Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transcription regulation by long non-coding RNAs: mechanisms and disease relevance

Abstract

Long non-coding RNAs (lncRNAs) outnumber protein-coding transcripts, but their functions remain largely unknown. In this Review, we discuss the emerging roles of lncRNAs in the control of gene transcription. Some of the best characterized lncRNAs have essential transcription cis-regulatory functions that cannot be easily accomplished by DNA-interacting transcription factors, such as XIST, which controls X-chromosome inactivation, or imprinted lncRNAs that direct allele-specific repression. A growing number of lncRNA transcription units, including CHASERR, PVT1 and HASTER (also known as HNF1A-AS1) act as transcription-stabilizing elements that fine-tune the activity of dosage-sensitive genes that encode transcription factors. Genetic experiments have shown that defects in such transcription stabilizers often cause severe phenotypes. Other lncRNAs, such as lincRNA-p21 (also known as Trp53cor1) and Maenli (Gm29348) contribute to local activation of gene transcription, whereas distinct lncRNAs influence gene transcription in trans. We discuss findings of lncRNAs that elicit a function through either activation of their transcription, transcript elongation and processing or the lncRNA molecule itself. We also discuss emerging evidence of lncRNA involvement in human diseases, and their potential as therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of transcription activation in cis by long non-coding RNAs.
Fig. 2: Long non-coding RNAs as cis-acting transcription stabilizers.
Fig. 3: Control of X-chromosome inactivation by long non-coding RNAs.
Fig. 4: Long non-coding RNA-mediated allele-specific repression at imprinted loci.
Fig. 5: Mechanisms of transcription regulation by trans-acting long non-coding RNAs.
Fig. 6: Involvement of long non-coding RNAs in genetic diseases.

Similar content being viewed by others

References

  1. Lipshitz, H. D., Peattie, D. A. & Hogness, D. S. Novel transcripts from the ultrabithorax domain of the bithorax complex. Genes. Dev. 1, 307–322 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. Cumberledge, S., Zaratzian, A. & Sakonju, S. Characterization of two RNAs transcribed from the cis-regulatory region of the abd-A domain within the Drosophila bithorax complex. Proc. Natl Acad. Sci. USA 87, 3259–3263 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mattick, J. S. et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol. 24, 430–447 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Anderson, D. M. et al. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell 160, 595–606 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Morgado-Palacin, L. et al. The TINCR ubiquitin-like microprotein is a tumor suppressor in squamous cell carcinoma. Nat. Commun. 14, 1328 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Frankish, A. et al. GENCODE: reference annotation for the human and mouse genomes in 2023. Nucleic Acids Res. 51, D942–D949 (2023).

    Article  CAS  PubMed  Google Scholar 

  7. Gil, N. & Ulitsky, I. Regulation of gene expression by cis-acting long non-coding RNAs. Nat. Rev. Genet. 21, 102–117 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Rinn, J. L. & Chang, H. Y. Long noncoding RNAs: molecular modalities to organismal functions. Annu. Rev. Biochem. 89, 283–308 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Moran, I. et al. Human β-cell transcriptome analysis uncovers lncRNAs that are tissue-specific, dynamically regulated, and abnormally expressed in type 2 diabetes. Cell Metab. 16, 435–448 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cabili, M. N. et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes. Dev. 25, 1915–1927 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hon, C. C. et al. An atlas of human long non-coding RNAs with accurate 5′ ends. Nature 543, 199–204 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Akerman, I. et al. Human pancreatic β cell lncRNAs control cell-specific regulatory networks. Cell Metab. 25, 400–411 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dimitrova, N. et al. LincRNA-p21 activates p21 in cis to promote Polycomb target gene expression and to enforce the G1/S checkpoint. Mol. Cell 54, 777–790 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Olivero, C. E. et al. p53 activates the long noncoding RNA Pvt1b to inhibit myc and suppress tumorigenesis. Mol. Cell 77, 761–774.e8 (2020).This study identifies a p53-induced isoform of the lncRNA Pvt1, which acts in cis to suppress Myc transcription in response to stress and thus limits cellular proliferation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Winkler, L. et al. Functional elements of the cis-regulatory lincRNA-p21. Cell Rep. 39, 110687 (2022).Systematic genetic dissection of the lincRNA-p21 locus reveals that transcription initiation of lincRNA-p21 is sufficient for stimulation of p21 expression in cis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gil, N. et al. Complex regulation of Eomes levels mediated through distinct functional features of the Meteor long non-coding RNA locus. Cell Rep. 42, 112569 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Allou, L. et al. Non-coding deletions identify Maenli lncRNA as a limb-specific En1 regulator. Nature 592, 93–98 (2021).Genetically engineered mouse models reveal that transcript elongation of the lncRNA Maenli promotes En1 expression and supports limb development. This study demonstrates that a human developmental limb disorder is likely caused by a monogenic lncRNA defect.

    CAS  PubMed  Google Scholar 

  18. Elling, R. et al. Genetic models reveal cis and trans immune-regulatory activities for lincRNA-Cox2. Cell Rep. 25, 1511–1524.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Isoda, T. et al. Non-coding transcription instructs chromatin folding and compartmentalization to dictate enhancer–promoter communication and T cell fate. Cell 171, 103–119.e18 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Perry, R. B., Hezroni, H., Goldrich, M. J. & Ulitsky, I. Regulation of neuroregeneration by long noncoding RNAs. Mol. Cell 72, 553–567.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. De Santa, F. et al. A large fraction of extragenic RNA Pol II transcription sites overlap enhancers. PLoS Biol. 8, e1000384 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Andersson, R. et al. An atlas of active enhancers across human cell types and tissues. Nature 507, 455–461 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Heintzman, N. D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39, 311–318 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Paralkar, V. R. et al. Lineage and species-specific long noncoding RNAs during erythro-megakaryocytic development. Blood 123, 1927–1937 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Paralkar, V. R. et al. Unlinking an lncRNA from its associated cis element. Mol. Cell 62, 104–110 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Espinosa, J. M. Revisiting lncRNAs: how do you know yours is not an eRNA? Mol. Cell 62, 1–2 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, K. C. et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472, 120–124 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pradeepa, M. M. et al. Psip1/p52 regulates posterior Hoxa genes through activation of lncRNA Hottip. PLoS Genet. 13, e1006677 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Unfried, J. P. & Ulitsky, I. Substoichiometric action of long noncoding RNAs. Nat. Cell Biol. 24, 608–615 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Henninger, J. E. et al. RNA-mediated feedback control of transcriptional condensates. Cell 184, 207–225.e24 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Sharp, P. A., Chakraborty, A. K., Henninger, J. E. & Young, R. A. RNA in formation and regulation of transcriptional condensates. RNA 28, 52–57 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Oksuz, O. et al. Transcription factors interact with RNA to regulate genes. Mol. Cell 83, 2449–2463.e13 (2023).

    Article  CAS  PubMed  Google Scholar 

  33. Ntini, E. et al. Long ncRNA A-ROD activates its target gene DKK1 at its release from chromatin. Nat. Commun. 9, 1636 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Huarte, M. et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142, 409–419 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Groff, A. F. et al. In vivo characterization of Linc-p21 reveals functional cis-regulatory DNA elements. Cell Rep. 16, 2178–2186 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Furuhata, R. et al. LincRNA-p21 exon 1 expression correlates with Cdkn1a expression in vivo. Genes. Cell 27, 14–24 (2022).

    Article  CAS  Google Scholar 

  37. Engreitz, J. M. et al. Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature 539, 452–455 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gil, N. & Ulitsky, I. Production of spliced long noncoding RNAs specifies regions with increased enhancer activity. Cell Syst. 7, 537–547.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Haerty, W. & Ponting, C. P. Unexpected selection to retain high GC content and splicing enhancers within exons of multiexonic lncRNA loci. RNA 21, 333–346 (2015).

    Article  PubMed  Google Scholar 

  40. Schuler, A., Ghanbarian, A. T. & Hurst, L. D. Purifying selection on splice-related motifs, not expression level nor RNA folding, explains nearly all constraint on human lincRNAs. Mol. Biol. Evol. 31, 3164–3183 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tan, J. Y. & Marques, A. C. The activity of human enhancers is modulated by the splicing of their associated lncRNAs. PLoS Comput. Biol. 18, e1009722 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Canzio, D. et al. Antisense lncRNA transcription mediates DNA demethylation to drive stochastic protocadherin α promoter choice. Cell 177, 639–653.e15 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Heinz, S. et al. Transcription elongation can affect genome 3D structure. Cell 174, 1522–1536.e22 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, S., Ubelmesser, N., Barbieri, M. & Papantonis, A. Enhancer–promoter contact formation requires RNAPII and antagonizes loop extrusion. Nat. Genet. 55, 832–840 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. Banigan, E. J. et al. Transcription shapes 3D chromatin organization by interacting with loop extrusion. Proc. Natl Acad. Sci. USA 120, e2210480120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lai, F. et al. Activating RNAs associate with mediator to enhance chromatin architecture and transcription. Nature 494, 497–501 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li, W. et al. Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature 498, 516–520 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Melo, C. A. et al. eRNAs are required for p53-dependent enhancer activity and gene transcription. Mol. Cell 49, 524–535 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Orom, U. A. et al. Long noncoding RNAs with enhancer-like function in human cells. Cell 143, 46–58 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kalantari, R., Chiang, C. M. & Corey, D. R. Regulation of mammalian transcription and splicing by nuclear RNAi. Nucleic Acids Res. 44, 524–537 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Khvorova, A. Modulation of DNA transcription: the future of ASO therapeutics? Cell 185, 2011–2013 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Marasco, L. E. et al. Counteracting chromatin effects of a splicing-correcting antisense oligonucleotide improves its therapeutic efficacy in spinal muscular atrophy. Cell 185, 2057–2070.e15 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee, J. H. et al. Enhancer RNA m6A methylation facilitates transcriptional condensate formation and gene activation. Mol. Cell 81, 3368–3385.e9 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rahnamoun, H. et al. RNAs interact with BRD4 to promote enhanced chromatin engagement and transcription activation. Nat. Struct. Mol. Biol. 25, 687–697 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liang, L. et al. Complementary Alu sequences mediate enhancer–promoter selectivity. Nature 619, 868–875 (2023).

    Article  CAS  PubMed  Google Scholar 

  56. Barshad, G. et al. RNA polymerase II dynamics shape enhancer–promoter interactions. Nat. Genet. 55, 1370–1380 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dao, L. T. M. et al. Genome-wide characterization of mammalian promoters with distal enhancer functions. Nat. Genet. 49, 1073–1081 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Guttman, M. et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458, 223–227 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ulitsky, I., Shkumatava, A., Jan, C. H., Sive, H. & Bartel, D. P. Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell 147, 1537–1550 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu, N. et al. Direct promoter repression by BCL11A controls the fetal to adult hemoglobin switch. Cell 173, 430–442.e17 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pang, B., van Weerd, J. H., Hamoen, F. L. & Snyder, M. P. Identification of non-coding silencer elements and their regulation of gene expression. Nat. Rev. Mol. Cell Biol. 24, 383–395 (2023).

    Article  CAS  PubMed  Google Scholar 

  62. Maamar, H., Cabili, M. N., Rinn, J. & Raj, A. linc-HOXA1 is a noncoding RNA that represses Hoxa1 transcription in cis. Genes. Dev. 27, 1260–1271 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Su, G. et al. Enhancer architecture-dependent multilayered transcriptional regulation orchestrates RA signaling-induced early lineage differentiation of ESCs. Nucleic Acids Res. 49, 11575–11595 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yin, Y. et al. Opposing roles for the lncRNA haunt and its genomic locus in regulating HOXA gene activation during embryonic stem cell differentiation. Cell Stem Cell 16, 504–516 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Anderson, K. M. et al. Transcription of the non-coding RNA upperhand controls Hand2 expression and heart development. Nature 539, 433–436 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Han, X. et al. The lncRNA Hand2os1/Uph locus orchestrates heart development through regulation of precise expression of Hand2. Development 146, dev176198 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Ritter, N. et al. The lncRNA locus handsdown regulates cardiac gene programs and is essential for early mouse development. Dev. Cell 50, 644–657.e8 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Grote, P. et al. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev. Cell 24, 206–214 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zemmour, D., Pratama, A., Loughhead, S. M., Mathis, D. & Benoist, C. Flicr, a long noncoding RNA, modulates Foxp3 expression and autoimmunity. Proc. Natl Acad. Sci. USA 114, E3472–E3480 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Beucher, A. et al. The HASTER lncRNA promoter is a cis-acting transcriptional stabilizer of HNF1A. Nat. Cell Biol. 24, 1528–1540 (2022).This study shows that the promoter of the lncRNA HASTER ensures that levels of the transcripion factor HNF1A are maintained within a narrow homeostatic range. Haster deficiency causes abnormal HNF1A genomic occupancy and diabetes in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rom, A. et al. Regulation of CHD2 expression by the Chaserr long noncoding RNA gene is essential for viability. Nat. Commun. 10, 5092 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Bond, A. M. et al. Balanced gene regulation by an embryonic brain ncRNA is critical for adult hippocampal GABA circuitry. Nat. Neurosci. 12, 1020–1027 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Amandio, A. R., Necsulea, A., Joye, E., Mascrez, B. & Duboule, D. Hotair is dispensible for mouse development. PLoS Genet. 12, e1006232 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Cho, S. W. et al. Promoter of lncRNA gene PVT1 is a tumor-suppressor DNA boundary element. Cell 173, 1398–1412.e22 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chen, F. L. et al. The long noncoding RNA Playrr regulates Pitx2 dosage and protects against cardiac arrhythmias. Preprint at bioRxiv https://doi.org/10.1101/2022.09.20.508562 (2022).

  76. Szafranski, P., Gambin, T., Karolak, J. A., Popek, E. & Stankiewicz, P. Lung-specific distant enhancer cis regulates expression of FOXF1 and lncRNA FENDRR. Hum. Mutat. 42, 694–698 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ali, T. & Grote, P. Beyond the RNA-dependent function of lncRNA genes. eLife 9, e60583 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ghildiyal, R. et al. Loss of long noncoding RNA NXTAR in prostate cancer augments androgen receptor expression and enzalutamide resistance. Cancer Res. 82, 155–168 (2022).

    Article  CAS  PubMed  Google Scholar 

  79. Kribelbauer, J. F., Rastogi, C., Bussemaker, H. J. & Mann, R. S. Low-affinity binding sites and the transcription factor specificity paradox in eukaryotes. Annu. Rev. Cell Dev. Biol. 35, 357–379 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Golson, M. L. & Kaestner, K. H. Fox transcription factors: from development to disease. Development 143, 4558–4570 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Servitja, J. M. et al. Hnf1α (MODY3) controls tissue-specific transcriptional programs and exerts opposed effects on cell growth in pancreatic islets and liver. Mol. Cell Biol. 29, 2945–2959 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fernandez Garcia, M. et al. Structural features of transcription factors associating with nucleosome binding. Mol. Cell 75, 921–932.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  83. Huang, P. et al. Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature 475, 386–389 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Ali, T. et al. Fendrr synergizes with Wnt signalling to regulate fibrosis related genes during lung development via its RNA:dsDNA triplex element. Nucleic Acids Res. 51, 6227–6237 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Colombo, T., Farina, L., Macino, G. & Paci, P. PVT1: a rising star among oncogenic long noncoding RNAs. Biomed. Res. Int. 2015, 304208 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Tesfaye, E. et al. The p53 transcriptional response across tumor types reveals core and senescence-specific signatures modulated by long noncoding RNAs. Proc. Natl Acad. Sci. USA 118, e2025539118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kotzin, J. J. et al. The long noncoding RNA morrbid regulates CD8 T cells in response to viral infection. Proc. Natl Acad. Sci. USA 116, 11916–11925 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kotzin, J. J. et al. The long non-coding RNA morrbid regulates Bim and short-lived myeloid cell lifespan. Nature 537, 239–243 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhao, Y. et al. Natural temperature fluctuations promote COOLAIR regulation of FLC. Genes. Dev. 35, 888–898 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jegu, T., Aeby, E. & Lee, J. T. The X chromosome in space. Nat. Rev. Genet. 18, 377–389 (2017).

    Article  CAS  PubMed  Google Scholar 

  91. Deng, X., Berletch, J. B., Nguyen, D. K. & Disteche, C. M. X chromosome regulation: diverse patterns in development, tissues and disease. Nat. Rev. Genet. 15, 367–378 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Brockdorff, N., Bowness, J. S. & Wei, G. Progress toward understanding chromosome silencing by Xist RNA. Genes. Dev. 34, 733–744 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Augui, S., Nora, E. P. & Heard, E. Regulation of X-chromosome inactivation by the X-inactivation centre. Nat. Rev. Genet. 12, 429–442 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Galupa, R. & Heard, E. X-chromosome inactivation: a crossroads between chromosome architecture and gene regulation. Annu. Rev. Genet. 52, 535–566 (2018).

    Article  CAS  PubMed  Google Scholar 

  95. Furlan, G. & Galupa, R. Mechanisms of choice in X-chromosome inactivation. Cells 11, 535 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mutzel, V. & Schulz, E. G. Dosage sensing, threshold responses, and epigenetic memory: a systems biology perspective on random X-chromosome inactivation. Bioessays 42, e1900163 (2020).

    Article  PubMed  Google Scholar 

  97. Jacobson, E. C., Pandya-Jones, A. & Plath, K. A lifelong duty: how Xist maintains the inactive X chromosome. Curr. Opin. Genet. Dev. 75, 101927 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. van Bemmel, J. G. et al. The bipartite TAD organization of the X-inactivation center ensures opposing developmental regulation of Tsix and Xist. Nat. Genet. 51, 1024–1034 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Gjaltema, R. A. F. et al. Distal and proximal cis-regulatory elements sense X chromosome dosage and developmental state at the Xist locus. Mol. Cell 82, 190–208.e17 (2022).

    Article  CAS  PubMed  Google Scholar 

  100. Rosspopoff, O. et al. Species-specific regulation of XIST by the JPX/FTX orthologs. Nucleic Acids Res. 51, 2177–2194 (2023).Functional similarities and differences between the human and mouse lncRNAs orthologues JPX and Jpx and FTX and Ftx highlight the complementary roles of lncRNA transcription and the mature lncRNAs in XCI.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Quesada-Espinosa, J. F. et al. First female with Allan–Herndon–Dudley syndrome and partial deletion of X-inactivation center. Neurogenetics 22, 343–346 (2021).

    Article  CAS  PubMed  Google Scholar 

  102. Sun, S. et al. Jpx RNA activates Xist by evicting CTCF. Cell 153, 1537–1551 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Loda, A., Collombet, S. & Heard, E. Gene regulation in time and space during X-chromosome inactivation. Nat. Rev. Mol. Cell Biol. 23, 231–249 (2022).

    Article  CAS  PubMed  Google Scholar 

  104. Ogawa, Y. & Lee, J. T. Xite, X-inactivation intergenic transcription elements that regulate the probability of choice. Mol. Cell 11, 731–743 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Galupa, R. et al. A conserved noncoding locus regulates random monoallelic xist expression across a topological boundary. Mol. Cell 77, 352–367.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lee, J. T. & Lu, N. Targeted mutagenesis of Tsix leads to nonrandom X inactivation. Cell 99, 47–57 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Wutz, A. & Jaenisch, R. A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. Mol. Cell 5, 695–705 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Lee, J. T., Strauss, W. M., Dausman, J. A. & Jaenisch, R. A 450 kb transgene displays properties of the mammalian X-inactivation center. Cell 86, 83–94 (1996).

    Article  CAS  PubMed  Google Scholar 

  109. Chu, C. et al. Systematic discovery of Xist RNA binding proteins. Cell 161, 404–416 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Markaki, Y. et al. Xist nucleates local protein gradients to propagate silencing across the X chromosome. Cell 184, 6212 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. McHugh, C. A. et al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521, 232–236 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Minajigi, A. et al. A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation. Science 349, aab2276 (2015).

    Article  PubMed  Google Scholar 

  113. Raposo, A. C., Casanova, M., Gendrel, A. V. & da Rocha, S. T. The tandem repeat modules of Xist lncRNA: a Swiss army knife for the control of X-chromosome inactivation. Biochem. Soc. Trans. 49, 2549–2560 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Carter, A. C. et al. Spen links RNA-mediated endogenous retrovirus silencing and X chromosome inactivation. eLife 9, e54508 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Dossin, F. et al. SPEN integrates transcriptional and epigenetic control of X-inactivation. Nature 578, 455–460 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Jachowicz, J. W. et al. Xist spatially amplifies SHARP/SPEN recruitment to balance chromosome-wide silencing and specificity to the X chromosome. Nat. Struct. Mol. Biol. 29, 239–249 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zylicz, J. J. et al. The implication of early chromatin changes in X chromosome inactivation. Cell 176, 182–197.e23 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bousard, A. et al. The role of Xist-mediated Polycomb recruitment in the initiation of X-chromosome inactivation. EMBO Rep. 20, e48019 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Jansz, N. et al. Smchd1 targeting to the inactive X is dependent on the Xist–HnrnpK–PRC1 pathway. Cell Rep. 25, 1912–1923.e9 (2018).

    Article  CAS  PubMed  Google Scholar 

  120. Pintacuda, G. et al. hnRNPK recruits PCGF3/5–PRC1 to the Xist RNA B-repeat to establish polycomb-mediated chromosomal silencing. Mol. Cell 68, 955–969.e10 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wang, C. Y., Colognori, D., Sunwoo, H., Wang, D. & Lee, J. T. PRC1 collaborates with SMCHD1 to fold the X-chromosome and spread Xist RNA between chromosome compartments. Nat. Commun. 10, 2950 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Wang, C. Y., Jegu, T., Chu, H. P., Oh, H. J. & Lee, J. T. SMCHD1 merges chromosome compartments and assists formation of super-structures on the inactive X. Cell 174, 406–421.e25 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Colognori, D., Sunwoo, H., Wang, D., Wang, C. Y. & Lee, J. T. Xist repeats A and B account for two distinct phases of X inactivation establishment. Dev. Cell 54, 21–32.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Pandya-Jones, A. et al. A protein assembly mediates Xist localization and gene silencing. Nature 587, 145–151 (2020).Assembly of multiple RNA-binding proteins on Xist E-repeats promotes homotypic and heterotypic interactions that result in the formation of a condensate, which is essential for gene silencing. Once formed, this condensate can sustain XCI in absence of Xist.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sunwoo, H., Colognori, D., Froberg, J. E., Jeon, Y. & Lee, J. T. Repeat E anchors Xist RNA to the inactive X chromosomal compartment through CDKN1A-interacting protein (CIZ1). Proc. Natl Acad. Sci. USA 114, 10654–10659 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Strehle, M. & Guttman, M. Xist drives spatial compartmentalization of DNA and protein to orchestrate initiation and maintenance of X inactivation. Curr. Opin. Cell Biol. 64, 139–147 (2020).

    Article  CAS  PubMed  Google Scholar 

  127. de Napoles, M. et al. Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev. Cell 7, 663–676 (2004).

    Article  PubMed  Google Scholar 

  128. Sun, B. K., Deaton, A. M. & Lee, J. T. A transient heterochromatic state in Xist preempts X inactivation choice without RNA stabilization. Mol. Cell 21, 617–628 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Zhao, J., Sun, B. K., Erwin, J. A., Song, J. J. & Lee, J. T. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322, 750–756 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Engreitz, J. M. et al. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341, 1237973 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Simon, M. D. et al. High-resolution Xist binding maps reveal two-step spreading during X-chromosome inactivation. Nature 504, 465–469 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Tucci, V., Isles, A. R., Kelsey, G., Ferguson-Smith, A. C. & Erice Imprinting, G. Genomic imprinting and physiological processes in mammals. Cell 176, 952–965 (2019).

    Article  CAS  PubMed  Google Scholar 

  133. Barlow, D. P. & Bartolomei, M. S. Genomic imprinting in mammals. Cold Spring Harb. Perspect. Biol. 6, a018382 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Guenzl, P. M. & Barlow, D. P. Macro lncRNAs: a new layer of cis-regulatory information in the mammalian genome. RNA Biol. 9, 731–741 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Latos, P. A. & Barlow, D. P. Regulation of imprinted expression by macro non-coding RNAs. RNA Biol. 6, 100–106 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Kota, S. K. et al. ICR noncoding RNA expression controls imprinting and DNA replication at the Dlk1–Dio3 domain. Dev. Cell 31, 19–33 (2014).

    Article  CAS  PubMed  Google Scholar 

  137. Schertzer, M. D. et al. lncRNA-induced spread of Polycomb controlled by genome architecture, RNA abundance, and CpG island DNA. Mol. Cell 75, 523–537.e10 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Seidl, C. I., Stricker, S. H. & Barlow, D. P. The imprinted Air ncRNA is an atypical RNAPII transcript that evades splicing and escapes nuclear export. EMBO J. 25, 3565–3575 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Terranova, R. et al. Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos. Dev. Cell 15, 668–679 (2008).

    Article  CAS  PubMed  Google Scholar 

  140. Tibbit, C. J. et al. Antisense activity across the Nesp promoter is required for Nespas-mediated silencing in the imprinted Gnas cluster. Noncoding RNA 1, 246–265 (2015).

    PubMed  PubMed Central  Google Scholar 

  141. Quinodoz, S. A. et al. RNA promotes the formation of spatial compartments in the nucleus. Cell 184, 5775–5790.e30 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. MacDonald, W. A. & Mann, M. R. W. Long noncoding RNA functionality in imprinted domain regulation. PLoS Genet. 16, e1008930 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Pauler, F. M., Koerner, M. V. & Barlow, D. P. Silencing by imprinted noncoding RNAs: is transcription the answer? Trends Genet. 23, 284–292 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hao, N., Palmer, A. C., Dodd, I. B. & Shearwin, K. E. Directing traffic on DNA — how transcription factors relieve or induce transcriptional interference. Transcription 8, 120–125 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Andergassen, D. et al. The Airn lncRNA does not require any DNA elements within its locus to silence distant imprinted genes. PLoS Genet. 15, e1008268 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Latos, P. A. et al. Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing. Science 338, 1469–1472 (2012).

    Article  CAS  PubMed  Google Scholar 

  147. Santoro, F. et al. Imprinted Igf2r silencing depends on continuous Airn lncRNA expression and is not restricted to a developmental window. Development 140, 1184–1195 (2013).

    Article  CAS  PubMed  Google Scholar 

  148. Sleutels, F., Zwart, R. & Barlow, D. P. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 415, 810–813 (2002).

    Article  CAS  PubMed  Google Scholar 

  149. Golding, M. C. et al. Depletion of Kcnq1ot1 non-coding RNA does not affect imprinting maintenance in stem cells. Development 138, 3667–3678 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Mancini-Dinardo, D., Steele, S. J., Levorse, J. M., Ingram, R. S. & Tilghman, S. M. Elongation of the Kcnq1ot1 transcript is required for genomic imprinting of neighboring genes. Genes. Dev. 20, 1268–1282 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Meng, L., Person, R. E. & Beaudet, A. L. Ube3a-ATS is an atypical RNA polymerase II transcript that represses the paternal expression of Ube3a. Hum. Mol. Genet. 21, 3001–3012 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Meng, L. et al. Truncation of Ube3a-ATS unsilences paternal Ube3a and ameliorates behavioral defects in the Angelman syndrome mouse model. PLoS Genet. 9, e1004039 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Meng, L. et al. Towards a therapy for Angelman syndrome by targeting a long non-coding RNA. Nature 518, 409–412 (2015).

    Article  CAS  PubMed  Google Scholar 

  154. Katayama, S. et al. Antisense transcription in the mammalian transcriptome. Science 309, 1564–1566 (2005).

    Article  PubMed  Google Scholar 

  155. Lewis, A. et al. Epigenetic dynamics of the Kcnq1 imprinted domain in the early embryo. Development 133, 4203–4210 (2006).

    Article  CAS  PubMed  Google Scholar 

  156. Lewis, A. et al. Imprinting on distal chromosome 7 in the placenta involves repressive histone methylation independent of DNA methylation. Nat. Genet. 36, 1291–1295 (2004).

    Article  CAS  PubMed  Google Scholar 

  157. Mohammad, F., Mondal, T., Guseva, N., Pandey, G. K. & Kanduri, C. Kcnq1ot1 noncoding RNA mediates transcriptional gene silencing by interacting with Dnmt1. Development 137, 2493–2499 (2010).

    Article  CAS  PubMed  Google Scholar 

  158. Nagano, T. et al. The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science 322, 1717–1720 (2008).

    Article  CAS  PubMed  Google Scholar 

  159. Pandey, R. R. et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol. Cell 32, 232–246 (2008).

    Article  CAS  PubMed  Google Scholar 

  160. Redrup, L. et al. The long noncoding RNA Kcnq1ot1 organises a lineage-specific nuclear domain for epigenetic gene silencing. Development 136, 525–530 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Umlauf, D. et al. Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes. Nat. Genet. 36, 1296–1300 (2004).

    Article  CAS  PubMed  Google Scholar 

  162. Wagschal, A. et al. G9a histone methyltransferase contributes to imprinting in the mouse placenta. Mol. Cell Biol. 28, 1104–1113 (2008).

    Article  CAS  PubMed  Google Scholar 

  163. Braceros, A. K. et al. Proximity-dependent recruitment of Polycomb repressive complexes by the lncRNA Airn. Cell Rep. 42, 112803 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Long, Y. et al. RNA is essential for PRC2 chromatin occupancy and function in human pluripotent stem cells. Nat. Genet. 52, 931–938 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Lleres, D. et al. CTCF modulates allele-specific sub-TAD organization and imprinted gene activity at the mouse Dlk1–Dio3 and Igf2–H19 domains. Genome Biol. 20, 272 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Hansen, A. S. et al. Distinct classes of chromatin loops revealed by deletion of an RNA-binding region in CTCF. Mol. Cell 76, 395–411.e13 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Saldana-Meyer, R. et al. RNA interactions are essential for CTCF-mediated genome organization. Mol. Cell 76, 412–422.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kurukuti, S. et al. CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. Proc. Natl Acad. Sci. USA 103, 10684–10689 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Murrell, A., Heeson, S. & Reik, W. Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. Nat. Genet. 36, 889–893 (2004).

    Article  CAS  PubMed  Google Scholar 

  170. Kopp, F. & Mendell, J. T. Functional classification and experimental dissection of long noncoding RNAs. Cell 172, 393–407 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Rinn, J. L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 1311–1323 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Li, L. et al. Targeted disruption of Hotair leads to homeotic transformation and gene derepression. Cell Rep. 5, 3–12 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Davidovich, C. et al. Toward a consensus on the binding specificity and promiscuity of PRC2 for RNA. Mol. Cell 57, 552–558 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Schorderet, P. & Duboule, D. Structural and functional differences in the long non-coding RNA hotair in mouse and human. PLoS Genet. 7, e1002071 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Selleri, L. et al. A hox-embedded long noncoding RNA: is it all hot air? PLoS Genet. 12, e1006485 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Smith, K. P., Hall, L. L. & Lawrence, J. B. Nuclear hubs built on RNAs and clustered organization of the genome. Curr. Opin. Cell Biol. 64, 67–76 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Hutchinson, J. N. et al. A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics 8, 39 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  178. West, J. A. et al. The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol. Cell 55, 791–802 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Ballarino, M. et al. Deficiency in the nuclear long noncoding RNA charme causes myogenic defects and heart remodeling in mice. EMBO J. 37, e99697 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Desideri, F. et al. Intronic determinants coordinate charme lncRNA nuclear activity through the interaction with MATR3 and PTBP1. Cell Rep. 33, 108548 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Taliani, V. et al. The long noncoding RNA Charme supervises cardiomyocyte maturation by controlling cell differentiation programs in the developing heart. eLife 12, e81360 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Daneshvar, K. et al. lncRNA DIGIT and BRD3 protein form phase-separated condensates to regulate endoderm differentiation. Nat. Cell Biol. 22, 1211–1222 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Chang, K. C. et al. MaTAR25 lncRNA regulates the Tensin1 gene to impact breast cancer progression. Nat. Commun. 11, 6438 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Creamer, K. M., Kolpa, H. J. & Lawrence, J. B. Nascent RNA scaffolds contribute to chromosome territory architecture and counter chromatin compaction. Mol. Cell 81, 3509–3525.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Mele, M. & Rinn, J. L. “Cat’s cradling” the 3D genome by the act of lncRNA transcription. Mol. Cell 62, 657–664 (2016).

    Article  CAS  PubMed  Google Scholar 

  186. Andergassen, D. et al. In vivo firre and Dxz4 deletion elucidates roles for autosomal gene regulation. eLife 8, e47214 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Hacisuleyman, E. et al. Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre. Nat. Struct. Mol. Biol. 21, 198–206 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Blank-Giwojna, A., Postepska-Igielska, A. & Grummt, I. lncRNA KHPS1 activates a poised enhancer by triplex-dependent recruitment of epigenomic regulators. Cell Rep. 26, 2904–2915.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  189. Postepska-Igielska, A. et al. lncRNA Khps1 regulates expression of the proto-oncogene SPHK1 via triplex-mediated changes in chromatin structure. Mol. Cell 60, 626–636 (2015).

    Article  CAS  PubMed  Google Scholar 

  190. O’Leary, V. B. et al. PARTICLE, a triplex-forming long ncRNA, regulates locus-specific methylation in response to low-dose irradiation. Cell Rep. 11, 474–485 (2015).

    Article  PubMed  Google Scholar 

  191. Grote, P. & Herrmann, B. G. The long non-coding RNA Fendrr links epigenetic control mechanisms to gene regulatory networks in mammalian embryogenesis. RNA Biol. 10, 1579–1585 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Kalwa, M. et al. The lncRNA HOTAIR impacts on mesenchymal stem cells via triple helix formation. Nucleic Acids Res. 44, 10631–10643 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Leisegang, M. S. et al. HIF1α-AS1 is a DNA:DNA:RNA triplex-forming lncRNA interacting with the HUSH complex. Nat. Commun. 13, 6563 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Trembinski, D. J. et al. Aging-regulated anti-apoptotic long non-coding RNA Sarrah augments recovery from acute myocardial infarction. Nat. Commun. 11, 2039 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Zhang, X. et al. KCNQ1OT1 promotes genome-wide transposon repression by guiding RNA-DNA triplexes and HP1 binding. Nat. Cell Biol. 24, 1617–1629 (2022).

    Article  CAS  PubMed  Google Scholar 

  196. Uroda, T. et al. Conserved pseudoknots in lncRNA MEG3 are essential for stimulation of the p53 pathway. Mol. Cell 75, 982–995.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Mondal, T. et al. MEG3 long noncoding RNA regulates the TGF-β pathway genes through formation of RNA–DNA triplex structures. Nat. Commun. 6, 7743 (2015).

    Article  CAS  PubMed  Google Scholar 

  198. Ariel, F. et al. Noncoding transcription by alternative RNA polymerases dynamically regulates an auxin-driven chromatin loop. Mol. Cell 55, 383–396 (2014).

    Article  CAS  PubMed  Google Scholar 

  199. Ariel, F. et al. R-loop mediated trans action of the APOLO long noncoding RNA. Mol. Cell 77, 1055–1065.e4 (2020).

    Article  CAS  PubMed  Google Scholar 

  200. Szafranski, P. et al. Small noncoding differentially methylated copy-number variants, including lncRNA genes, cause a lethal lung developmental disorder. Genome Res. 23, 23–33 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Sauvageau, M. et al. Multiple knockout mouse models reveal lincRNAs are required for life and brain development. eLife 2, e01749 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  202. van Dijk, M. et al. HELLP babies link a novel lincRNA to the trophoblast cell cycle. J. Clin. Invest. 122, 4003–4011 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Kvon, E. Z., Waymack, R., Gad, M. & Wunderlich, Z. Enhancer redundancy in development and disease. Nat. Rev. Genet. 22, 324–336 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Miguel-Escalada, I. et al. Pancreas agenesis mutations disrupt a lead enhancer controlling a developmental enhancer cluster. Dev. Cell 57, 1922–1936.e9 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Osterwalder, M. et al. Enhancer redundancy provides phenotypic robustness in mammalian development. Nature 554, 239–243 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Chenier, S. et al. CHD2 haploinsufficiency is associated with developmental delay, intellectual disability, epilepsy and neurobehavioural problems. J. Neurodev. Disord. 6, 9 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Cohen, A. S. A. et al. Haploinsufficiency of the basic helix–loop–helix transcription factor HAND2 causes congenital heart defects. Am. J. Med. Genet. A 182, 1263–1267 (2020).

    Article  CAS  PubMed  Google Scholar 

  208. Dirkx, E. et al. Nfat and miR-25 cooperate to reactivate the transcription factor Hand2 in heart failure. Nat. Cell Biol. 15, 1282–1293 (2013).

    Article  CAS  PubMed  Google Scholar 

  209. Tamura, M. et al. Overdosage of Hand2 causes limb and heart defects in the human chromosomal disorder partial trisomy distal 4q. Hum. Mol. Genet. 22, 2471–2481 (2013).

    Article  CAS  PubMed  Google Scholar 

  210. Yamagata, K. et al. Mutations in the hepatocyte nuclear factor-1α gene in maturity-onset diabetes of the young (MODY3). Nature 384, 455–458 (1996).

    Article  CAS  PubMed  Google Scholar 

  211. Luco, R. F. et al. A conditional model reveals that induction of hepatocyte nuclear factor-1α in Hnf1α-null mutant β-cells can activate silenced genes postnatally, whereas overexpression is deleterious. Diabetes 55, 2202–2211 (2006).

    Article  CAS  PubMed  Google Scholar 

  212. Gage, P. J., Suh, H. & Camper, S. A. Dosage requirement of Pitx2 for development of multiple organs. Development 126, 4643–4651 (1999).

    Article  CAS  PubMed  Google Scholar 

  213. Tumer, Z. & Bach-Holm, D. Axenfeld–Rieger syndrome and spectrum of PITX2 and FOXC1 mutations. Eur. J. Hum. Genet. 17, 1527–1539 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Cole, M. D. The myc oncogene: its role in transformation and differentiation. Annu. Rev. Genet. 20, 361–384 (1986).

    Article  CAS  PubMed  Google Scholar 

  215. George, M. R. et al. Minimal in vivo requirements for developmentally regulated cardiac long intergenic non-coding RNAs. Development 146, dev185314 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Atla, G. et al. Genetic regulation of RNA splicing in human pancreatic islets. Genome Biol. 23, 196 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Holdt, L. M. & Teupser, D. Long noncoding RNA ANRIL: lnc-ing genetic variation at the chromosome 9p21 locus to molecular mechanisms of atherosclerosis. Front. Cardiovasc. Med. 5, 145 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. de Goede, O. M. et al. Population-scale tissue transcriptomics maps long non-coding RNAs to complex disease. Cell 184, 2633–2648.e19 (2021).Identification of numerous lncRNAs as candidate mediators of genetic association signals that underly susceptibility for prevalent human diseases.

    Article  PubMed  PubMed Central  Google Scholar 

  219. Cory, S., Graham, M., Webb, E., Corcoran, L. & Adams, J. M. Variant (6;15) translocations in murine plasmacytomas involve a chromosome 15 locus at least 72 kb from the c-myc oncogene. EMBO J. 4, 675–681 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Graham, M., Adams, J. M. & Cory, S. Murine T lymphomas with retroviral inserts in the chromosomal 15 locus for plasmacytoma variant translocations. Nature 314, 740–743 (1985).

    Article  CAS  PubMed  Google Scholar 

  221. Hu, X. et al. A functional genomic approach identifies FAL1 as an oncogenic long noncoding RNA that associates with BMI1 and represses p21 expression in cancer. Cancer Cell 26, 344–357 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Leucci, E. et al. Melanoma addiction to the long non-coding RNA SAMMSON. Nature 531, 518–522 (2016).

    Article  CAS  PubMed  Google Scholar 

  223. Hoadley, K. A. et al. Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell 173, 291–304.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Olivero, C. E. & Dimitrova, N. Identification and characterization of functional long noncoding RNAs in cancer. FASEB J. 34, 15360–15646 (2020).

    Article  Google Scholar 

  225. Hilton, L. K. et al. The double-hit signature identifies double-hit diffuse large B-cell lymphoma with genetic events cryptic to FISH. Blood 134, 1528–1532 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Gutschner, T., Hammerle, M. & Diederichs, S. MALAT1 — a paradigm for long noncoding RNA function in cancer. J. Mol. Med. 91, 791–801 (2013).

    Article  CAS  PubMed  Google Scholar 

  227. Gupta, R. A. et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464, 1071–1076 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Martinez-Terroba, E. et al. Overexpressed malat1 drives metastasis through inflammatory reprogramming of lung adenocarcinoma microenvironment. Preprint at bioRxiv https://doi.org/10.1101/2023.03.20.533534 (2023).

  229. Hibi, K. et al. Loss of H19 imprinting in esophageal cancer. Cancer Res. 56, 480–482 (1996).

    CAS  PubMed  Google Scholar 

  230. Kondo, M. et al. Frequent loss of imprinting of the H19 gene is often associated with its overexpression in human lung cancers. Oncogene 10, 1193–1198 (1995).

    CAS  PubMed  Google Scholar 

  231. Rainier, S. et al. Relaxation of imprinted genes in human cancer. Nature 362, 747–749 (1993).

    Article  CAS  PubMed  Google Scholar 

  232. Tseng, Y. Y. & Bagchi, A. The PVT1–MYC duet in cancer. Mol. Cell Oncol. 2, e974467 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Cai, Z. et al. Targeting bim via a lncRNA morrbid regulates the survival of preleukemic and leukemic cells. Cell Rep. 31, 107816 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Cai, Z. et al. Role of lncRNA Morrbid in PTPN11(Shp2)E76K-driven juvenile myelomonocytic leukemia. Blood Adv. 4, 3246–3251 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Huang, Y. et al. The role of lincRNA-p21 in regulating the biology of cancer cells. Hum. Cell 35, 1640–1649 (2022).

    Article  CAS  PubMed  Google Scholar 

  236. Borensztein, M. et al. Xist-dependent imprinted X inactivation and the early developmental consequences of its failure. Nat. Struct. Mol. Biol. 24, 226–233 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Marahrens, Y., Panning, B., Dausman, J., Strauss, W. & Jaenisch, R. Xist-deficient mice are defective in dosage compensation but not spermatogenesis. Genes. Dev. 11, 156–166 (1997).

    Article  CAS  PubMed  Google Scholar 

  238. Takagi, N. & Abe, K. Detrimental effects of two active X chromosomes on early mouse development. Development 109, 189–201 (1990).

    Article  CAS  PubMed  Google Scholar 

  239. Yang, L., Yildirim, E., Kirby, J. E., Press, W. & Lee, J. T. Widespread organ tolerance to Xist loss and X reactivation except under chronic stress in the gut. Proc. Natl Acad. Sci. USA 117, 4262–4272 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Yildirim, E. et al. Xist RNA is a potent suppressor of hematologic cancer in mice. Cell 152, 727–742 (2013).

    Article  CAS  PubMed  Google Scholar 

  241. Syrett, C. M. et al. Loss of Xist RNA from the inactive X during B cell development is restored in a dynamic YY1-dependent two-step process in activated B cells. PLoS Genet. 13, e1007050 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Spaziano, A. & Cantone, I. X-chromosome reactivation: a concise review. Biochem. Soc. Trans. 49, 2797–2805 (2021).

    Article  CAS  PubMed  Google Scholar 

  243. Syrett, C. M. et al. Altered X-chromosome inactivation in T cells may promote sex-biased autoimmune diseases. JCI Insight 4, e12671 (2019).Findings in mouse and human suggesting that XIST dysregulation and abnormal X- chromosome inactivation in T cells underlie the increased prevalence of systemic lupus erythematosus in women.

    Article  Google Scholar 

  244. Wang, J. et al. Unusual maintenance of X chromosome inactivation predisposes female lymphocytes for increased expression from the inactive X. Proc. Natl Acad. Sci. USA 113, E2029–E2038 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Yu, B. et al. B cell-specific XIST complex enforces X-inactivation and restrains atypical B cells. Cell 184, 1790–1803.e17 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Dou, D. R. et al. XIST ribonucleoproteins promote female sex-biased autoimmunity. Preprint at bioRxiv https://doi.org/10.1101/2022.11.05.515306 (2022).

  247. Li, Y. et al. A noncoding RNA modulator potentiates phenylalanine metabolism in mice. Science 373, 662–673 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Dindot, S. V. et al. An ASO therapy for Angelman syndrome that targets an evolutionarily conserved region at the start of the UBE3A-AS transcript. Sci. Transl. Med. 15, eabf4077 (2023).

    Article  CAS  PubMed  Google Scholar 

  249. Wolter, J. M. et al. Cas9 gene therapy for Angelman syndrome traps Ube3a-ATS long non-coding RNA. Nature 587, 281–284 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Jiang, J. et al. Translating dosage compensation to trisomy 21. Nature 500, 296–300 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Abulwerdi, F. A. et al. Selective small-molecule targeting of a triple helix encoded by the long noncoding RNA, MALAT1. ACS Chem. Biol. 14, 223–235 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Donlic, A., Zafferani, M., Padroni, G., Puri, M. & Hargrove, A. E. Regulation of MALAT1 triple helix stability and in vitro degradation by diphenylfurans. Nucleic Acids Res. 48, 7653–7664 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Zafferani, M. et al. Multiassay profiling of a focused small molecule library reveals predictive bidirectional modulation of the lncRNA MALAT1 triplex stability in vitro. ACS Chem. Biol. 17, 2437–2447 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Aguilar, R. et al. Targeting Xist with compounds that disrupt RNA structure and X inactivation. Nature 604, 160–166 (2022).

    Article  CAS  PubMed  Google Scholar 

  255. Rosa, S., Duncan, S. & Dean, C. Mutually exclusive sense-antisense transcription at FLC facilitates environmentally induced gene repression. Nat. Commun. 7, 13031 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Li, P., Tao, Z. & Dean, C. Phenotypic evolution through variation in splicing of the noncoding RNA COOLAIR. Genes. Dev. 29, 696–701 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Wu, Z., Fang, X., Zhu, D. & Dean, C. Autonomous pathway: flowering locus C repression through an antisense-mediated chromatin-silencing mechanism. Plant. Physiol. 182, 27–37 (2020).

    Article  CAS  PubMed  Google Scholar 

  258. Yang, M. et al. In vivo single-molecule analysis reveals COOLAIR RNA structural diversity. Nature 609, 394–399 (2022).Temperature-dependent structural alterations in the lncRNA COOLAIR underly its role as a transcription repressive switch during seasonal transition in plants.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Sun, Q., Csorba, T., Skourti-Stathaki, K., Proudfoot, N. J. & Dean, C. R-loop stabilization represses antisense transcription at the Arabidopsis FLC locus. Science 340, 619–621 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank T. Graff, M. Cuenca-Ardura and B. Payer for critical reading of this manuscript. This work was supported by European Research Council (789055) and Spanish Ministry of Science and Innovation (PID2021-122522OB-I00) grants to J.F., and by National Institute of Health (R01CA262286 and R37CA230580) grants to N.D.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Jorge Ferrer or Nadya Dimitrova.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Takayuki Nojima, Igor Ulitsky and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

CpG islands

Genomic regions of 500 nucleotides or longer with >50% CpG dinucleotide repeat content. CpG islands are associated with the transcription start sites of most housekeeping genes and as many as 40% of tissue-specific genes; they are bound by regulatory proteins.

CTCF

A zinc-finger transcription factor (TF), also known as CCCTC-binding factor, that binds specific DNA sequences and participates in the formation of chromatin loops that influence gene transcription by defining the boundaries of topologically associated domains (TADs) and bringing enhancers into proximity with promoters.

DNA–DNA–RNA triplex

A structure in which single-stranded RNA invades the major groove of double-stranded DNA and binds by forming Hoogsteen hydrogen bonds. DNA–DNA–lncRNA triplexes can be identified by pull-downs with a triplex-specific antibody.

Enhancer RNAs

(eRNAs). Non-coding RNAs that are bidirectionally transcribed from enhancer regions, and are typically ≤500 nucleotides and unstable (half-life ≤ 2 min).

Enhancers

Genomic regions that are recognized by transcription factors (TFs) and activate and increase the transcription of genes in cis, sometimes from considerable distances. Active enhancers are flanked by nucleosomes that carry post-translational histone modifications such as histone H3 acetylated at lysine 27 (H3K27ac) and H3 methylated at lysine 4 (H3K4me1).

Expression quantitative trait loci

(eQTL). Genetic loci in which different alleles of a DNA variant influence expression levels of coding or non-coding transcripts.

Focal deletions

Cancer-associated genomic deletions smaller than 5 Mb that affect both alleles.

Genome-wide association studies

(GWAS). Studies that survey DNA variants genome-wide to identify those showing association with a disease or trait. GWAS have been used to discover susceptibility variants for prevalent polygenic diseases. A large fraction of significant associations are found in non-coding genomic regions, indicating that they are mediated by genetic variants that influence regulatory functions.

lncRNAs that act in cis

Long non-coding RNAs (lncRNAs) that act on the same chromosome from which they are transcribed, including the regulation of a neighbouring gene, of multiple genes or of the entire chromosome.

Silencers

Genomic regions that are bound by repressive transcription factors (TFs) and decrease the transcription of genes in cis.

Splicing quantitative trait loci

Genetic loci in which different alleles influence RNA splicing patterns.

Topologically associated domains

(TADs). Genomic regions defined by having a higher frequency of long-range chromatin contacts, such as between genes and their regulatory elements, than the frequency of contacts with elements outside the region.

Transcriptional condensates

Chromatin-associated, dynamic nuclear assemblies comprising a heterogeneous mix of RNAs, transcription factors (TFs) and co-regulators that modulate transcriptional output.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrer, J., Dimitrova, N. Transcription regulation by long non-coding RNAs: mechanisms and disease relevance. Nat Rev Mol Cell Biol 25, 396–415 (2024). https://doi.org/10.1038/s41580-023-00694-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-023-00694-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing