. et al. The CTCF/LncRNA-PACERR complex recruits E1A binding protein p300 to induce pro-tumour macrophages in pancreatic ductal adenocarcinoma via directly regulating PTGS2 expression. Clin. Transl. Med. 12, e654 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dong, Z. et al. Aberrant hypermethylation-mediated downregulation of antisense lncRNA ZNF667-AS1 and its sense gene ZNF667 correlate with progression and prognosis of esophageal squamous cell carcinoma. Cell Death Dis. 10, 930 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kanduri, C. Functional insights into long antisense noncoding RNA Kcnq1ot1 mediated bidirectional silencing. RNA Biol. 5, 208–211 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Rose, N. R. & Klose, R. J. Understanding the relationship between DNA methylation and histone lysine methylation. Biochim. Biophys. Acta 1839, 1362–1372 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Zinad, H. S. et al. Interdependent transcription of a natural sense/antisense transcripts pair (SLC34A1/PFN3). Noncoding RNA 8, 19 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Tufarelli, C. et al. Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nat. Genet. 34, 157–165 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Heilmann, K. et al. Genome-wide screen for differentially methylated long noncoding RNAs identifies Esrp2 and lncRNA Esrp2-as regulated by enhancer DNA methylation with prognostic relevance for human breast cancer. Oncogene 36, 6446–6461 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Guéant, J. L. et al. Epimutation in inherited metabolic disorders: the influence of aberrant transcription in adjacent genes. Hum. Genet. 141, 1309–1325 (2022).

    Article  PubMed  Google Scholar 

  76. Di Ruscio, A. et al. DNMT1-interacting RNAs block gene-specific DNA methylation. Nature 503, 371–376 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ou, M., Li, X., Zhao, S., Cui, S. & Tu, J. Long non-coding RNA CDKN2B-AS1 contributes to atherosclerotic plaque formation by forming RNA-DNA triplex in the CDKN2B promoter. eBioMed 55, 102694 (2020). article.

    Article  Google Scholar 

  78. Angrand, P. O., Vennin, C., Le Bourhis, X. & Adriaenssens, E. The role of long non-coding RNAs in genome formatting and expression. Front. Genet. 6, 165 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Yap, K. L. et al. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol. Cell 38, 662–674 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Grote, P. & Herrmann, B. G. The long non-coding RNA Fendrr links epigenetic control mechanisms to gene regulatory networks in mammalian embryogenesis. RNA Biol. 10, 1579–1585 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Postepska-Igielska, A. et al. LncRNA Khps1 regulates expression of the proto-oncogene SPHK1 via triplex-mediated changes in chromatin structure. Mol. Cell 60, 626–636 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Lee, W. et al. A high-resolution atlas of nucleosome occupancy in yeast. Nat. Genet. 39, 1235–1244 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Zhou, Y., Xu, S., Zhang, M. & Wu, Q. Systematic functional characterization of antisense eRNA of protocadherin α composite enhancer. Genes Dev. 35, 1383–1394 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ling, K. H. et al. Spatiotemporal regulation of multiple overlapping sense and novel natural antisense transcripts at the Nrgn and Camk2n1 gene loci during mouse cerebral corticogenesis. Cereb. Cortex 21, 683–697 (2011).

    Article  PubMed  Google Scholar 

  85. Michael, D. R. et al. The human hyaluronan synthase 2 (HAS2) gene and its natural antisense RNA exhibit coordinated expression in the renal proximal tubular epithelial cell. J. Biol. Chem. 286, 19523–19532 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Portal, M. M., Pavet, V., Erb, C. & Gronemeyer, H. Human cells contain natural double-stranded RNAs with potential regulatory functions. Nat. Struct. Mol. Biol. 22, 89–97 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Li, D. et al. LncRNA ELF3-AS1 inhibits gastric cancer by forming a negative feedback loop with SNAI2 and regulates ELF3 mRNA stability via interacting with ILF2/ILF3 complex. J. Exp. Clin. Cancer Res. 41, 332 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Eisenberg, E. & Levanon, E. Y. A-to-I RNA editing — immune protector and transcriptome diversifier. Nat. Rev. Genet. 19, 473–490 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. Li, Q. et al. RNA editing underlies genetic risk of common inflammatory diseases. Nature 608, 569–577 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cui, L. et al. RNA modifications: importance in immune cell biology and related diseases. Sign. Transd. Targ. Ther. 7, 334 (2022).

    CAS  Google Scholar 

  91. Sadeq, S., Al-Hashimi, S., Cusack, C. M. & Werner, A. Endogenous double-stranded RNA. Noncoding RNA 7, 15 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Tam, O. H. et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453, 534–538 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Watanabe, T. et al. Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev. 20, 1732–1743 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Werner, A. et al. Contribution of natural antisense transcription to an endogenous siRNA signature in human cells. BMC Genomics 15, 19 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Napoli, S., Piccinelli, V., Mapelli, S. N., Pisignano, G. & Catapano, C. V. Natural antisense transcripts drive a regulatory cascade controlling c-MYC transcription. RNA Biol. 14, 1742–1755 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Lim, J. W. et al. DICER/AGO-dependent epigenetic silencing of D4Z4 repeats enhanced by exogenous siRNA suggests mechanisms and therapies for FSHD. Hum. Mol. Genet. 24, 4817–4828 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Song, R. et al. Male germ cells express abundant endogenous siRNAs. Proc. Natl Acad. Sci. USA 108, 13159–13164 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Werner, A. et al. Widespread formation of double-stranded RNAs in testis. Genome Res. 31, 1174–1186 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Morrissy, A. S., Griffith, M. & Marra, M. A. Extensive relationship between antisense transcription and alternative splicing in the human genome. Genome Res. 21, 1203–1212 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Munroe, S. H. & Lazar, M. A. Inhibition of c-erbA mRNA splicing by a naturally occurring antisense RNA. J. Biol. Chem. 266, 22083–22086 (1991).

    Article  CAS  PubMed  Google Scholar 

  101. Niehus, S. E. et al. Myc/Max dependent intronic long antisense noncoding RNA, EVA1A-AS, suppresses the expression of Myc/Max dependent anti-proliferating gene EVA1A in a U2 dependent manner. Sci. Rep. 9, 17319 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Su, Z., Liu, G., Zhang, B., Lin, Z. & Huang, D. Natural antisense transcript PEBP1P3 regulates the RNA expression, DNA methylation and histone modification of CD45 gene. Genes 12, 759 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Huang, G. W., Zhang, Y. L., Liao, L. D., Li, E. M. & Xu, L. Y. Natural antisense transcript TPM1-AS regulates the alternative splicing of tropomyosin I through an interaction with RNA-binding motif protein 4. Int. J. Biochem. Cell Biol. 90, 59–67 (2017).

    Article  CAS  PubMed  Google Scholar 

  104. Havens, M. A. & Hastings, M. L. Splice-switching antisense oligonucleotides as therapeutic drugs. Nucleic Acids Res. 44, 6549–6563 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Gonzalez, I. et al. A lncRNA regulates alternative splicing via establishment of a splicing-specific chromatin signature. Nat. Struct. Mol. Biol. 22, 370–376 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Shen, T. et al. Antisense transcription regulates the expression of sense gene via alternative polyadenylation. Protein Cell 9, 540–552 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Li, W. et al. Alternative cleavage and polyadenylation in spermatogenesis connects chromatin regulation with post-transcriptional control. BMC Biol. 14, 6 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Culbertson, B. et al. A sense-antisense RNA interaction promotes breast cancer metastasis via regulation of NQO1 expression. Nat. Cancer 4, 682–698 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Boulias, K. & Greer, E. L. Biological roles of adenine methylation in RNA. Nat. Rev. Genet. 24, 143–160 (2023).

    Article  CAS  PubMed  Google Scholar 

  110. Akhtar, J., Lugoboni, M. & Junion, G. m6A RNA modification in transcription regulation. Transcription 12, 266–276 (2021).

    Article  PubMed  Google Scholar 

  111. Zhang, S. et al. m6A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell 31, 591–606 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhou, L. et al. Hypoxia-induced lncRNA STEAP3-AS1 activates Wnt/β-catenin signaling to promote colorectal cancer progression by preventing m6A-mediated degradation of STEAP3 mRNA. Mol. Cancer 21, 168 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhang, Y. et al. The m6A demethylase ALKBH5-mediated upregulation of DDIT4-AS1 maintains pancreatic cancer stemness and suppresses chemosensitivity by activating the mTOR pathway. Mol. Cancer 21, 174 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mahmoudi, S. et al. Wrap53, a natural p53 antisense transcript required for p53 induction upon DNA damage. Mol. Cell 33, 462–471 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Jadaliha, M. et al. A natural antisense lncRNA controls breast cancer progression by promoting tumor suppressor gene mRNA stability. PLoS Genet. 14, e1007802 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Chen, Y. G. & Hur, S. Cellular origins of dsRNA, their recognition and consequences. Nat. Rev. Mol. Cell Biol. 23, 286–301 (2022).

    Article  CAS  PubMed  Google Scholar 

  117. Cottrell, K. A., Andrews, R. J. & Bass, B. L. The competitive landscape of the dsRNA world. Mol. Cell 84, 107–119 (2024).

    Article  CAS  PubMed  Google Scholar 

  118. Lu, Z. et al. RNA duplex map in living cells reveals higher-order transcriptome structure. Cell 165, 1267–1279 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Faghihi, M. A. et al. Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of β-secretase. Nat. Med. 14, 723–730 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Faghihi, M. A. et al. Evidence for natural antisense transcript-mediated inhibition of microRNA function. Genome Biol. 11, R56 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Denzler, R., Agarwal, V., Stefano, J., Bartel, D. P. & Stoffel, M. Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol. Cell 54, 766–776 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Thomson, D. W. & Dinger, M. E. Endogenous microRNA sponges: evidence and controversy. Nat. Rev. Genet. 17, 272–283 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Santos, F., Capela, A. M., Mateus, F., Nóbrega-Pereira, S. & de Jesus, B. B. Non-coding antisense transcripts: fine regulation of gene expression in cancer. Comput. Struct. Biotech. J. 20, 5652–5660 (2022).

    Article  CAS  Google Scholar 

  124. Maquat, L. E. Short interspersed nuclear element (SINE)-mediated post-transcriptional effects on human and mouse gene expression: SINE-UP for active duty. Philos. Trans. R. Soc. Lond. B 375, 20190344 (2020).

    Article  CAS  Google Scholar 

  125. Zucchelli, S. et al. SINEUPs: a new class of natural and synthetic antisense long non-coding RNAs that activate translation. RNA Biol. 12, 771–779 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Schein, A., Zucchelli, S., Kauppinen, S., Gustincich, S. & Carninci, P. Identification of antisense long noncoding RNAs that function as SINEUPs in human cells. Sci. Rep. 6, 33605 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Espinoza, S. et al. SINEUPs: a novel toolbox for RNA therapeutics. Essays Biochem. 65, 775–789 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Carrieri, C. et al. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491, 454–457 (2012).

    Article  CAS  PubMed  Google Scholar 

  129. Pierattini, B. et al. SINEUP non-coding RNA activity depends on specific N6-methyladenosine nucleotides. Mol. Ther. 32, 402–414 (2023).

    CAS  Google Scholar 

  130. Simone, R. et al. MIR-NATs repress MAPT translation and aid proteostasis in neurodegeneration. Nature 594, 117–123 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Chan, W. Y. et al. The complexity of antisense transcription revealed by the study of developing male germ cells. Genomics 87, 681–692 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Werner, A., Schmutzler, G., Carlile, M., Miles, C. G. & Peters, H. Expression profiling of antisense transcripts on DNA arrays. Physiol. Genomics 28, 294–300 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Soumillon, M. et al. Cellular source and mechanisms of high transcriptome complexity in the mammalian testis. Cell Rep. 3, 2179–2190 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. García-Rodríguez, A., Gosálvez, J., Agarwal, A., Roy, R. & Johnston, S. DNA damage and repair in human reproductive cells. Int. J. Mol. Sci. 20, 31 (2019).

    Article  Google Scholar 

  135. Shami, A. N. et al. Single-cell RNA sequencing of human, macaque, and mouse testes uncovers conserved and divergent features of mammalian spermatogenesis. Dev. Cell 54, 529–547 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Geisinger, A., Rodríguez-Casuriaga, R. & Benavente, R. Transcriptomics of meiosis in the male mouse. Front. Cell Dev. Biol. 9, 626020 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Braun, R. E. Packaging paternal chromosomes with protamine. Nat. Genet. 28, 10–12 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Murat, F. et al. The molecular evolution of spermatogenesis across mammals. Nature 613, 308–316 (2023).

    Article  CAS  PubMed  Google Scholar 

  139. Wright, C. J., Smith, C. W. J. & Jiggins, C. D. Alternative splicing as a source of phenotypic diversity. Nat. Rev. Genet. 23, 697–710 (2022).

    Article  CAS  PubMed  Google Scholar 

  140. Gallicchio, L., Olivares, G. H., Berry, C. W. & Fuller, M. T. Regulation and function of alternative polyadenylation in development and differentiation. RNA Biol. 20, 908–925 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Gan, H. et al. Integrative proteomic and transcriptomic analyses reveal multiple post-transcriptional regulatory mechanisms of mouse spermatogenesis. Mol. Cell Proteom. 12, 1144–1157 (2013).

    Article  CAS  Google Scholar 

  142. Lin, X. et al. Expression dynamics, relationships, and transcriptional regulations of diverse transcripts in mouse spermatogenic cells. RNA Biol. 13, 1011–1024 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Werner, A., Piatek, M. J. & Mattick, J. S. Transpositional shuffling and quality control in male germ cells to enhance evolution of complex organisms. Ann. N. Y. Acad. Sci. 1341, 156–163 (2015).

    Article  CAS  PubMed  Google Scholar 

  144. Werner, A. & Swan, D. What are natural antisense transcripts good for? Biochem. Soc. Trans. 38, 1144–1149 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Xia, B. et al. Widespread transcriptional scanning in the testis modulates gene evolution rates. Cell 180, 248–262.e21 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Wahlestedt, C. Natural antisense and noncoding RNA transcripts as potential drug targets. Drug Discov. Today 11, 503–508 (2006).

    Article  CAS  PubMed  Google Scholar 

  147. Wahlestedt, C. Targeting long non-coding RNA to therapeutically upregulate gene expression. Nat. Rev. Drug Discov. 12, 433–446 (2013).

    Article  CAS  PubMed  Google Scholar 

  148. Khorkova, O. et al. Natural antisense transcripts as drug targets. Front. Mol. Biosci. 9, 978375 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Khorkova, O., Stahl, J., Joji, A., Volmar, C.-H. & Wahlestedt, C. Amplifying gene expression with RNA-targeted therapeutics. Nat. Rev. Drug Discov. 22, 539–561 (2023).

    Article  CAS  PubMed  Google Scholar 

  150. Srinivas, T., Mathias, C., Oliveira-Mateos, C. & Guil, S. Roles of lncRNAs in brain development and pathogenesis: emerging therapeutic opportunities. Mol. Ther. 31, 1550–1561 (2023).

    Article  CAS  PubMed  Google Scholar 

  151. Padmakumar, S. et al. Minimally invasive nasal depot (MIND) technique for direct BDNF AntagoNAT delivery to the brain. J. Control. Release 331, 176–186 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Hsiao, J. et al. Upregulation of haploinsufficient gene expression in the brain by targeting a long non-coding RNA improves seizure phenotype in a model of Dravet syndrome. eBioMed 9, 257–277 (2016).

    Article  CAS  Google Scholar 

  153. Valentini, P. et al. Towards SINEUP-based therapeutics: design of an in vitro synthesized SINEUP RNA. Mol. Ther. 27, 1092–1102 (2022).

    CAS  Google Scholar 

  154. Espinoza, S. et al. SINEUP non-coding RNA targeting GDNF rescues motor deficits and neurodegeneration in a mouse model of Parkinson’s disease. Mol. Ther. 28, 642–652 (2020).

    Article  CAS  PubMed  Google Scholar 

  155. Bon, C. et al. SINEUP non-coding RNAs rescue defective frataxin expression and activity in a cellular model of Friedreich’s Ataxia. Nucleic Acids Res. 47, 10728–10743 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Hoseinpoor, R., Kazemi, B., Rajabibazl, M. & Rahimpour, A. Improving the expression of anti-IL-2Rα monoclonal antibody in the CHO cells through optimization of the expression vector and translation efficiency. J. Biotech. 324, 112–120 (2020).

    Article  CAS  Google Scholar 

  157. Carninci, P. et al. Genome-wide analysis of mammalian promoter architecture and evolution. Nat. Genet. 38, 626–635 (2006).

    Article  CAS  PubMed  Google Scholar 

  158. Statello, L., Guo, C.-J., Chen, L.-L. & Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 22, 96–118 (2021).

    Article  CAS  PubMed  Google Scholar 

  159. Canzio, D. et al. Antisense lncRNA transcription mediates DNA demethylation to drive stochastic protocadherin α promoter choice. Cell 177, 639–653 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Novačić, A. et al. Antisense non-coding transcription represses the PHO5 model gene at the level of promoter chromatin structure. PLoS Genet. 18, e1010432 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Subhash, S. et al. H3K4me2 and WDR5 enriched chromatin interacting long non-coding RNAs maintain transcriptionally competent chromatin at divergent transcriptional units. Nucleic Acids Res. 46, 9384–9400 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Somasundaram, K., Gupta, B., Jain, N. & Jana, S. LncRNAs divide and rule: the master regulators of phase separation. Front. Genet. 13, 930792 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Mattick, J. S. Enhancers are genes that express organizational RNAs. Front. RNA Res. 1, 1194526 (2023).

    Article  Google Scholar 

  164. Nevers, A. et al. Antisense transcriptional interference mediates condition-specific gene repression in budding yeast. Nucleic Acids Res. 46, 6009–6025 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Xu, Z. et al. Antisense expression increases gene expression variability and locus interdependency. Mol. Syst. Biol. 7, 468 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Li, X. & Fu, X.-D. Chromatin-associated RNAs as facilitators of functional genomic interactions. Nat. Rev. Genet. 20, 503–519 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Brennan, C. M. & Steitz, J. A. HuR and mRNA stability. Cell. Mol. Life Sci. 58, 266–277 (2001).

    Article  CAS  PubMed  Google Scholar 

  168. Zhang, L., Chen, J.-G. & Zhao, Q. Regulatory roles of Alu transcript on gene expression. Exp. Cell Res. 338, 113–118 (2015).

    Article  CAS  PubMed  Google Scholar 

  169. Weingarten-Gabbay, S. et al. Systematic discovery of cap-independent translation sequences in human and viral genomes. Science 351, aad4939 (2016).

    Article  PubMed  Google Scholar 

  170. Gan, H. et al. Dynamics of 5-hydroxymethylcytosine during mouse spermatogenesis. Nat. Commun. 4, 1995 (2013).

    Article  PubMed  Google Scholar 

  171. No authors listed. Papers presented at the EMBO/INSERM workshop on Regulation of gene expression by RNA structure and anti-messengers. Les Arcs, Savoie (France), 28 February-4 March 1988. Gene 72, 1–376 (1988).

    Google Scholar 

  172. Inouye, M. Antisense RNA: its functions and applications in gene regulation — a review. Gene 72, 25–34 (1988).

    Article  CAS  PubMed  Google Scholar 

  173. Rosenberg, U. B., Preiss, A., Seifert, E., Jäckle, H. & Knipple, D. C. Production of phenocopies by Krüppel antisense RNA injection into Drosophila embryos. Nature 313, 703–706 (1985).

    Article  CAS  PubMed  Google Scholar 

  174. McGarry, T. J. & Lindquist, S. Inhibition of heat shock protein synthesis by heat-inducible antisense RNA. Proc. Natl Acad. Sci. USA 83, 399–403 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Rothstein, S. J., Dimaio, J., Strand, M. & Rice, D. Stable and heritable inhibition of the expression of nopaline synthase in tobacco expressing antisense RNA. Proc. Natl Acad. Sci. USA 84, 8439–8443 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Constância, M., Pickard, B., Kelsey, G. & Reik, W. Imprinting mechanisms. Genome Res. 8, 881–900 (1998).

    Article  PubMed  Google Scholar 

  177. Bedford, M., Arman, E., Orr-Urtreger, A. & Lonai, P. Analysis of the Hoxd-3 gene: structure and localization of its sense and natural antisense transcripts. DNA Cell Biol. 14, 295–304 (1995).

    Article  CAS  PubMed  Google Scholar 

  178. Farrell, C. M. & Lukens, L. N. Naturally occurring antisense transcripts are present in chick embryo chondrocytes simultaneously with the down-regulation of the α1(I) collagen gene. J. Biol. Chem. 270, 3400–3408 (1995).

    Article  CAS  PubMed  Google Scholar 

  179. Khochbin, S. & Lawrence, J. J. An antisense RNA involved in p53 mRNA maturation in murine erythroleukemia cells induced to differentiate. EMBO J. 8, 4107–4114 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Adams, M. D. et al. Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252, 1651–1656 (1991).

    Article  CAS  PubMed  Google Scholar 

  181. Ni, T. et al. The prevalence and regulation of antisense transcripts in Schizosaccharomyces pombe. PLoS One 5, e15271 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Yassour, M. et al. Strand-specific RNA sequencing reveals extensive regulated long antisense transcripts that are conserved across yeast species. Genome Biol. 11, R87 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  183. van Dijk, E. L. et al. XUTs are a class of Xrn1-sensitive antisense regulatory non-coding RNA in yeast. Nature 475, 114–117 (2011).

    Article  PubMed  Google Scholar 

  184. Xu, Z. et al. Bidirectional promoters generate pervasive transcription in yeast. Nature 457, 1033–1037 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Neil, H. et al. Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature 457, 1038–1042 (2009).

    Article  CAS  PubMed  Google Scholar 

  186. Candelli, T. et al. High-resolution transcription maps reveal the widespread impact of roadblock termination in yeast. EMBO J. 37, e97490 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Roy, K., Gabunilas, J., Gillespie, A., Ngo, D. & Chanfreau, G. F. Common genomic elements promote transcriptional and DNA replication roadblocks. Genome Res. 26, 1363–1375 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Wery, M. et al. Native elongating transcript sequencing reveals global anti-correlation between sense and antisense nascent transcription in fission yeast. RNA 24, 196–208 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Akay, A. et al. Identification of functional long non-coding RNAs in C. elegans. BMC Biol. 17, 14 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Nam, J. W. & Bartel, D. P. Long noncoding RNAs in C. elegans. Genome Res. 22, 2529–2540 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Ashe, A. et al. piRNAs can trigger a multigenerational epigenetic memory in the germline of C. elegans. Cell 150, 88–99 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Shirayama, M. et al. piRNAs initiate an epigenetic memory of nonself RNA in the C. elegans germline. Cell 150, 65–77 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Makeyeva, Y. V., Shirayama, M. & Mello, C. C. Cues from mRNA splicing prevent default Argonaute silencing in C. elegans. Dev. Cell 56, 2636–2648 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Ohhata, T. et al. CCIVR facilitates comprehensive identification of cis-natural antisense transcripts with their structural characteristics and expression profiles. Sci. Rep. 12, 15525 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.W. receives support from the Northern Counties Kidney Research Fund (18.011) and the Newcastle upon Tyne Hospitals NHS Trust (NU-005589). J.S.M. is supported by SHARP Professorship grant RG193211 from the University of New South Wales Sydney. Related work in the Wahlestedt laboratory was supported in part by National Institutes of Health grants AA29924 and AG079373 and the State of Florida grant 23A17.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed to all aspects of the article.

Corresponding author

Correspondence to Andreas Werner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Tominori Kimura and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Werner, A., Kanhere, A., Wahlestedt, C. et al. Natural antisense transcripts as versatile regulators of gene expression. Nat Rev Genet (2024). https://doi.org/10.1038/s41576-024-00723-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41576-024-00723-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing