Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetics of chronic respiratory disease

Abstract

Chronic respiratory diseases, such as chronic obstructive pulmonary disease (COPD), asthma and interstitial lung diseases are frequently occurring disorders with a polygenic basis that account for a large global burden of morbidity and mortality. Recent large-scale genetic epidemiology studies have identified associations between genetic variation and individual respiratory diseases and linked specific genetic variants to quantitative traits related to lung function. These associations have improved our understanding of the genetic basis and mechanisms underlying common lung diseases. Moreover, examining the overlap between genetic associations of different respiratory conditions, along with evidence for gene–environment interactions, has yielded additional biological insights into affected molecular pathways. This genetic information could inform the assessment of respiratory disease risk and contribute to stratified treatment approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Workflow for variant-to-gene mapping.
Fig. 2: Spirometry and lung function traits.
Fig. 3: Key genes and pathways implicated by GWASs of lung function.
Fig. 4: Genes and pathways identified in GWASs of asthma targeted by recently developed biological therapies.
Fig. 5: Circle plot of genetic loci implicated in one or more respiratory trait.

Similar content being viewed by others

References

  1. GBD Chronic Respiratory Disease Collaborators. Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Resp. Med. 8, 585–596 (2020). A key study highlighting the global importance of respiratory diseases.

    Article  Google Scholar 

  2. GBD Chronic Respiratory Disease Collaborators. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Respir. Med. 5, 691–706 (2017).

    Article  Google Scholar 

  3. Duan, K. I. et al. Health care spending on respiratory diseases in the United States, 1996–2016. Am. J. Resp. Crit. Care Med. 207, 183–192 (2023).

    Article  PubMed  Google Scholar 

  4. Spencer, L. G., Loughenbury, M., Chaudhuri, N., Spiteri, M. & Parfrey, H. Idiopathic pulmonary fibrosis in the UK: analysis of the British Thoracic Society electronic registry between 2013 and 2019. ERJ Open Res. 7, 00187–2020 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Navaratnam, V. et al. The rising incidence of idiopathic pulmonary fibrosis in the U.K. Thorax 66, 462–467 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Palmer, L. J. et al. Familial aggregation and heritability of adult lung function: results from the Busselton Health Study. Eur. Resp. J. 17, 696–702 (2001).

    Article  CAS  Google Scholar 

  7. Wilk, J. B. et al. Evidence for major genes influencing pulmonary function in the NHLBI family heart study. Genet. Epidemiol. 19, 81–94 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Shrine, N. et al. New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. Nat. Genet. 51, 481–493 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sakornsakolpat, P. et al. Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations. Nat. Genet. 51, 494–505 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wain, L. V. et al. Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets. Nat. Genet. 49, 416–425 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Repapi, E. et al. Genome-wide association study identifies five loci associated with lung function. Nat. Genet. 42, 36–44 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Cho, M. H. et al. Risk loci for chronic obstructive pulmonary disease: a genome-wide association study and meta-analysis. Lancet Resp. Med. 2, 214–225 (2014).

    Article  CAS  Google Scholar 

  13. Soler Artigas, M. et al. Sixteen new lung function signals identified through 1000 Genomes Project reference panel imputation. Nat. Commun. 6, 8658 (2015).

    Article  PubMed  Google Scholar 

  14. Wain, L. V. et al. Novel insights into the genetics of smoking behaviour, lung function, and chronic obstructive pulmonary disease (UK BiLEVE): a genetic association study in UK Biobank. Lancet Resp. Med. 3, 769–781 (2015). This study was the first GWAS in the UK Biobank.

    Article  Google Scholar 

  15. Hobbs, B. D. et al. Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis. Nat. Genet. 49, 426–432 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhao, X. et al. Whole genome sequence analysis of pulmonary function and COPD in 19,996 multi-ethnic participants. Nat. Commun. 11, 5182 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. King, E. A., Davis, J. W. & Degner, J. F. Are drug targets with genetic support twice as likely to be approved? Revised estimates of the impact of genetic support for drug mechanisms on the probability of drug approval. PLoS Genet. 15, e1008489 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nelson, M. R. et al. The support of human genetic evidence for approved drug indications. Nat. Genet. 47, 856–860 (2015). This influential study showed that supporting genetic data contributes to successful drug development.

    Article  CAS  PubMed  Google Scholar 

  19. Sakaue, S. et al. A cross-population atlas of genetic associations for 220 human phenotypes. Nat. Genet. 53, 1415–1424 (2021). This paper provided a description of the degree of relationship between phenotypes using GWAS data.

    Article  CAS  PubMed  Google Scholar 

  20. Zhou, Y. H. et al. Genetic modifiers of cystic fibrosis lung disease severity: whole-genome analysis of 7,840 patients. Am. J. Resp. Crit. Care Med. 207, 1324–1333 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. Rhodes, C. J. et al. Genetic determinants of risk in pulmonary arterial hypertension: international genome-wide association studies and meta-analysis. Lancet Resp. Med. 7, 227–238 (2019).

    Article  Google Scholar 

  22. Shrine, N. et al. Multi-ancestry genome-wide association analyses improve resolution of genes and pathways influencing lung function and chronic obstructive pulmonary disease risk. Nat. Genet. 55, 410–422 (2023). This study is the largest so far to assess lung-function phenotypes using GWASs and integrated genomics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hancock, D. B. et al. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function. Nat. Genet. 42, 45–52 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Herwig, R., Hardt, C., Lienhard, M. & Kamburov, A. Analyzing and interpreting genome data at the network level with ConsensusPathDB. Nat. Protoc. 11, 1889–1907 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Lange, P. et al. Lung-function trajectories leading to chronic obstructive pulmonary disease. N. Engl. J. Med. 373, 111–122 (2015). This important epidemiological study revealed the origins of COPD risk in early life.

    Article  CAS  PubMed  Google Scholar 

  26. Hardin, M. et al. A genome-wide analysis of the response to inhaled β2-agonists in chronic obstructive pulmonary disease. Pharmacogenom. J. 16, 326–335 (2016).

    Article  CAS  Google Scholar 

  27. Sirugo, G., Williams, S. M. & Tishkoff, S. A. The missing diversity in human genetic studies. Cell 177, 26–31 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Magi, R. et al. Trans-ethnic meta-regression of genome-wide association studies accounting for ancestry increases power for discovery and improves fine-mapping resolution. Hum. Mol. Genet. 26, 3639–3650 (2017). This study emphasized the value of trans-ethic approaches for GWASs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sollis, E. et al. The NHGRI-EBI GWAS Catalog: knowledgebase and deposition resource. Nucleic Acids Res. 51, D977–D985 (2023).

    Article  CAS  PubMed  Google Scholar 

  30. Regan, E. A. et al. Genetic epidemiology of COPD (COPDGene) study design. J. COPD 7, 32–43 (2010). This paper reports a description of the COPDGene study design.

    Article  Google Scholar 

  31. Ragland, M. F. et al. 10-year follow-up of lung function, respiratory symptoms, and functional capacity in the COPDGene study. Ann. Am. Thorac. Soc. 19, 381–388 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Joo, J., Hobbs, B. D., Cho, M. H. & Himes, B. E. Trait insights gained by comparing genome-wide association study results using different chronic obstructive pulmonary disease definitions. AMIA Jt Summits Transl. Sci. Proc. 2020, 278–287 (2020).

    PubMed  PubMed Central  Google Scholar 

  33. Cho, M. H. et al. A genome-wide association study of emphysema and airway quantitative imaging phenotypes. Am. J. Resp. Crit. Care Med. 192, 559–569 (2015). This GWAS included imaging phenotypes in COPD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Busch, R. et al. Genetic association and risk scores in a chronic obstructive pulmonary disease meta-analysis of 16,707 subjects. Am. J. Resp. Cell Mol. Biol. 57, 35–46 (2017).

    Article  CAS  Google Scholar 

  35. North, T. L. et al. A study of common Mendelian disease carriers across ageing British cohorts: meta-analyses reveal heterozygosity for α1-antitrypsin deficiency increases respiratory capacity and height. J. Med. Genet. 53, 280–288 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Fawcett, K. A. et al. Pleiotropic associations of heterozygosity for the SERPINA1 Z allele in the UK Biobank. ERJ Open Res. 7, 00049–2021 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kim, W. et al. Assessing the contribution of rare genetic variants to phenotypes of chronic obstructive pulmonary disease using whole-genome sequence data. Hum. Mol. Genet. 31, 3873–3885 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Moffatt, M. F. et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 448, 470–473 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Schoettler, N., Rodriguez, E., Weidinger, S. & Ober, C. Advances in asthma and allergic disease genetics: is bigger always better. J. Allergy Clin. Immunol. 144, 1495–1506 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. El-Husseini, Z. W., Gosens, R., Dekker, F. & Koppelman, G. H. The genetics of asthma and the promise of genomics-guided drug target discovery. Lancet Resp. Med. 8, 1045–1056 (2020).

    Article  CAS  Google Scholar 

  41. Tsuo, K. et al. Multi-ancestry meta-analysis of asthma identifies novel associations and highlights the value of increased power and diversity. Cell Genom. 2, 100212 (2022). A recent meta-analysis of asthma GWAS data.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ferreira, M. A. et al. Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology. Nat. Genet. 49, 1752–1757 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Belsky, D. W. et al. Polygenic risk and the development and course of asthma: an analysis of data from a four-decade longitudinal study. Lancet Resp. Med. 1, 453–461 (2013).

    Article  Google Scholar 

  44. Moll, M. et al. Polygenic risk scores identify heterogeneity in asthma and chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 1, 1423–1432 (2023). This study explored the overlap between genetic risk factors for asthma and COPD.

    Article  Google Scholar 

  45. Dapas, M. et al. Revealing polygenic pleiotropy using genetic risk scores for asthma. HGG Adv. 4, 100233 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ferreira, M. A. R. et al. Genetic architectures of childhood- and adult-onset asthma are partly distinct. Am. J. Hum. Genet. 104, 665–684 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shrine, N. et al. Moderate-to-severe asthma in individuals of European ancestry: a genome-wide association study. Lancet Resp. Med. 7, 20–34 (2019).

    Article  Google Scholar 

  48. Chang, D. et al. A whole genome sequencing study of moderate to severe asthma identifies a lung function locus associated with asthma risk. Sci. Rep. 12, 5574 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bonnelykke, K. et al. A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations. Nat. Genet. 46, 51–55 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Herrera-Luis, E. et al. Multi-ancestry genome-wide association study of asthma exacerbations. Pediatr. Allergy Immunol. 33, e13802 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jia, G. et al. Discerning asthma endotypes through comorbidity mapping. Nat. Commun. 13, 6712 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Smith, D. et al. A rare IL33 loss-of-function mutation reduces blood eosinophil counts and protects from asthma. PLoS Genet. 13, e1006659 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  53. John, C. et al. Genetic associations and architecture of asthma–COPD overlap. Chest 161, 1155–1166 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Do, A. R. et al. A genome-wide association study implicates the pleiotropic effect of NMUR2 on asthma and COPD. Sci. Rep. 12, 22073 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Soler Artigas, M. et al. Genome-wide association and large-scale follow up identifies 16 new loci influencing lung function. Nat. Genet. 43, 1082–1090 (2011).

    Article  PubMed  Google Scholar 

  56. Pickrell, J. K. et al. Detection and interpretation of shared genetic influences on 42 human traits. Nat. Genet. 48, 709–717 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hardin, M. et al. The clinical and genetic features of COPD-asthma overlap syndrome. Eur. Respir. J. 44, 341–350 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Park, S. Y. et al. Longitudinal analysis to better characterize asthma–COPD overlap syndrome: findings from an adult asthma cohort in Korea (COREA). Clin. Exp. Allergy 49, 603–614 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Han, Y. et al. Genome-wide analysis highlights contribution of immune system pathways to the genetic architecture of asthma. Nat. Commun. 11, 1776 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Olafsdottir, T. A. et al. Eighty-eight variants highlight the role of T cell regulation and airway remodeling in asthma pathogenesis. Nat. Commun. 11, 393 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Saferali, A. & Hersh, C. P. Genetic determinants in airways obstructive diseases: the case of asthma chronic obstructive pulmonary disease overlap. Immunol. Allergy Clin. North. Am. 42, 559–573 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Mushiroda, T. et al. A genome-wide association study identifies an association of a common variant in TERT with susceptibility to idiopathic pulmonary fibrosis. J. Med. Genet. 45, 654–656 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Alonso-Gonzalez, A., Tosco-Herrera, E., Molina-Molina, M. & Flores, C. Idiopathic pulmonary fibrosis and the role of genetics in the era of precision medicine. Front. Med. 10, 1152211 (2023).

    Article  Google Scholar 

  64. Nogee, L. M. et al. A mutation in the surfactant protein C gene associated with familial interstitial lung disease. N. Engl. J. Med. 344, 573–579 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. van Moorsel, C. H. et al. SFTPA2 mutations in familial and sporadic idiopathic interstitial pneumonia. Am. J. Resp. Crit. Care Med. 192, 1249–1252 (2015).

    Article  PubMed  Google Scholar 

  66. Partanen, J. J. et al. Leveraging global multi-ancestry meta-analysis in the study of idiopathic pulmonary fibrosis genetics. Cell Genom. 2, 100181 (2022). This study has been the largest to date on the genetic aetiology of idiopathic pulmonary fibrosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nakano, Y. et al. MUC5B promoter variant rs35705950 affects MUC5B expression in the distal airways in idiopathic pulmonary fibrosis. Am. J. Resp. Crit. Care Med. 193, 464–466 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Borie, R. et al. Colocalization of gene expression and DNA methylation with genetic risk variants supports functional roles of MUC5B and DSP in idiopathic pulmonary fibrosis. Am. J. Resp. Crit. Care Med. 206, 1259–1270 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Peljto, A. L. et al. Association between the MUC5B promoter polymorphism and survival in patients with idiopathic pulmonary fibrosis. JAMA 309, 2232–2239 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Allen, R. J. et al. Longitudinal lung function and gas transfer in individuals with idiopathic pulmonary fibrosis: a genome-wide association study. Lancet Resp. Med. 11, 65–73 (2023).

    Article  CAS  Google Scholar 

  71. Oldham, J. M. et al. PCSK6 and survival in idiopathic pulmonary fibrosis. Am. J. Resp. Crit. Care Med. 207, 1515–1524 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Peljto, A. L. et al. Idiopathic pulmonary fibrosis is associated with common genetic variants and limited rare variants. Am. J. Resp. Crit. Care Med. 207, 1194–1202 (2023).

    Article  CAS  PubMed  Google Scholar 

  73. Moll, M. et al. A polygenic risk score for idiopathic pulmonary fibrosis and interstitial lung abnormalities. Am. J. Resp. Crit. Care Med. 208, 791–801 (2023).

    Article  CAS  PubMed  Google Scholar 

  74. Hall, I. Tobacco use: a smoking gun for IPF? Thorax 79, 104–105 (2023).

    Article  Google Scholar 

  75. Kim, W. et al. Interaction of cigarette smoking and polygenic risk score on reduced lung function. JAMA Netw. Open 4, e2139525 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Liu, M. et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat. Genet. 51, 237–244 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Morales, E. & Duffy, D. Genetics and gene-environment interactions in childhood and adult onset asthma. Front. Pediatr. 7, 499 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Kim, W. et al. Genome-wide gene-by-smoking interaction study of chronic obstructive pulmonary disease. Am. J. Epidemiol. 190, 875–885 (2021).

    Article  PubMed  Google Scholar 

  79. Park, B. et al. Genome-wide assessment of gene-by-smoking interactions in COPD. Sci. Rep. 8, 9319 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  80. Melbourne, C. A. et al. Genome-wide gene–air pollution interaction analysis of lung function in 300,000 individuals. Environ. Int. 159, 107041 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wu, H., Eckhardt, C. M. & Baccarelli, A. A. Molecular mechanisms of environmental exposures and human disease. Nat. Rev. Genet. 24, 332–344 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhu, J., Zhou, D., Yu, M. & Li, Y. Appraising the causal role of smoking in idiopathic pulmonary fibrosis: a Mendelian randomization study. Thorax 79, 179–181 (2023).

    Article  Google Scholar 

  83. Sun, Y. Q. et al. Adiposity and asthma in adults: a bidirectional Mendelian randomisation analysis of The HUNT Study. Thorax 75, 202–208 (2020).

    Article  PubMed  Google Scholar 

  84. Yoshiji, S. et al. Proteome-wide Mendelian randomization implicates nephronectin as an actionable mediator of the effect of obesity on COVID-19 severity. Nat. Metab. 5, 248–264 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Moll, M. et al. Chronic obstructive pulmonary disease and related phenotypes: polygenic risk scores in population-based and case-control cohorts. Lancet Resp. Med. 8, 696–708 (2020).

    Article  Google Scholar 

  86. Pavord, I. D. et al. Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebo-controlled trial. Lancet 380, 651–659 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Al-Hamed, M. H. et al. A null founder variant in NPNT, encoding nephronectin, causes autosomal recessive renal agenesis. Clin. Genet. 102, 61–65 (2022).

    Article  CAS  PubMed  Google Scholar 

  88. Wilson, C. L. et al. Nephronectin is required to maintain right lung lobar separation during embryonic development. Am. J. Physiol. Lung Cell Mol. Physiol. 324, L335–L344 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rojas-Quintero, J. et al. Spatial transcriptomics resolve an emphysema-specific lymphoid follicle B cell signature in COPD. Am. J. Resp. Crit. Care Med. 209, 48–58 (2023).

    Article  PubMed Central  Google Scholar 

  90. Asakura, T. et al. Proximal and distal bronchioles contribute to the pathogenesis of non-cystic fibrosis bronchiectasis (NCFB). Am. J. Resp. Crit. Care Med. https://doi.org/10.1164/rccm.202306-1093OC (2023).

  91. Blumhagen, R. Z. et al. Spatially distinct molecular patterns of gene expression in idiopathic pulmonary fibrosis. Resp. Res. 24, 287 (2023).

    Article  CAS  Google Scholar 

  92. Sun, B. B. et al. Plasma proteomic associations with genetics and health in the UK Biobank. Nature 622, 329–338 (2023). A comprehensive study of proteome associations with disease in the UK Biobank.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zheng, J. et al. Phenome-wide Mendelian randomization mapping the influence of the plasma proteome on complex diseases. Nat. Genet. 52, 1122–1131 (2020). This study of the use of Mendelian randomization approaches explored protein associations with disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang, P. D. et al. Associations of genetic risk and smoking with incident COPD. Eur. Resp. J. 59, 2101320 (2022).

    Article  Google Scholar 

  95. Park, B. et al. Effect of 6p21 region on lung function is modified by smoking: a genome-wide interaction study. Sci. Rep. 10, 13075 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sugier, P. E. et al. Genome-wide interaction study of early-life smoking exposure on time-to-asthma onset in childhood. Clin. Exp. Allergy 49, 1342–1351 (2019).

    Article  CAS  PubMed  Google Scholar 

  97. Hernandez-Pacheco, N., Kere, M. & Melen, E. Gene–environment interactions in childhood asthma revisited; expanding the interaction concept. Pediatr. Allergy Immunol. 33, e13780 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Vonk, J. M. et al. Adult onset asthma and interaction between genes and active tobacco smoking: the GABRIEL consortium. PLoS One 12, e0172716 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Scholtens, S. et al. Novel childhood asthma genes interact with in utero and early-life tobacco smoke exposure. J. Allergy Clin. Immunol. 133, 885–888 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gref, A. et al. Genome-wide interaction analysis of air pollution exposure and childhood asthma with functional follow-up. Am. J. Resp. Crit. Care Med. 195, 1373–1383 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. de Jong, K. et al. Genome-wide interaction study of gene-by-occupational exposure and effects on FEV1 levels. J. Allergy Clin. Immunol. 136, 1664–1672.e1614 (2015).

    Article  PubMed  Google Scholar 

  102. Zeng, X. et al. Genome-wide interaction study of gene-by-occupational exposures on respiratory symptoms. Environ. Int. 122, 263–269 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Wang, G., Sarkar, A., Carbonetto, P. & Stephens, M. A simple new approach to variable selection in regression, with application to genetic fine mapping. J. R. Stat. Soc. Ser. B 82, 1273–1300 (2020).

    Article  MathSciNet  Google Scholar 

  104. Weissbrod, O. et al. Functionally informed fine-mapping and polygenic localization of complex trait heritability. Nat. Genet. 52, 1355–1363 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Iotchkova, V. et al. GARFIELD classifies disease-relevant genomic features through integration of functional annotations with association signals. Nat. Genet. 51, 343–353 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Vosa, U. et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat. Genet. 53, 1300–1310 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hao, K. et al. Lung eQTLs to help reveal the molecular underpinnings of asthma. PLoS Genet. 8, e1003029 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sun, B. B. et al. Genomic atlas of the human plasma proteome. Nature 558, 73–79 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang, Q. et al. Rare variant contribution to human disease in 281,104 UK Biobank exomes. Nature 597, 527–532 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  112. Backman, J. D. et al. Exome sequencing and analysis of 454,787 UK Biobank participants. Nature 599, 628–634 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  113. Weeks, E. M. et al. Leveraging polygenic enrichments of gene features to predict genes underlying complex traits and diseases. Nat. Genet. 55, 1267–1276 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Packer, R. J. et al. DeepPheWAS: an R package for phenotype generation and association analysis for phenome-wide association studies. Bioinformatics 39, btad073 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. McCarthy, M. I. et al. Genome-wide association studies for complex traits: consensus uncertainty and challenges. Nat. Rev. Genet. 9, 356–369 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Cano-Gamez, E. & Trynka, G. From GWAS to function: using functional genomics to identify the mechanisms underlying complex diseases. Front. Genet. 11, 424 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Cooper, R., Bingham, K., Portelli, M. A. & Sayers, I. in Encyclopaedia of Respiratory Medicine (ed. Janes, S. M.) 308–325 (Elsevier, 2022).

  118. Gudbjartsson, D. F. et al. Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction. Nat. Genet. 41, 342–347 (2009).

    Article  CAS  PubMed  Google Scholar 

  119. Himes, B. E. et al. Genome-wide association analysis identifies PDE4D as an asthma-susceptibility gene. Am. J. Hum. Genet. 84, 581–593 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sleiman, P. M. et al. Variants of DENND1B associated with asthma in children. N. Engl. J. Med. 362, 36–44 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Moffatt, M. F. et al. A large-scale, consortium-based genomewide association study of asthma. N. Engl. J. Med. 363, 1211–1221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hirota, T. et al. Genome-wide association study identifies three new susceptibility loci for adult asthma in the Japanese population. Nat. Genet. 43, 893–896 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Torgerson, D. G. et al. Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations. Nat. Genet. 43, 887–892 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Noguchi, E. et al. Genome-wide association study identifies HLA-DP as a susceptibility gene for pediatric asthma in Asian populations. PLoS Genet. 7, e1002170 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ferreira, M. A. et al. Identification of IL6R and chromosome 11q13.5 as risk loci for asthma. Lancet 378, 1006–1014 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Forno, E. et al. Genome-wide association study of the age of onset of childhood asthma. J. Allergy Clin. Immunol. 130, 83–90.e84 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Wan, Y. I. et al. Genome-wide association study to identify genetic determinants of severe asthma. Thorax 67, 762–768 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Ramasamy, A. et al. Genome-wide association studies of asthma in population-based cohorts confirm known and suggested loci and identify an additional association near HLA. PLoS One 7, e44008 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ferreira, M. A. et al. Genome-wide association analysis identifies 11 risk variants associated with the asthma with hay fever phenotype. J. Allergy Clin. Immunol. 133, 1564–1571 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Yucesoy, B. et al. Genome-wide association study identifies novel loci associated with diisocyanate-induced occupational asthma. Toxicol. Sci. 146, 192–201 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Marenholz, I. et al. Meta-analysis identifies seven susceptibility loci involved in the atopic march. Nat. Commun. 6, 8804 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  132. Nieuwenhuis, M. A. et al. Combining genomewide association study and lung eQTL analysis provides evidence for novel genes associated with asthma. Allergy 71, 1712–1720 (2016).

    Article  CAS  PubMed  Google Scholar 

  133. Almoguera, B. et al. Identification of four novel loci in asthma in European American and African American populations. Am. J. Resp. Crit. Care Med. 195, 456–463 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Yan, Q. et al. A meta-analysis of genome-wide association studies of asthma in Puerto Ricans. Eur. Resp. J. 49, 1601505 (2017).

    Article  Google Scholar 

  135. Demenais, F. et al. Multiancestry association study identifies new asthma risk loci that colocalize with immune-cell enhancer marks. Nat. Genet. 50, 42–53 (2018).

    Article  CAS  PubMed  Google Scholar 

  136. Zhu, Z. et al. A genome-wide cross-trait analysis from UK Biobank highlights the shared genetic architecture of asthma and allergic diseases. Nat. Genet. 50, 857–864 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hayden, L. P. et al. Childhood asthma is associated with COPD and known asthma variants in COPDGene: a genome-wide association study. Resp. Res. 19, 209 (2018).

    Article  CAS  Google Scholar 

  138. Dahlin, A. et al. Large-scale, multiethnic genome-wide association study identifies novel loci contributing to asthma susceptibility in adults. J. Allergy Clin. Immunol. 143, 1633–1635 (2019).

    Article  CAS  PubMed  Google Scholar 

  139. Pividori, M., Schoettler, N., Nicolae, D. L., Ober, C. & Im, H. K. Shared and distinct genetic risk factors for childhood-onset and adult-onset asthma: genome-wide and transcriptome-wide studies. Lancet Resp. Med. 7, 509–522 (2019).

    Article  Google Scholar 

  140. Johansson, A., Rask-Andersen, M., Karlsson, T. & Ek, W. E. Genome-wide association analysis of 350 000 Caucasians from the UK Biobank identifies novel loci for asthma, hay fever and eczema. Hum. Mol. Genet. 28, 4022–4041 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zhu, Z. et al. Shared genetic and experimental links between obesity-related traits and asthma subtypes in UK Biobank. J. Allergy Clin. Immunol. 145, 537–549 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. Dahlin, A. et al. Genome-wide interaction study reveals age-dependent determinants of responsiveness to inhaled corticosteroids in individuals with asthma. PLoS One 15, e0229241 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ishigaki, K. et al. Large-scale genome-wide association study in a Japanese population identifies novel susceptibility loci across different diseases. Nat. Genet. 52, 669–679 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Bi, W., Fritsche, L. G., Mukherjee, B., Kim, S. & Lee, S. A fast and accurate method for genome-wide time-to-event data analysis and its application to UK biobank. Am. J. Hum. Genet. 107, 222–233 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Salinas, Y. D., Wang, Z. & DeWan, A. T. Discovery and mediation analysis of cross-phenotype associations between asthma and body mass index in 12q13.2. Am. J. Epidemiol. 190, 85–94 (2021).

    Article  PubMed  Google Scholar 

  146. Herrera-Luis, E. et al. Genome-wide association study reveals a novel locus for asthma with severe exacerbations in diverse populations. Pediatr. Allergy Immunol. 32, 106–115 (2021).

    Article  CAS  PubMed  Google Scholar 

  147. Yan, Q. et al. A genome-wide association study of asthma hospitalizations in adults. J. Allergy Clin. Immunol. 147, 933–940 (2021).

    Article  CAS  PubMed  Google Scholar 

  148. Kim, K. W. et al. Genome-wide association study identifies TNFSF15 associated with childhood asthma. Allergy 77, 218–229 (2022).

    Article  CAS  PubMed  Google Scholar 

  149. Valette, K. et al. Prioritization of candidate causal genes for asthma in susceptibility loci derived from UK Biobank. Commun. Biol. 4, 700 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. An, J. et al. Genome-wide association study of Korean asthmatics: a comparison with UK asthmatics. Allergy Asthma Immunol. Res. 13, 609–622 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Allen, R. J. et al. Genome-wide association study of susceptibility to idiopathic pulmonary fibrosis. Am. J. Resp. Crit. Care Med. 201, 564–574 (2020).

    Article  CAS  PubMed  Google Scholar 

  152. Dhindsa, R. S. et al. Identification of a missense variant in SPDL1 associated with idiopathic pulmonary fibrosis. Commun. Biol. 4, 392 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank R. Allen, K. Fawcett and M. Saward for their assistance with Fig. 5, K. Bingham for the original development of Fig. 4, and A. Izquierdo for the original development of Fig. 2.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the literature. C.J., I.P.H. and I.S. contributed substantially to discussions of the content. All authors wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Ian P. Hall.

Ethics declarations

Competing interests

I.P.H., C.J. and I.S. declare research grants relevant to the subject content of this review from the Wellcome Trust, UKRI and industry collaborators. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Yohan Bossé, Erik Melén and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

National Health Service: https://www.england.nhs.uk/ourwork/clinical-policy/respiratory-disease

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayers, I., John, C., Chen, J. et al. Genetics of chronic respiratory disease. Nat Rev Genet (2024). https://doi.org/10.1038/s41576-024-00695-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41576-024-00695-0

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research