Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Geological evidence for high H2 production from komatiites in the Archaean

An Author Correction to this article was published on 14 December 2023

This article has been updated

Abstract

The oxidation of iron from rocks during subaqueous alteration is a key source of the molecular hydrogen (H2) used as an energy source by chemosynthetic organisms, which may represent some of the earliest forms of life on Earth. In the Archaean, a potential source of ultramafic material available for serpentinization reactions that release H2 are komatiites. Komatiites are highly magnesian lavas, which contain evidence of extensive serpentinization and magnetite (Fe2+Fe3+2O4) production close to the Archaean seafloor. H2 production in komatiitic compositions has been modelled and experimentally investigated; however, the natural rock record has remained unexplored. Here we examine the geological evidence of H2 production from the basaltic to komatiitic rock record held in Archaean cratons. From the petrological investigation of 38 samples of komatiitic basalt to komatiite, we identify the unique serpentinization reaction responsible for H2 production from these lithologies. With support from over 1,100 bulk rock geochemical analyses, we directly quantify Fe3+ and therefore H2 production of komatiites in the Archaean. The chemical (high Mg) and physical (low viscosity flow) characteristics of komatiite flows allowed for extensive hydration and serpentinization in oceanic plateaus and therefore high H2 production available to chemosynthetic early life.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Scanning electron microscope images of the most common magnetite-forming textures in komatiite samples.
Fig. 2: Bulk measured and calculated geochemical data from komatiite samples.
Fig. 3: Calculated ferric iron contents from komatiite samples of this study compared to a measured global geochemical database.

Similar content being viewed by others

Data availability

Whole rock geochemical data, magnetite abundance and H2 content for natural samples is in Supplementary Table 1. The subset of the whole rock geochemical database and calculated H2 content is in Supplementary Table 2. These tables are also available open access at https://doi.org/10.5281/zenodo.8349683.

Change history

References

  1. Martin, W., Baross, J., Kelley, D. & Russell, M. J. Hydrothermal vents and the origin of life. Nat. Rev. Microbiol. 6, 805–814 (2008).

    Article  Google Scholar 

  2. Sleep, N. H., Bird, D. K. & Pope, E. C. Serpentinite and the dawn of life. Philos. Trans. R. Soc. B 366, 2857–2869 (2011).

    Article  Google Scholar 

  3. Takai, K. et al. Ultramafics–hydrothermalism–hydrogenesis–hyperSLiME (UltraH3) linkage: a key insight into early microbial ecosystem in the Archean deep-sea hydrothermal systems. Paleontol. Res. 10, 269–282 (2006).

    Article  Google Scholar 

  4. Camprubí, E. et al. The emergence of life. Space Sci. Rev. 215, 56 (2019).

  5. Moody, J. B. Serpentinization: a review. Lithos 9, 125–138 (1976).

  6. Bach, W. et al. Unraveling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15° N (ODP Leg 209, Site 1274). Geophys. Res. Lett. 33, 4–7 (2006).

    Article  Google Scholar 

  7. Klein, F. et al. Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15° N on the Mid-Atlantic Ridge. Geochim. Cosmochim. Acta 73, 6868–6893 (2009).

    Article  Google Scholar 

  8. McCollom, T. M. & Seewald, J. S. Serpentinites, hydrogen, and life. Elements 9, 129–134 (2013).

    Article  Google Scholar 

  9. Cannat, M. et al. Serpentinization and associated hydrogen and methane fluxes at slow spreading ridges. In Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges (eds Rona, P. A. et al) Geophysical Monograph Series https://doi.org/10.1029/2008GM000760 (American Geophysical Union, 2010).

  10. Leong, J. A. M., Ely, T. & Shock, E. L. Decreasing extents of Archean serpentinization contributed to the rise of an oxidized atmosphere. Nat. Commun. 12, 7341 (2021).

  11. Evans, B. W. Lizardite versus antigorite serpentinite: magnetite, hydrogen, and life(?). Geology 38, 879–882 (2010).

  12. Mayhew, L. E., Ellison, E. T., McCollom, T. M., Trainor, T. P. & Templeton, A. S. Hydrogen generation from low-temperature water–rock reactions. Nat. Geosci. 6, 478–484 (2013).

    Article  Google Scholar 

  13. Huang, R. et al. The production of iron oxide during peridotite serpentinization: influence of pyroxene. Geosci. Front. 8, 1311–1321 (2017).

    Article  Google Scholar 

  14. Sleep, N. H., Meibom, A., Fridriksson, T., Coleman, R. G. & Bird, D. K. H2-rich fluids from serpentinization: geochemical and biotic implications. Proc. Natl Acad. Sci. USA 101, 12818–12823 (2004).

    Article  Google Scholar 

  15. Klein, F. & Bach, W. Fe–Ni–Co–O–S phase relations in peridotite–seawater interactions. J. Petrol. 50, 37–59 (2009).

    Article  Google Scholar 

  16. Furnes, H. & Dilek, Y. Archean versus Phanerozoic oceanic crust formation and tectonics: ophiolites through time. Geosyst. Geoenviron. 1, 100004 (2022).

    Article  Google Scholar 

  17. Bickle, M. J., Nisbet, E. G. & Martin, A. Archean greenstone belts are not oceanic crust. J. Geol. 102, 121–137 (1994).

    Article  Google Scholar 

  18. Puchtel, I. S. et al. Oceanic plateau model for continental crustal growth in the Archaean: a case study from the Kostomuksha greenstone belt, NW Baltic Shield. Earth Planet. Sci. Lett. 155, 57–74 (1998).

    Article  Google Scholar 

  19. Anhaeusser, C. R. Archaean greenstone belts and associated granitic rocks—a review. J. Afr. Earth Sci. 100, 684–732 (2014).

    Article  Google Scholar 

  20. de Wit, M. J., Furnes, H. & Robins, B. Geology and tectonostratigraphy of the Onverwacht Suite, Barberton Greenstone Belt, South Africa. Precambrian Res. 186, 1–27 (2011).

    Article  Google Scholar 

  21. Nesbitt, R. W., Sun, S.-S. & Purvis, A. C. Komatiites: geochemistry and genesis. Can. Mineral. 17, 165–186 (1979).

    Google Scholar 

  22. Arndt, N., Lesher, M. & Barnes, S. Komatiite (Cambridge Univ. Press, 2008).

  23. Sossi, P. A. et al. Petrogenesis and geochemistry of Archean Komatiites. J. Petrol. 57, 147–184 (2016).

    Article  Google Scholar 

  24. Russell, M. J., Hall, A. J. & Martin, W. Serpentinization as a source of energy at the origin of life. Geobiology 8, 355–371 (2010).

    Article  Google Scholar 

  25. Lazar, C., McCollom, T. M. & Manning, C. E. Abiogenic methanogenesis during experimental komatiite serpentinization: implications for the evolution of the early Precambrian atmosphere. Chem. Geol. 326, 102–112 (2012).

    Article  Google Scholar 

  26. Yoshizaki, M. et al. H2 generation by experimental hydrothermal alteration of komatiitic glass at 300 °C and 500 bars: a preliminary result from on-going experiment. Geochem. J. 43, 17–22 (2009).

    Article  Google Scholar 

  27. Shibuya, T. et al. Hydrogen-rich hydrothermal environments in the Hadean ocean inferred from serpentinization of komatiites at 300 °C and 500 bar. Prog. Earth Planet. Sci. 2, 46 (2015).

  28. Ueda, H. et al. Reactions between komatiite and CO2-rich seawater at 250 and 350 °C, 500 bars: implications for hydrogen generation in the Hadean seafloor hydrothermal system. Prog. Earth Planet. Sci. 3, 35 (2016).

  29. Ueda, H., Sawaki, Y. & Maruyama, S. Reactions between olivine and CO2-rich seawater at 300 °C: implications for H2 generation and CO2 sequestration on the early Earth. Geosci. Front. 8, 387–396 (2017).

    Article  Google Scholar 

  30. White, L. M. et al. Simulating serpentinization as it could apply to the emergence of life using the JPL hydrothermal reactor. Astrobiology 20, 307–326 (2020).

    Article  Google Scholar 

  31. Ueda, H. et al. Chemical nature of hydrothermal fluids generated by serpentinization and carbonation of komatiite: implications for H2‐rich hydrothermal system and ocean chemistry in the early Earth. Geochem. Geophys. Geosyst. 22, e2021GC009827 (2021).

    Article  Google Scholar 

  32. Campbell, I. H. & Davies, D. R. Raising the continental crust. Earth Planet. Sci. Lett. 460, 112–122 (2017).

    Article  Google Scholar 

  33. Staudigel, H. Hydrothermal alteration processes in the oceanic crust. Treatise Geochem. 3, 659 (2003).

    Google Scholar 

  34. Klein, F. et al. Magnetite in seafloor serpentinite—some like it hot. Geology 42, 135–138 (2014).

    Article  Google Scholar 

  35. Marcaillou, C., Muñoz, M., Vidal, O., Parra, T. & Harfouche, M. Mineralogical evidence for H2 degassing during serpentinization at 300 °C/300bar. Earth Planet. Sci. Lett. 303, 281–290 (2011).

    Article  Google Scholar 

  36. Andreani, M., Muñoz, M., Marcaillou, C. & Delacour, A. μXANES study of iron redox state in serpentine during oceanic serpentinization. Lithos 178, 70–83 (2013).

    Article  Google Scholar 

  37. Evans, B. W., Dyar, M. D. & Kuehner, S. M. Implications of ferrous and ferric iron in antigorite. Am. Mineral. 97, 184–196 (2012).

    Article  Google Scholar 

  38. Evans, B. W. Control of the products of serpentinization by the Fe2+ Mg−1 exchange potential of olivine and orthopyroxene. J. Petrol. 49, 1873–1887 (2008).

    Article  Google Scholar 

  39. Tamblyn, R. et al. Hydrated komatiites as a source of water for TTG formation in the Archean. Earth Planet. Sci. Lett. 603, 117982 (2023).

    Article  Google Scholar 

  40. Gard, M., Hasterok, D. & Halpin, J. A. Global whole-rock geochemical database compilation. Earth Sys. Sci. Data 11, 1553–1566 (2019).

    Article  Google Scholar 

  41. Berry, A. J. et al. Oxidation state of iron in komatiitic melt inclusions indicates hot Archaean mantle. Nature 455, 960–963 (2008).

    Article  Google Scholar 

  42. Masci, L. et al. A XANES and EPMA study of Fe3+ in chlorite: importance of oxychlorite and implications for cation site distribution and thermobarometry. Am. Mineral. J. Earth Planet. Mater. 104, 403–417 (2019).

    Article  Google Scholar 

  43. Ratschbacher, B. C. et al. Fe3+/FeT ratios of amphiboles determined by high spatial resolution single-crystal synchrotron Mössbauer spectroscopy. Am. Mineral. 108, 70–86 (2023).

    Article  Google Scholar 

  44. Hao, X. L. & Li, Y. L. Hexagonal plate-like magnetite nanocrystals produced in komatiite-H2O-CO2 reaction system at 450 °C. Int. J. Astrobiol. 14, 547–553 (2015).

    Article  Google Scholar 

  45. Lazar, C., McCollom, T. M. & Manning, C. E. Abiogenic methanogenesis during experimental komatiite serpentinization: implications for the evolution of the early Precambrian atmosphere. Chem. Geol. 326–327, 102–112 (2012).

    Article  Google Scholar 

  46. Yoshizaki, M. et al. H2 generation by experimental hydrothermal alteration of komatiitic glass at 300 °C and 500 bars: a preliminary result from on-going experiment. Geochem. J. 43, e17–e22 (2009).

    Article  Google Scholar 

  47. Ueda, H. et al. Chemical nature of hydrothermal fluids generated by serpentinization and carbonation of komatiite: implications for H2-rich hydrothermal system and ocean chemistry in the early Earth. Geochem. Geophys. Geosyst. 22, e2021GC009827 (2021).

    Article  Google Scholar 

  48. Suzuki, K., Shibuya, T., Yoshizaki, M. & Hirose, T. Experimental hydrogen production in hydrothermal and fault systems: significance for habitability of subseafloor H2 chemoautotroph microbial ecosystems. In Subseafloor Biosphere Linked to Hydrothermal Systems. (eds Ishibashi, J. et al.) https://doi.org/10.1007/978-4-431-54865-2_8 (Springer, 2015).

  49. Evans, K. A., Powell, R. & Frost, B. R. Using equilibrium thermodynamics in the study of metasomatic alteration, illustrated by an application to serpentinites. Lithos 168, 67–84 (2013).

    Article  Google Scholar 

  50. Dann, J. C. The 3.5 Ga Komati Formation, Barberton Greenstone Belt, South Africa, part I: new maps and magmatic architecture. South Afr. J. Geol. 103, 47–68 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to P. Sossi, T. Pettke, S. Chatterjee and A. Brett for providing many of the rock samples used in this study and to M. Bermanec and T. Pettke for bulk rock analyses. S. Chatterjee is also thanked for providing bulk rock analyses. We also thank C. Vesin and P. Lanari for useful scientific and data-driven discussions and J. Gillespie and T. Pettke for comments on this manuscript. We acknowledge Schweizerische Nationalfonds (SNF) grant 200020-196927 for support of this research.

Author information

Authors and Affiliations

Authors

Contributions

R.T.: investigation, formal analysis, visualization, writing–original draft. J.H.: conceptualization, investigation, resources, writing–review and editing, project administration, funding acquisition.

Corresponding author

Correspondence to R. Tamblyn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Ian Campbell and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alison Hunt, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 SEM images of uncommon magnetite forming textures documented in komatiite samples.

a) Blocky magnetite psuedomorphs. Blocky magnetite grains intergrown with chlorite, ilmenite, amphibole and less commonly apatite. Magnetite can contain up to 6 wt.% Cr. Occurs in one sample. b) Thin magnetite rims formed on relic skeletal igneous Cr-spinel. Occurs in three samples. c) Flaky magnetite forming with Ni-sulphides pentlandite and heazlewoodite, surrounded by chlorite. Occurs in one sample. d) Magnetite veins. Magnetite forming either in veins or along the margins of veins. Common but timing unknown.

Supplementary information

Supplementary Information

Supplementary information on magnetite-producing textures.

Supplementary Table 1-2

Magnetite and Fe2O3 calculations from studied samples, including bulk rock geochemical analyses (in wt%). Subset of the whole rock geochemical database from Gard et al. (2019), including komatiites and basaltic komatiites.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamblyn, R., Hermann, J. Geological evidence for high H2 production from komatiites in the Archaean. Nat. Geosci. 16, 1194–1199 (2023). https://doi.org/10.1038/s41561-023-01316-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-023-01316-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing