Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Human embryonic genetic mosaicism and its effects on development and disease

Abstract

Nearly every mammalian cell division is accompanied by a mutational event that becomes fixed in a daughter cell. When carried forward to additional cell progeny, a clone of variant cells can emerge. As a result, mammals are complex mosaics of clones that are genetically distinct from one another. Recent high-throughput sequencing studies have revealed that mosaicism is common, clone sizes often increase with age and specific variants can affect tissue function and disease development. Variants that are acquired during early embryogenesis are shared by multiple cell types and can affect numerous tissues. Within tissues, variant clones compete, which can result in their expansion or elimination. Embryonic mosaicism has clinical implications for genetic disease severity and transmission but is likely an under-recognized phenomenon. To better understand its implications for mosaic individuals, it is essential to leverage research tools that can elucidate the mechanisms by which expanded embryonic variants influence development and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mosaicism is defined by the timing and lineage of variant acquisition.
Fig. 2: The timing of variant acquisition and the variant allele frequency can be estimated from adult or fetal tissue.
Fig. 3: The features of mosaic variants vary from early to late embryogenesis.
Fig. 4: Cell competition in mosaicism occurs through separate but interrelated mechanisms.
Fig. 5: Differences in VAF across time, tissues and environmental exposures affect clinical detection of mosaicism.

Similar content being viewed by others

References

  1. Behjati, S. et al. Genome sequencing of normal cells reveals developmental lineages and mutational processes. Nature 513, 422–425 (2014). This study is one of the first to use colony sequencing from a multicellular organism to reconstruct phylogenies based on shared variants.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ju, Y. S. et al. Somatic mutations reveal asymmetric cellular dynamics in the early human embryo. Nature 543, 714–718 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ye, A. Y. et al. A model for postzygotic mosaicisms quantifies the allele fraction drift, mutation rate, and contribution to de novo mutations. Genome Res. 28, 943–951 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Spencer Chapman, M. et al. Lineage tracing of human development through somatic mutations. Nature 595, 85–90 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Coorens, T. H. H. et al. Extensive phylogenies of human development inferred from somatic mutations. Nature 597, 387–392 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Rockweiler, N. B. et al. The origins and functional effects of postzygotic mutations throughout the human life span. Science 380, eabn7113 (2023). This study demonstrates the potential to use widely available bulk RNA-seq databases for mosaic variant discovery and to reveal insights about embryonic variant acquisition.

    Article  CAS  PubMed  Google Scholar 

  7. Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014). In this study, the authors provide one of the first demonstrations of the ubiquity of somatic mosaicism in the blood of aged individuals and link it to adverse health outcomes.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371, 2477–2487 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Coombs, C. C. et al. Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes. Cell Stem Cell 21, 374–382.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Martincorena, I. et al. Somatic mutant clones colonize the human esophagus with age. Science 362, 911–917 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Watson, C. J. et al. The evolutionary dynamics and fitness landscape of clonal hematopoiesis. Science 367, 1449–1454 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Moore, L. et al. The mutational landscape of human somatic and germline cells. Nature 597, 381–386 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Aluri, J. & Cooper, M. A. Genetic mosaicism as a cause of inborn errors of immunity. J. Clin. Immunol. 41, 718–728 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Campbell, I. M., Shaw, C. A., Stankiewicz, P. & Lupski, J. R. Somatic mosaicism: implications for disease and transmission genetics. Trends Genet. 31, 382–392 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Martinez-Glez, V. et al. A six-attribute classification of genetic mosaicism. Genet. Med. 22, 1743–1757 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Park, S. et al. Clonal dynamics in early human embryogenesis inferred from somatic mutation. Nature 597, 393–397 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Acuna-Hidalgo, R. et al. Post-zygotic point mutations are an underrecognized source of de novo genomic variation. Am. J. Hum. Genet. 97, 67–74 (2015). This study is one of the earliest to use trio sequencing to demonstrate that a substantial portion of variants presumed to be germline are in fact mosaic.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cook, C. B. et al. Somatic mosaicism detected by genome-wide sequencing in 500 parent–child trios with suspected genetic disease: clinical and genetic counseling implications. Cold Spring Harb. Mol. Case Stud. 7, a006125 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wright, C. F. et al. Clinically-relevant postzygotic mosaicism in parents and children with developmental disorders in trio exome sequencing data. Nat. Commun. 10, 2985 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gambin, T. et al. Low-level parental somatic mosaic SNVs in exomes from a large cohort of trios with diverse suspected Mendelian conditions. Genet. Med. 22, 1768–1776 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Domogala, D. D. et al. Detection of low-level parental somatic mosaicism for clinically relevant SNVs and indels identified in a large exome sequencing dataset. Hum. Genomics 15, 72 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sasani, T. A. et al. Large, three-generation human families reveal post-zygotic mosaicism and variability in germline mutation accumulation. eLife 8, e46922 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lee, H. et al. Characterization of early postzygotic somatic mutations through multi-organ analysis. J. Hum. Genet. 66, 777–784 (2021).

    Article  PubMed  Google Scholar 

  24. Rodin, R. E. et al. The landscape of somatic mutation in cerebral cortex of autistic and neurotypical individuals revealed by ultra-deep whole-genome sequencing. Nat. Neurosci. 24, 176–185 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gallini, S. et al. Injury prevents Ras mutant cell expansion in mosaic skin. Nature 619, 167–175 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Thorpe, J., Osei-Owusu, I. A., Avigdor, B. E., Tupler, R. & Pevsner, J. Mosaicism in human health and disease. Annu. Rev. Genet. 54, 487–510 (2020). In this review, the authors discuss the genetic mechanisms of mosaic variant acquisition and details about various detection techniques.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. van Echten-Arends, J. et al. Chromosomal mosaicism in human preimplantation embryos: a systematic review. Hum. Reprod. Update 17, 620–627 (2011).

    Article  PubMed  Google Scholar 

  28. Taylor, T. H. et al. The origin, mechanisms, incidence and clinical consequences of chromosomal mosaicism in humans. Hum. Reprod. Update 20, 571–581 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Levy, B., Hoffmann, E. R., McCoy, R. C. & Grati, F. R. Chromosomal mosaicism: origins and clinical implications in preimplantation and prenatal diagnosis. Prenat. Diagn. 41, 631–641 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Vorsanova, S. G., Yurov, Y. B. & Iourov, I. Y. Dynamic nature of somatic chromosomal mosaicism, genetic–environmental interactions and therapeutic opportunities in disease and aging. Mol. Cytogenet. 13, 16 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Campbell, I. M. et al. Parental somatic mosaicism is underrecognized and influences recurrence risk of genomic disorders. Am. J. Hum. Genet. 95, 173–182 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hatton, I. A. et al. The human cell count and size distribution. Proc. Natl Acad. Sci. USA 120, e2303077120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Munisha, M. & Schimenti, J. C. Genome maintenance during embryogenesis. DNA Repair. 106, 103195 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Kermi, C., Aze, A. & Maiorano, D. Preserving genome integrity during the early embryonic DNA replication cycles. Genes 10, 398 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bae, T. et al. Different mutational rates and mechanisms in human cells at pregastrulation and neurogenesis. Science 359, 550–555 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Fasching, L. et al. Early developmental asymmetries in cell lineage trees in living individuals. Science 371, 1245–1248 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee-Six, H. et al. Population dynamics of normal human blood inferred from somatic mutations. Nature 561, 473–478 (2018). This study pioneers the capture–recapture technique to reconstruct phylogenies of human haematopoiesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bizzotto, S. et al. Landmarks of human embryonic development inscribed in somatic mutations. Science 371, 1249–1253 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nam, A. S. et al. Somatic mutations and cell identity linked by genotyping of transcriptomes. Nature 571, 355–360 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang, A. Y. et al. Parallel RNA and DNA analysis after deep sequencing (PRDD-seq) reveals cell type-specific lineage patterns in human brain. Proc. Natl Acad. Sci. USA 117, 13886–13895 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim, J. H. et al. Analysis of low-level somatic mosaicism reveals stage and tissue-specific mutational features in human development. PLoS Genet. 18, e1010404 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu, Q. et al. Parental somatic mosaicism for CNV deletions—a need for more sensitive and precise detection methods in clinical diagnostics settings. Genomics 112, 2937–2941 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Lim, E. T. et al. Rates, distribution and implications of postzygotic mosaic mutations in autism spectrum disorder. Nat. Neurosci. 20, 1217–1224 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mensa-Vilaro, A. et al. Unexpected relevant role of gene mosaicism in patients with primary immunodeficiency diseases. J. Allergy Clin. Immunol. 143, 359–368 (2019). In this study, the authors demonstrate that an unexpectedly large number of families with primary immunodeficiency disorders exhibit mosaicism.

    Article  CAS  PubMed  Google Scholar 

  45. Depienne, C. et al. Parental mosaicism can cause recurrent transmission of SCN1A mutations associated with severe myoclonic epilepsy of infancy. Hum. Mutat. 27, 389 (2006).

    Article  PubMed  Google Scholar 

  46. Xu, X. et al. Amplicon resequencing identified parental mosaicism for approximately 10% of “de novo” SCN1A mutations in children with Dravet syndrome. Hum. Mutat. 36, 861–872 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Yang, X. et al. Genomic mosaicism in paternal sperm and multiple parental tissues in a Dravet syndrome cohort. Sci. Rep. 7, 15677 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Nakayama, T. et al. Somatic mosaic deletions involving SCN1A cause Dravet syndrome. Am. J. Med. Genet. A 176, 657–662 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Aluri, J. et al. Immunodeficiency and bone marrow failure with mosaic and germline TLR8 gain of function. Blood 137, 2450–2462 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Klonowska, K. et al. Comprehensive genetic and phenotype analysis of 95 individuals with mosaic tuberous sclerosis complex. Am. J. Hum. Genet. 110, 979–988 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tovy, A. et al. Tissue-biased expansion of DNMT3A-mutant clones in a mosaic individual is associated with conserved epigenetic erosion. Cell Stem Cell 27, 326–335.e4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Williams, N. et al. Life histories of myeloproliferative neoplasms inferred from phylogenies. Nature 602, 162–168 (2022).

    Article  CAS  PubMed  Google Scholar 

  53. Castillo, D. et al. Clonal hematopoiesis and mosaicism revealed by a multi-tissue analysis of constitutional TP53 status. Cancer Epidemiol. Biomark. Prev. 31, 1621–1629 (2022).

    Article  CAS  Google Scholar 

  54. Karaman, B. et al. Pallister–Killian syndrome: clinical, cytogenetic and molecular findings in 15 cases. Mol. Cytogenet. 11, 45 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Holzelova, E. et al. Autoimmune lymphoproliferative syndrome with somatic Fas mutations. N. Engl. J. Med. 351, 1409–1418 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Beck, D. B. et al. Somatic mutations in UBA1 and severe adult-onset autoinflammatory disease. N. Engl. J. Med. 383, 2628–2638 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Long, C. et al. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science 345, 1184–1188 (2014). This study demonstrates that a fraction of cells with a corrected Dmd allele can expand and abrogate the muscular dystrophy phenotype in a mouse model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kesari, A. et al. Somatic mosaicism for Duchenne dystrophy: evidence for genetic normalization mitigating muscle symptoms. Am. J. Med. Genet. A 149A, 1499–1503 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huisman, S. A., Redeker, E. J., Maas, S. M., Mannens, M. M. & Hennekam, R. C. High rate of mosaicism in individuals with Cornelia de Lange syndrome. J. Med. Genet. 50, 339–344 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Lindhurst, M. J. et al. A mosaic activating mutation in AKT1 associated with the Proteus syndrome. N. Engl. J. Med. 365, 611–619 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Donkervoort, S. et al. Mosaicism for dominant collagen 6 mutations as a cause for intrafamilial phenotypic variability. Hum. Mutat. 36, 48–56 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li, W. & Baker, N. E. Engulfment is required for cell competition. Cell 129, 1215–1225 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Claveria, C., Giovinazzo, G., Sierra, R. & Torres, M. Myc-driven endogenous cell competition in the early mammalian embryo. Nature 500, 39–44 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Ellis, S. J. et al. Distinct modes of cell competition shape mammalian tissue morphogenesis. Nature 569, 497–502 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang, G. et al. p53 pathway is involved in cell competition during mouse embryogenesis. Proc. Natl Acad. Sci. USA 114, 498–503 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lima, A. et al. Cell competition acts as a purifying selection to eliminate cells with mitochondrial defects during early mouse development. Nat. Metab. 3, 1091–1108 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Challen, G. A. et al. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat. Genet. 44, 23–31 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Hsu, J. I. et al. PPM1D mutations drive clonal hematopoiesis in response to cytotoxic chemotherapy. Cell Stem Cell 23, 700–713.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Revy, P., Kannengiesser, C. & Fischer, A. Somatic genetic rescue in Mendelian haematopoietic diseases. Nat. Rev. Genet. 20, 582–598 (2019). In this review, the authors describe in detail mosaic reversion events occurring in the hematopoietic system, where they have been most commonly described.

    Article  CAS  PubMed  Google Scholar 

  70. Jongmans, M. C. et al. Revertant somatic mosaicism by mitotic recombination in dyskeratosis congenita. Am. J. Hum. Genet. 90, 426–433 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Catto, L. F. B. et al. Somatic genetic rescue in hematopoietic cells in GATA2 deficiency. Blood 136, 1002–1005 (2020).

    Article  PubMed  Google Scholar 

  72. Bar, D. Z. et al. A novel somatic mutation achieves partial rescue in a child with Hutchinson–Gilford progeria syndrome. J. Med. Genet. 54, 212–216 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Narumi, S. et al. SAMD9 mutations cause a novel multisystem disorder, MIRAGE syndrome, and are associated with loss of chromosome 7. Nat. Genet. 48, 792–797 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. Buonocore, F. et al. Somatic mutations and progressive monosomy modify SAMD9-related phenotypes in humans. J. Clin. Invest. 127, 1700–1713 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Veitia, R. A. MIRAGE syndrome: phenotypic rescue by somatic mutation and selection. Trends Mol. Med. 25, 937–940 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Shirley, M. D. et al. Sturge–Weber syndrome and port-wine stains caused by somatic mutation in GNAQ. N. Engl. J. Med. 368, 1971–1979 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Weinstein, L. S. et al. Activating mutations of the stimulatory G protein in the McCune–Albright syndrome. N. Engl. J. Med. 325, 1688–1695 (1991).

    Article  CAS  PubMed  Google Scholar 

  78. Lim, J. S. et al. Brain somatic mutations in MTOR cause focal cortical dysplasia type II leading to intractable epilepsy. Nat. Med. 21, 395–400 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Eskin-Schwartz, M. et al. Somatic mosaicism for a “lethal” GJB2 mutation results in a patterned form of spiny hyperkeratosis without eccrine involvement. Pediatr. Dermatol. 33, 322–326 (2016).

    Article  PubMed  Google Scholar 

  80. Campbell, I. M. et al. Parent of origin, mosaicism, and recurrence risk: probabilistic modeling explains the broken symmetry of transmission genetics. Am. J. Hum. Genet. 95, 345–359 (2014). This study demonstrates that recurrence risk in offspring varies based on the presence of parental mosaicism and the sex of the mosaic parent.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jonsson, H. et al. Multiple transmissions of de novo mutations in families. Nat. Genet. 50, 1674–1680 (2018).

    Article  CAS  PubMed  Google Scholar 

  82. Jamuar, S. S. et al. Somatic mutations in cerebral cortical malformations. N. Engl. J. Med. 371, 733–743 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Koboldt, D. C. Best practices for variant calling in clinical sequencing. Genome Med. 12, 91 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Yan, Y. H. et al. Confirming putative variants at ≤5% allele frequency using allele enrichment and Sanger sequencing. Sci. Rep. 11, 11640 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Doan, R. N. et al. MIPP-Seq: ultra-sensitive rapid detection and validation of low-frequency mosaic mutations. BMC Med. Genomics 14, 47 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhou, B. et al. Detection and quantification of mosaic genomic DNA variation in primary somatic tissues using ddPCR: analysis of mosaic transposable-element insertions, copy-number variants, and single-nucleotide variants. Methods Mol. Biol. 1768, 173–190 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Ha, Y. J. et al. Comprehensive benchmarking and guidelines of mosaic variant calling strategies. Nat. Methods 20, 2058–2067 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dou, Y. et al. Accurate detection of mosaic variants in sequencing data without matched controls. Nat. Biotechnol. 38, 314–319 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Huang, A. Y. & Lee, E. A. Identification of somatic mutations from bulk and single-cell sequencing data. Front. Aging 2, 800380 (2021).

    Article  PubMed  Google Scholar 

  90. Glessner, J. T. et al. MONTAGE: a new tool for high-throughput detection of mosaic copy number variation. BMC Genomics 22, 133 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Muyas, F. et al. De novo detection of somatic mutations in high-throughput single-cell profiling data sets. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01863-z (2023).

    Article  PubMed  Google Scholar 

  92. Salk, J. J., Schmitt, M. W. & Loeb, L. A. Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations. Nat. Rev. Genet. 19, 269–285 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. King, D. A. et al. Detection of structural mosaicism from targeted and whole-genome sequencing data. Genome Res. 27, 1704–1714 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chen, D. et al. Human primordial germ cells are specified from lineage-primed progenitors. Cell Rep. 29, 4568–4582.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yang, X. et al. Developmental and temporal characteristics of clonal sperm mosaicism. Cell 184, 4772–4783.e15 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Jonsson, H. et al. Differences between germline genomes of monozygotic twins. Nat. Genet. 53, 27–34 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Breuss, M. W. et al. Autism risk in offspring can be assessed through quantification of male sperm mosaicism. Nat. Med. 26, 143–150 (2020).

    Article  CAS  PubMed  Google Scholar 

  98. Moller, R. S. et al. Parental mosaicism in epilepsies due to alleged de novo variants. Epilepsia 60, e63–e66 (2019).

    Article  CAS  PubMed  Google Scholar 

  99. Goriely, A. et al. Gain-of-function amino acid substitutions drive positive selection of FGFR2 mutations in human spermatogonia. Proc. Natl Acad. Sci. USA 102, 6051–6056 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Shinde, D. N. et al. New evidence for positive selection helps explain the paternal age effect observed in achondroplasia. Hum. Mol. Genet. 22, 4117–4126 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yoon, S. R. et al. Age-dependent germline mosaicism of the most common noonan syndrome mutation shows the signature of germline selection. Am. J. Hum. Genet. 92, 917–926 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Choi, S. K., Yoon, S. R., Calabrese, P. & Arnheim, N. Positive selection for new disease mutations in the human germline: evidence from the heritable cancer syndrome multiple endocrine neoplasia type 2B. PLoS Genet. 8, e1002420 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Maher, G. J. et al. Selfish mutations dysregulating RAS–MAPK signaling are pervasive in aged human testes. Genome Res. 28, 1779–1790 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lim, J. et al. Selfish spermatogonial selection: evidence from an immunohistochemical screen in testes of elderly men. PLoS ONE 7, e42382 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Fu, X. J. et al. Somatic mosaicism and variant frequency detected by next-generation sequencing in X-linked Alport syndrome. Eur. J. Hum. Genet. 24, 387–391 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Schirwani, S. et al. Mosaicism in ASXL3-related syndrome: description of five patients from three families. Eur. J. Med. Genet. 63, 103925 (2020).

    Article  PubMed  Google Scholar 

  107. Baker, S. W. et al. Improved molecular detection of mosaicism in Beckwith–Wiedemann syndrome. J. Med. Genet. 58, 178–184 (2021).

    Article  PubMed  Google Scholar 

  108. Weksberg, R. et al. Discordant KCNQ1OT1 imprinting in sets of monozygotic twins discordant for Beckwith–Wiedemann syndrome. Hum. Mol. Genet. 11, 1317–1325 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Cohen, J. L. et al. Diagnosis and management of the phenotypic spectrum of twins with Beckwith–Wiedemann syndrome. Am. J. Med. Genet. A 179, 1139–1147 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Urraca, N. et al. A rare inherited 15q11.2-q13.1 interstitial duplication with maternal somatic mosaicism, renal carcinoma, and autism. Front. Genet. 7, 205 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Ansari, M. et al. Genetic heterogeneity in Cornelia de Lange syndrome (CdLS) and CdLS-like phenotypes with observed and predicted levels of mosaicism. J. Med. Genet. 51, 659–668 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Stosser, M. B. et al. High frequency of mosaic pathogenic variants in genes causing epilepsy-related neurodevelopmental disorders. Genet. Med. 20, 403–410 (2018).

    Article  CAS  PubMed  Google Scholar 

  113. Terracciano, A. et al. Somatic mosaicism of PCDH19 mutation in a family with low-penetrance EFMR. Neurogenetics 13, 341–345 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Hague, J. et al. Molecularly proven mosaicism in phenotypically normal parent of a girl with Freeman–Sheldon syndrome caused by a pathogenic MYH3 mutation. Am. J. Med. Genet. A 170, 1608–1612 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. Alcantara-Montiel, J. C. et al. Somatic mosaicism in B cells of a patient with autosomal dominant hyper IgE syndrome. Eur. J. Immunol. 46, 2438–2443 (2016).

    Article  CAS  PubMed  Google Scholar 

  116. Hsu, A. P. et al. Intermediate phenotypes in patients with autosomal dominant hyper-IgE syndrome caused by somatic mosaicism. J. Allergy Clin. Immunol. 131, 1586–1593 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hildebrand, M. S. et al. Mutations of the sonic hedgehog pathway underlie hypothalamic hamartoma with gelastic epilepsy. Am. J. Hum. Genet. 99, 423–429 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Green, T. E. et al. Sporadic hypothalamic hamartoma is a ciliopathy with somatic and bi-allelic contributions. Hum. Mol. Genet. 31, 2307–2316 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Green, T. E. et al. Brain mosaicism of hedgehog signalling and other cilia genes in hypothalamic hamartoma. Neurobiol. Dis. 185, 106261 (2023).

    Article  CAS  PubMed  Google Scholar 

  120. Prochazkova, K. et al. Somatic TP53 mutation mosaicism in a patient with Li–Fraumeni syndrome. Am. J. Med. Genet. A 149A, 206–211 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Consoli, C. et al. Gonosomal mosaicism for a nonsense mutation (R1947X) in the NF1 gene in segmental neurofibromatosis type 1. J. Invest. Dermatol. 125, 463–466 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Friedman, D. P. Segmental neurofibromatosis (NF-5): a rare form of neurofibromatosis. AJNR Am. J. Neuroradiol. 12, 971–972 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Ruggieri, M. & Polizzi, A. Segmental neurofibromatosis. J. Neurosurg. 93, 530–532 (2000).

    CAS  PubMed  Google Scholar 

  124. Boyd, K. P., Korf, B. R. & Theos, A. Neurofibromatosis type 1. J. Am. Acad. Dermatol. 61, 1–14 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Kluwe, L. & Mautner, V. F. Mosaicism in sporadic neurofibromatosis 2 patients. Hum. Mol. Genet. 7, 2051–2055 (1998).

    Article  CAS  PubMed  Google Scholar 

  126. Evans, D. G. et al. Incidence of mosaicism in 1055 de novo NF2 cases: much higher than previous estimates with high utility of next-generation sequencing. Genet. Med. 22, 53–59 (2020).

    Article  CAS  PubMed  Google Scholar 

  127. Kim, H. J., Song, M. J., Lee, K. O., Kim, S. H. & Kim, H. J. Paternal somatic mosaicism of a novel frameshift mutation in ELANE causing severe congenital neutropenia. Pediatr. Blood Cancer 62, 2229–2231 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Bartsch, O. et al. Inheritance and variable expression in Rubinstein–Taybi syndrome. Am. J. Med. Genet. A 152A, 2254–2261 (2010).

    Article  CAS  PubMed  Google Scholar 

  129. Kamien, B. et al. Somatic-gonadal mosaicism causing Sotos syndrome. Am. J. Med. Genet. A 170, 3360–3362 (2016).

    Article  PubMed  Google Scholar 

  130. Spiegel, R. et al. Severe infantile male encephalopathy is a result of early post-zygotic WDR45 somatic mutation. Clin. Genet. 90, 560–562 (2016).

    Article  CAS  PubMed  Google Scholar 

  131. Nakashima, M. et al. WDR45 mutations in three male patients with West syndrome. J. Hum. Genet. 61, 653–661 (2016).

    Article  CAS  PubMed  Google Scholar 

  132. Cooley Coleman, J. A. et al. Mosaicism of common pathogenic MECP2 variants identified in two males with a clinical diagnosis of Rett syndrome. Am. J. Med. Genet. A 188, 2988–2998 (2022).

    Article  CAS  PubMed  Google Scholar 

  133. Xin, B. et al. Novel DNMT3A germline mutations are associated with inherited Tatton–Brown–Rahman syndrome. Clin. Genet. 91, 623–628 (2017).

    Article  PubMed  Google Scholar 

  134. Hyland, V. J. et al. Somatic and germline mosaicism for a R248C missense mutation in FGFR3, resulting in a skeletal dysplasia distinct from thanatophoric dysplasia. Am. J. Med. Genet. A 120A, 157–168 (2003).

    Article  PubMed  Google Scholar 

  135. Takagi, M., Kaneko-Schmitt, S., Suzumori, N., Nishimura, G. & Hasegawa, T. Atypical achondroplasia due to somatic mosaicism for the common thanatophoric dysplasia mutation R248C. Am. J. Med. Genet. A 158A, 247–250 (2012).

    Article  PubMed  Google Scholar 

  136. Tyburczy, M. E. et al. Mosaic and intronic mutations in TSC1/TSC2 explain the majority of TSC patients with no mutation identified by conventional testing. PLoS Genet. 11, e1005637 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Venot, Q. et al. Targeted therapy in patients with PIK3CA-related overgrowth syndrome. Nature 558, 540–546 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Bennett, J. T. et al. Mosaic activating mutations in FGFR1 cause encephalocraniocutaneous lipomatosis. Am. J. Hum. Genet. 98, 579–587 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Baldassari, S. et al. Dissecting the genetic basis of focal cortical dysplasia: a large cohort study. Acta Neuropathol. 138, 885–900 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kobow, K. et al. Mosaic trisomy of chromosome 1q in human brain tissue associates with unilateral polymicrogyria, very early-onset focal epilepsy, and severe developmental delay. Acta Neuropathol. 140, 881–891 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Miller, K. E. et al. Post-zygotic rescue of meiotic errors causes brain mosaicism and focal epilepsy. Nat. Genet. 55, 1920–1928 (2023).

    Article  CAS  PubMed  Google Scholar 

  142. Prokopchuk, O. et al. Maffucci syndrome and neoplasms: a case report and review of the literature. BMC Res. Notes 9, 126 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Zhuang, Z. et al. Somatic HIF2A gain-of-function mutations in paraganglioma with polycythemia. N. Engl. J. Med. 367, 922–930 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wang, H., Zhuang, Z., Rosenblum, J. S. & Pacak, K. Somatic mosaicism of EPAS1 mutations in Pacak–Zhuang syndrome. Endocr. Pract. 28, 734–735 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Groesser, L. et al. Postzygotic HRAS and KRAS mutations cause nevus sebaceous and Schimmelpenning syndrome. Nat. Genet. 44, 783–787 (2012).

    Article  CAS  PubMed  Google Scholar 

  146. Greco, E., Minasi, M. G. & Fiorentino, F. Healthy babies after intrauterine transfer of mosaic aneuploid blastocysts. N. Engl. J. Med. 373, 2089–2090 (2015).

    Article  PubMed  Google Scholar 

  147. Capalbo, A. et al. Mosaic human preimplantation embryos and their developmental potential in a prospective, non-selection clinical trial. Am. J. Hum. Genet. 108, 2238–2247 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Zhang, Y. X. et al. The pregnancy outcome of mosaic embryo transfer: a prospective multicenter study and meta-analysis. Genes 11, 973 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Essers, R. et al. Prevalence of chromosomal alterations in first-trimester spontaneous pregnancy loss. Nat. Med. 29, 3233–3242 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Currie, C. E. et al. The first mitotic division of human embryos is highly error prone. Nat. Commun. 13, 6755 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Debo, B., Van Loocke, M., De Groote, K., De Leenheer, E. & Cools, M. Multidisciplinary approach to the child with sex chromosomal mosaicism including a Y-containing cell line. Int. J. Environ. Res. Public Health 18, 917 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Huang, A. C., Olson, S. B. & Maslen, C. L. A review of recent developments in Turner syndrome research. J. Cardiovasc. Dev. Dis. 8, 138 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Posey, J. E. et al. Triploidy mosaicism (45,X/68,XX) in an infant presenting with failure to thrive. Am. J. Med. Genet. A 170, 694–698 (2016).

    Article  CAS  PubMed  Google Scholar 

  154. Balbeur, S. et al. Trisomy rescue mechanism: the case of concomitant mosaic trisomy 14 and maternal uniparental disomy 14 in a 15-year-old girl. Clin. Case Rep. 4, 265–271 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Coorens, T. H. H. et al. Inherent mosaicism and extensive mutation of human placentas. Nature 592, 80–85 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Yang, M. et al. Depletion of aneuploid cells in human embryos and gastruloids. Nat. Cell Biol. 23, 314–321 (2021).

    Article  CAS  PubMed  Google Scholar 

  157. Singla, S., Iwamoto-Stohl, L. K., Zhu, M. & Zernicka-Goetz, M. Autophagy-mediated apoptosis eliminates aneuploid cells in a mouse model of chromosome mosaicism. Nat. Commun. 11, 2958 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Price, C. J. et al. Genetically variant human pluripotent stem cells selectively eliminate wild-type counterparts through YAP-mediated cell competition. Dev. Cell 56, 2455–2470.e10 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Zhang, F., Gu, W., Hurles, M. E. & Lupski, J. R. Copy number variation in human health, disease, and evolution. Annu. Rev. Genomics Hum. Genet. 10, 451–481 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Pham, J. et al. Somatic mosaicism detected by exon-targeted, high-resolution aCGH in 10,362 consecutive cases. Eur. J. Hum. Genet. 22, 969–978 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ballif, B. C. et al. Detection of low-level mosaicism by array CGH in routine diagnostic specimens. Am. J. Med. Genet. A 140, 2757–2767 (2006).

    Article  PubMed  Google Scholar 

  162. Messiaen, L. et al. Mosaic type-1 NF1 microdeletions as a cause of both generalized and segmental neurofibromatosis type-1 (NF1). Hum. Mutat. 32, 213–219 (2011).

    Article  CAS  PubMed  Google Scholar 

  163. Allen, S. E. et al. Versatile CRISPR/Cas9-mediated mosaic analysis by gRNA-induced crossing-over for unmodified genomes. PLoS Biol. 19, e3001061 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Zong, H., Espinosa, J. S., Su, H. H., Muzumdar, M. D. & Luo, L. Mosaic analysis with double markers in mice. Cell 121, 479–492 (2005).

    Article  CAS  PubMed  Google Scholar 

  165. Henner, A., Ventura, P. B., Jiang, Y. & Zong, H. MADM-ML, a mouse genetic mosaic system with increased clonal efficiency. PLoS ONE 8, e77672 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).

    Article  CAS  PubMed  Google Scholar 

  167. Mintz, B. & Silvers, W. K. “Intrinsic” immunological tolerance in allophenic mice. 1967. J. Immunol. 178, 4007–4010 (2007).

    CAS  PubMed  Google Scholar 

  168. Sakaue, M. et al. DNA methylation is dispensable for the growth and survival of the extraembryonic lineages. Curr. Biol. 20, 1452–1457 (2010).

    Article  CAS  PubMed  Google Scholar 

  169. Ueno, H. & Weissman, I. L. Clonal analysis of mouse development reveals a polyclonal origin for yolk sac blood islands. Dev. Cell 11, 519–533 (2006).

    Article  CAS  PubMed  Google Scholar 

  170. Kinoshita, M. et al. Disabling de novo DNA methylation in embryonic stem cells allows an illegitimate fate trajectory. Proc. Natl Acad. Sci. USA 118, e2109475118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Wang, L. et al. CRISPR–Cas9-mediated genome editing in one blastomere of two-cell embryos reveals a novel Tet3 function in regulating neocortical development. Cell Res. 27, 815–829 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Nakamura, S., Watanabe, S., Ando, N., Ishihara, M. & Sato, M. Transplacental gene delivery (TPGD) as a noninvasive tool for fetal gene manipulation in mice. Int. J. Mol. Sci. 20, 5926 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Lipshutz, G. S. et al. In utero delivery of adeno-associated viral vectors: intraperitoneal gene transfer produces long-term expression. Mol. Ther. 3, 284–292 (2001).

    Article  CAS  PubMed  Google Scholar 

  174. Wang, Z. et al. Positive selection of somatically mutated clones identifies adaptive pathways in metabolic liver disease. Cell 186, 1968–1984.e20 (2023).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) F30HD111129 (S.M.W.), the Robert and Janice McNair Foundation M.D./Ph.D. Scholars programme (S.M.W.) and Baylor Research Advocates for Student Scientists (S.M.W.). The Goodell laboratory is supported by CA183252, CA237291, DK092883, AG036695 and CA265748. J.E.P is supported by a McGregor Foundation grant.

Author information

Authors and Affiliations

Authors

Contributions

S.M.W. and J.E.P researched the literature. The authors contributed equally to all other aspects of the manuscript.

Corresponding author

Correspondence to Margaret A. Goodell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Donald F. Conrad, Naomichi Matsumoto and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Amplicon sequencing

Extremely deep sequencing of a short PCR product (amplicon) that lowers the limit of detection for variants in the specific region of interest.

Aneuploidy

A number of chromosomes that is either greater than or lower than a complete diploid set (for example, in humans, a number of chromosomes that does not equal 46).

Clonal haematopoiesis

A condition in which a haematopoietic stem cell acquires a variant that confers a selective advantage, leading to the outgrowth of the variant cell population in the bone marrow and blood over time. Clonal haematopoiesis is associated with an increased risk of various adverse health outcomes, including cancer, cardiovascular disease and all-cause mortality.

de novo

A term to denote a variant that is not inherited from a parent but, instead, appears spontaneously in the proband (the patient or individual under study).

Digital droplet PCR

An alternative to quantitative PCR that provides absolute rather than relative quantification of a DNA sequence of interest, such as a variant sequence.

dN/dS ratio

The ratio of non-synonymous to synonymous variants in a protein-coding gene. Non-synonymous variants change the amino acid codon and are more likely to be deleterious. This ratio serves as a measure of natural selection, with a ratio >1 indicating positive selection and a ratio <1 indicating negative selection against the cell(s) bearing the variant.

Exome sequencing

A type of next-generation sequencing that focuses on the exons (including exon–intron boundaries), or protein-coding regions, of the genome to achieve higher depth at lower cost.

Gastrulation

The process of embryonic development during which the three germ layers (ectoderm, mesoderm and endoderm) are specified. Each germ layer will later give rise to specific groups of organs.

Genetic variant

The specific genetic sequence that differs from the reference sequence found in the majority of a population.

Genome sequencing

A type of next-generation sequencing that covers both protein-coding and non-coding regions of the genome, including intragenic, regulatory and intronic regions.

Mutant

A pathogenic or benign variant in the context of a non-human animal model or a cell culture system.

Mutational events

The biochemical processes of variant acquisition that alter the DNA sequence.

Mutations

Any permanent alterations in the DNA sequence of an organism.

Obligate mosaicism

A condition in which some cells of an organism carry a variant that is lethal when present in all cells.

Primordial germ cells

A group of stem cells in the embryo that differentiate to form sperm or eggs.

Proband

In genetics, the affected patient who initially presents for evaluation.

Variant allele frequency

(VAF). The percentage of sequencing reads that are composed of the variant sequence. A germline heterozygous variant has a VAF of 50%, whereas a homozygous variant has a VAF of 100%.

Zygote

The first cell of a vertebrate embryo, formed when an egg is fertilized by a sperm.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waldvogel, S.M., Posey, J.E. & Goodell, M.A. Human embryonic genetic mosaicism and its effects on development and disease. Nat Rev Genet (2024). https://doi.org/10.1038/s41576-024-00715-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41576-024-00715-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing