Abstract

The Curiosity rover has documented lacustrine sediments at Gale Crater, but how liquid water became physically stable on the early Martian surface is a matter of significant debate. To constrain the composition of the early Martian atmosphere during sediment deposition, we experimentally investigated the nucleation and growth kinetics of authigenic Fe-minerals in Gale Crater mudstones. Experiments show that pH variations within anoxic basaltic waters trigger a series of mineral transformations that rapidly generate magnetite and H2(aq). Magnetite continues to form through this mechanism despite high partial pressure of carbon dioxide (pCO2) and supersaturation with respect to Fe-carbonate minerals. Reactive transport simulations that incorporate these experimental data show that groundwater infiltration into a lake equilibrated with a CO2-rich atmosphere can trigger the production of both magnetite and H2(aq) in the mudstones. H2(aq), generated at concentrations that would readily exsolve from solution, is capable of increasing annual mean surface temperatures above freezing in CO2-dominated atmospheres. We therefore suggest that magnetite authigenesis could have provided a short-term feedback for stabilizing liquid water, as well as a principal feedstock for biologically relevant chemical reactions, at the early Martian surface.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Grotzinger, J. P. et al. A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater, Mars. Science 343, 1242777 (2014).

  2. 2.

    Grotzinger, J. P. et al. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale Crater, Mars. Science 350, aac7575 (2015).

  3. 3.

    Vaniman, D. T. et al. Mineralogy of a mudstone at Yellowknife Bay, Gale Crater, Mars. Science 343, 1243480 (2014).

  4. 4.

    McLennan, S. M. et al. Elemental geochemistry of sedimentary rocks at Yellowknife Bay, Gale Crater, Mars. Science 343, 1244734 (2014).

  5. 5.

    Hurowitz, J. A. et al. Redox stratification of an ancient lake in Gale Crater, Mars. Science 356, eaah6849 (2017).

  6. 6.

    Ming, D. W. et al. Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale Crater, Mars. Science 343, 1245267 (2014).

  7. 7.

    Bristow, T. F. et al. The origin and implications of clay minerals from Yellowknife Bay, Gale Crater, Mars. Am. Mineral. 100, 824–836 (2015).

  8. 8.

    Pollack, J. B., Kasting, J. F., Richardson, S. M. & Poliakoff, K. The case for a wet, warm climate on early Mars. Icarus 71, 203–224 (1987).

  9. 9.

    Kasting, J. F. CO2 condensation and the climate of early Mars. Icarus 94, 1–13 (1991).

  10. 10.

    Forget, F. et al. 3D modelling of the early Martian climate under a denser CO2 atmosphere: temperatures and CO2 ice clouds. Icarus 222, 81–99 (2013).

  11. 11.

    Postawko, S. E. & Kuhn, W. R. Effect of the greenhouse gases (CO2, H2O, SO2) on Martian paleoclimate. J. Geophys. Res. Solid Earth 91, 431–438 (1986).

  12. 12.

    Halevy, I., Zuber, M. T. & Schrag, D. P. A sulfur dioxide climate feedback on early Mars. Science 318, 1903–1907 (2007).

  13. 13.

    Halevy, I. & Head, J. W. III Episodic warming of early Mars by punctuated volcanism. Nat. Geosci. 7, 865–868 (2014).

  14. 14.

    Mischna, M. A., Baker, V., Milliken, R., Richardson, M. & Lee, C. Effects of obliquity and water vapor/trace gas greenhouses in the early martian climate. J. Geophys. Res. Planets 118, 560–576 (2013).

  15. 15.

    Kerber, L., Forget, F. & Wordsworth, R. Sulfur in the early martian atmosphere revisited: experiments with a 3-D global climate model. Icarus 261, 133–148 (2015).

  16. 16.

    Ramirez, R. M. et al. Warming early Mars with CO2 and H2. Nat. Geosci. 7, 59–63 (2013).

  17. 17.

    Wordsworth, R. et al. Transient reducing greenhouse warming on early Mars. Geophys. Res. Lett. 44, 665–671 (2017).

  18. 18.

    Hirschmann, M. M. & Withers, A. C. Ventilation of CO2 from a reduced mantle and consequences for the early Martian greenhouse. Earth Planet. Sci. Lett. 270, 147–155 (2008).

  19. 19.

    Chassefiere, E., Langlais, B., Quesnel, Y. & Leblanc, F. The fate of early Mars’ lost water: the role of serpentinization. J. Geophys. Res. Planets 118, 1123–1134 (2013).

  20. 20.

    Ehlmann, B. L., Mustard, J. F. & Murchie, S. L. Geologic setting of serpentine deposits on Mars. Geophys. Res. Lett. 37, L0621 (2010).

  21. 21.

    Syverson, D. D., Tutolo, B. M., Borrok, D. M. & Seyfried, W. E. Serpentinization of olivine at 300°C and 500 bars: an experimental study examining the role of silica on the reaction path and oxidation state of iron. Chem. Geol. 475, 122–134 (2017).

  22. 22.

    Tutolo, B. M., Luhmann, A. J., Tosca, N. J. & Seyfried, W. E. Serpentinization as a reactive transport process: the brucite silicification reaction. Earth Planet. Sci. Lett. 484, 385–395 (2018).

  23. 23.

    Dideriksen, K. et al. Formation and transformation of a short range ordered iron carbonate precursor. Geochim. Cosmochim. Acta 164, 94–109 (2015).

  24. 24.

    Tosca, N. J., Guggenheim, S. & Pufahl, P. K. An authigenic origin for Precambrian greenalite: implications for iron formation and the chemistry of ancient seawater. Geol. Soc. Am. Bull. 128, 511–530 (2016).

  25. 25.

    Bristow, T. F. et al. Low Hesperian P CO2 constrained from in situ mineralogical analysis at Gale Crater, Mars. Proc. Natl Acad. Sci. USA. 114, 2166–2170 (2017).

  26. 26.

    Sel, O., Radha, A. V., Dideriksen, K. & Navrotsky, A. Amorphous iron (ii) carbonate: crystallization energetics and comparison to other carbonate minerals related to CO2 sequestration. Geochim. Cosmochim. Acta 87, 61–68 (2012).

  27. 27.

    Azoulay, I., Rémazeilles, C. & Refait, P. Determination of standard Gibbs free energy of formation of chukanovite and Pourbaix diagrams of iron in carbonated media. Corros. Sci. 58, 229–236 (2012).

  28. 28.

    Horvath, D. G. & Andrews-Hanna, J. C. Reconstructing the past climate at Gale Crater, Mars, from hydrological modeling of late-stage lakes. Geophys. Res. Lett. 44, 8196–8204 (2017).

  29. 29.

    Gislason, S. R. & Eugster, H. P. Meteoric water-basalt interactions. II: a field study in NE Iceland. Geochim. Cosmochim. Acta. 51, 2841–2855 (1987).

  30. 30.

    Stefansson, A., Gislason, S. R. & Arnorsson, S. Dissolution of primary minerals in natural waters II. Mineral saturation state. Chem. Geol. 172, 251–276 (2001).

  31. 31.

    Arnórsson, S., Gunnarsson, I., Stefánsson, A., Andrésdóttir, A. & Sveinbjörnsdóttir, E. Major element chemistry of surface- and ground waters in basaltic terrain, N-Iceland: I. primary mineral saturation. Geochim. Cosmochim. Acta 66, 4015–4046 (2002).

  32. 32.

    Barnes, I. & O’Neil, J. R. The relationship between fluids in some fresh alpine-type ultramafics and possible modern serpentinization, western United States. Geol. Soc. Am. Bull. 80, 1947–1960 (1969).

  33. 33.

    Morris, R. V. et al. Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale Crater. Proc. Natl Acad. Sci. USA 113, 7071–7076 (2016).

  34. 34.

    Rampe, E. B. et al. Mineralogy of an ancient lacustrine mudstone succession from the Murray Formation, Gale Crater, Mars. Earth Planet. Sci. Lett. 471, 172–185 (2017).

  35. 35.

    Renaut, R. W., Tiercelin, J. J. & Owen, R. B. Mineral precipitation and diagenesis in the sediments of the Lake Bogoria Basin, Kenya Rift Valley. Geol. Soc. Spec. Publ. 25, 159–175 (1986).

  36. 36.

    Stack, M. et al. Diagenetic origin of nodules in the Sheepbed member, Yellowknife Bay Formation, Gale Crater, Mars. J. Geophys. Res. Planets 119, 1637–1664 (2014).

  37. 37.

    Wordsworth, R. et al. Global modelling of the early martian climate under a denser CO2 atmosphere: water cycle and ice evolution. Icarus 222, 1–19 (2013).

  38. 38.

    Wordsworth, R. D., Kerber, L., Pierrehumbert, R. T., Forget, F. & Head, J. W. Comparison of “warm and wet” and “cold and icy” scenarios for early Mars in a 3-D climate model. J. Geophys. Res. Planets 120, 1201–1219 (2015).

  39. 39.

    Fassett, C. I. & Head, J. W. Valley network-fed, open-basin lakes on Mars: distribution and implications for Noachian surface and subsurface hydrology. Icarus 198, 37–56 (2008).

  40. 40.

    Goudge, T. A., Head, J. W., Mustard, J. F. & Fassett, C. I. An analysis of open-basin lake deposits on Mars: evidence for the nature of associated lacustrine deposits and post-lacustrine modification processes. Icarus 219, 211–229 (2012).

  41. 41.

    Irwin, R. P., Maxwell, T. A., Howard, A. D., Craddock, R. A. & Leverington, D. W. A large paleolake basin at the head of Ma’adim Vallis, Mars. Science 296, 2209–2212 (2002).

  42. 42.

    Andrews-Hanna, J. C., Zuber, M. T., Arvidson, R. E. & Wiseman, S. M. Early Mars hydrology: Meridiani playa deposits and the sedimentary record of Arabia Terra. J. Geophys. Res 115, E06002 (2010).

  43. 43.

    Andrews-Hanna, J. C. & Lewis, K. W. Early Mars hydrology: 2. Hydrological evolution in the Noachian and Hesperian epochs. J. Geophys. Res. 116, E02007 (2011).

  44. 44.

    Abelson, P. H. Chemical events on the primitive Earth. Proc. Natl Acad. Sci. USA 55, 1365–1372 (1966).

  45. 45.

    Miller, S. L. A production of amino acids under possible primitive earth conditions. Science 117, 528–529 (1953).

  46. 46.

    Canfield, D. E., Kristensen, E. & Thamdrup, B. Aquatic Geomicrobiology (Elsevier, Amsterdam, 2005).

  47. 47.

    Ragsdale, S. W. & Pierce, E. Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation. Biochim. Biophys. Acta Proteins Proteom. 1784, 1873–1898 (2008).

  48. 48.

    Braakman, R. & Smith, E. The emergence and early evolution of biological carbon-fixation. PLoS Comput. Biol. 8, e1002455 (2012).

  49. 49.

    Thomson, B. J. et al. Constraints on the origin and evolution of the layered mound in Gale Crater, Mars using Mars Reconnaissance Orbiter data. Icarus 214, 413–432 (2011).

  50. 50.

    Le Deit, L. et al. Sequence of infilling events in Gale Crater, Mars: results from morphology, stratigraphy, and mineralogy. J. Geophys. Res. Planets 118, 2439–2473 (2013).

  51. 51.

    Palucis, M. C. et al. The origin and evolution of the Peace Vallis fan system that drains to the Curiosity landing area, Gale Crater, Mars. J. Geophys. Res. Planets 119, 705–728 (2014).

  52. 52.

    Grant, J. A., Wilson, S. A., Mangold, N., Calef, F. & Grotzinger, J. P. The timing of alluvial activity in Gale Crater, Mars. Geophys. Res. Lett. 41, 1142–1149 (2014).

  53. 53.

    Szabó, T., Domokos, G., Grotzinger, J. P. & Jerolmack, D. J. Reconstructing the transport history of pebbles on Mars. Nat. Commun. 6, 8366 (2015).

  54. 54.

    Williams, R. M. E. et al. Martian fluvial conglomerates at Gale Crater. Science 340, 1068–1072 (2013).

  55. 55.

    Dehouck, E., McLennan, S. M., Meslin, P. & Cousin, A. Constraints on abundance, composition, and nature of X-ray amorphous components of soils and rocks at Gale Crater, Mars. J. Geophys. Res. Planets 119, 2640–2657 (2014).

  56. 56.

    Bish, D. L. et al. X-ray diffraction results from Mars Science Laboratory: mineralogy of Rocknest at Gale Crater. Science 341, 1238932 (2013).

  57. 57.

    Blake, D. F. et al. Curiosity at Gale Crater, Mars: characterization and analysis of the Rocknest sand shadow. Science 341, 1239505 (2013).

  58. 58.

    Bethke, C. M. & Yeakel, S. The Geochemist’s Workbench: Release 11.0 (Aqueous Solutions LLC, 2017).

  59. 59.

    Delany, J. M. & Lundeen, S. R. The LLNL Thermochemical Database -- Revised Data and File Format for the EQ3/6 Package. Technical Report UCID-21658 (LLNL, USDOE, 1991).

  60. 60.

    Brantley, S. L., White, A. F. & Hodson, M. E. in Growth, Dissolution and Pattern Formation in Geosystems (eds Jamtveit, B. & Meakin, P.) 291–326 (Kluwer, Dordrecht, 1999).

  61. 61.

    Brantley, S. L. & Conrad, C. F. in Kinetics of Water–Rock Interaction (eds Brantley, S.L., Kubicki, J. D. & White, A. F.) 1–37 (Springer, New York, 2008).

  62. 62.

    Bandstra, J. Z. & Brantley, S. L. in Kinetics of Water–Rock Interaction (eds Brantley, S.L., Kubicki, J. D. & White, A. F.) 211–257 (Springer, New York, 2008).

  63. 63.

    Tosca, N. J., McLennan, S. M., Lindsley, D. H. & Schoonen, A. A. Acid-sulfate weathering of synthetic Martian basalt: the acid fog model revisited. J. Geophys. Res. Planets 109, E05003 (2004).

  64. 64.

    Braterman, P. S., Cairns-Smith, A. G. & Sloper, R. W. Photo-oxidation of iron(ii) in water between pH 7.5 and 4.0. J. Chem. Soc. Dalton Trans. 7, 1441–1445 (1984).

  65. 65.

    Butler, I. B., Schoonen, M. A. & Rickard, D. T. Removal of dissolved oxygen from water: a comparison of four common techniques. Talanta 41, 211–215 (1994).

  66. 66.

    Loomis, W. F. Rapid microcolorimetric determination of dissolved oxygen. Anal. Chem. 26, 402–404 (1954).

  67. 67.

    Kandegedara, A. & Rorabacher, D. B. Noncomplexing tertiary amines as “better” buffers covering the range of pH 3–11. Temperature dependence of their acid dissociation constants. Anal. Chem. 71, 3140–4 (1999).

  68. 68.

    Nordstrom, D. K. Thermochemical redox equilibria of ZoBell’s solution. Geochim. Cosmochim. Acta 41, 1835–1841 (1977).

  69. 69.

    Toby, B. H. & Von Dreele, R. B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46, 544–549 (2013).

  70. 70.

    Fleet, M. E. The structure of magnetite: symmetry of cubic spinels. J. Solid State Chem. 62, 75–82 (1986).

  71. 71.

    Parise, J. B., Marshall, W. G., Smith, R. I., Lutz, H. D. & Möller, H. The nuclear and magnetic structure of white rust Fe(OH0.86D0.14)2. Am. Mineral. 85, 189–193 (2000).

Download references

Acknowledgements

We thank R. T. Pierrehumbert, A. Knoll and J. Grotzinger for enthusiasm and feedback. N.J.T acknowledges funding from Science and Technology Facilities Council grant ST/M004716/1. J.A.H. acknowledges funding from NASA grant NNX13AR09G. N.J.T. and J.A.H. thank Fondation des Treilles for support for a meeting that helped crystallize the research. We thank J. Catalano for comments that improved the quality of this manuscript.

Author information

Affiliations

  1. Department of Earth Sciences, University of Oxford, Oxford, UK

    • Nicholas J. Tosca
    • , Imad A. M. Ahmed
    •  & Alice Ashpitel
  2. Department of Geoscience, University of Calgary, Calgary, Alberta, Canada

    • Benjamin M. Tutolo
  3. Department of Geosciences, Stony Brook University, Stony Brook, NY, USA

    • Joel A. Hurowitz

Authors

  1. Search for Nicholas J. Tosca in:

  2. Search for Imad A. M. Ahmed in:

  3. Search for Benjamin M. Tutolo in:

  4. Search for Alice Ashpitel in:

  5. Search for Joel A. Hurowitz in:

Contributions

N.J.T. and J.A.H. conceived the research, N.J.T., I.A.M.A. and A.A. performed the laboratory work, B.M.T. developed and executed the reactive transport calculations, and all authors analysed the data. N.J.T. wrote the paper with contributions from J.A.H., I.A.M.A and B.M.T.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Nicholas J. Tosca.

Supplementary information

  1. Supplementary Information

    Supplementary tables, figures and discussion.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41561-018-0203-8