Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Long-term self-renewing human epicardial cells generated from pluripotent stem cells under defined xeno-free conditions

Abstract

The epicardium contributes both multi-lineage descendants and paracrine factors to the heart during cardiogenesis and cardiac repair, underscoring its potential for use in cardiac regenerative medicine. Yet little is known about the cellular and molecular mechanisms that regulate human epicardial development and regeneration. Here, we show that the temporal modulation of canonical Wnt signalling is sufficient for epicardial induction from six different human pluripotent stem cell (hPSC) lines, including a WT1-2A-eGFP knock-in reporter line, under chemically defined, xeno-free conditions. We also show that treatment with transforming growth factor beta (TGF-β)-signalling inhibitors permitted long-term expansion of the hPSC-derived epicardial cells, resulting in more than 25 population doublings of WT1+ cells in homogenous monolayers. The hPSC-derived epicardial cells were similar to primary epicardial cells both in vitro and in vivo, as determined by morphological and functional assays, including RNA sequencing. Our findings have implications for the understanding of self-renewal mechanisms of the epicardium and for epicardial regeneration using cellular or small-molecule therapies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Wnt/β-catenin signalling directs the specification of WT1+ epicardial lineages from hPSC-derived cardiac progenitors.
Figure 2: Construction of the WT1-2A-eGFP knock-in ES03 hESC line using Cas9 nuclease.
Figure 3: Molecular analysis of hPSC-derived epicardial cells under chemically defined, albumin-free conditions.
Figure 4: hPSC-derived epicardial cells undergo an EMT in response to bFGF and TGF-β1 treatment, yielding epicardium-derived cells that display characteristics of fibroblasts and vascular smooth muscle cells.
Figure 5: Long-term expansion of hPSC-derived epicardial cells. a,b, H13 hESC-derived day 18 epicardial cells were seeded at a density of 0.05 million cells per cm2 and treated with the indicated small molecules for 3 days (concentrations provided in Supplementary Table 1).
Figure 6: hPSC-derived epicardial cells were similar to primary epicardial cells.
Figure 7

Similar content being viewed by others

References

  1. Brade, T., Pane, L. S., Moretti, A., Chien, K. R. & Laugwitz, K.-L. Embryonic heart progenitors and cardiogenesis. Cold Spring Harb. Perspect. Med. 3, a013847 (2013).

    Article  Google Scholar 

  2. Männer, J. & Ruiz-Lozano, P. Development and function of the epicardium. Adv. Dev. Biol. 18, 333–357 (2007).

    Article  Google Scholar 

  3. Pérez-Pomares, J.-M. et al. Origin of coronary endothelial cells from epicardial mesothelium in avian embryos. Int. J. Dev. Biol. 46, 1005–1013 (2002).

    PubMed  Google Scholar 

  4. Smart, N. et al. Thymosin β4 induces adult epicardial progenitor mobilization and neovascularization. Nature 445, 177–182 (2007).

    Article  CAS  Google Scholar 

  5. Zhou, B. et al. Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. J. Clin. Invest. 121, 1894–1904 (2011).

    Article  CAS  Google Scholar 

  6. Kikuchi, K. et al. Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration. Dev. Cell 20, 397–404 (2011).

    Article  CAS  Google Scholar 

  7. Zhou, B. et al. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454, 109–113 (2008).

    Article  CAS  Google Scholar 

  8. Murry, C. E. & Keller, G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132, 661–680 (2008).

    Article  CAS  Google Scholar 

  9. Kattman, S. J. et al. Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 8, 228–240 (2011).

    Article  CAS  Google Scholar 

  10. Lian, X. J. et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc. Natl Acad. Sci. USA 109, E1848–E1857 (2012).

    Article  CAS  Google Scholar 

  11. Lian, X. et al. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat. Protoc. 8, 162–175 (2013).

    Article  CAS  Google Scholar 

  12. Minami, I. et al. A small molecule that promotes cardiac differentiation of human pluripotent stem cells under defined, cytokine- and xeno-free conditions. Cell Rep. 2, 1448–1460 (2012).

    Article  CAS  Google Scholar 

  13. Bao, X. et al. Chemically-defined albumin-free differentiation of human pluripotent stem cells to endothelial progenitor cells. Stem Cell Res. 15, 122–129 (2015).

    Article  CAS  Google Scholar 

  14. Lian, X. et al. Efficient differentiation of human pluripotent stem cells to endothelial progenitors via small-molecule activation of WNT signaling. Stem Cell Rep. 3, 804–816 (2014).

    Article  CAS  Google Scholar 

  15. Sahara, M. et al. Manipulation of a VEGF-Notch signaling circuit drives formation of functional vascular endothelial progenitors from human pluripotent stem cells. Cell Res. 24, 820–841 (2014).

    Article  CAS  Google Scholar 

  16. Wang, A. et al. Derivation of smooth muscle cells with neural crest origin from human induced pluripotent stem cells. Cells Tissues Organs 195, 5–14 (2012).

    Article  Google Scholar 

  17. Cheung, C., Bernardo, A. S., Trotter, M. W. B., Pedersen, R. A. & Sinha, S. Generation of human vascular smooth muscle subtypes provides insight into embryological origin–dependent disease susceptibility. Nat. Biotechnol. 30, 165–173 (2012).

    Article  CAS  Google Scholar 

  18. Witty, A. D. et al. Generation of the epicardial lineage from human pluripotent stem cells. Nat. Biotechnol. 32, 1026–1035 (2014).

    Article  CAS  Google Scholar 

  19. Iyer, D. et al. Robust derivation of epicardium and its differentiated smooth muscle cell progeny from human pluripotent stem cells. Development 142, 1528–1541 (2015).

    Article  CAS  Google Scholar 

  20. van Tuyn, J. et al. Epicardial cells of human adults can undergo an epithelial-to-mesenchymal transition and obtain characteristics of smooth muscle cells in vitro. Stem Cells 25, 271–278 (2007).

    Article  CAS  Google Scholar 

  21. Lian, X. et al. Chemically defined, albumin-free human cardiomyocyte generation. Nat. Methods 12, 595–596 (2015).

    Article  CAS  Google Scholar 

  22. Nakanishi, M. et al. Directed induction of anterior and posterior primitive streak by Wnt from embryonic stem cells cultured in a chemically defined serum-free medium. FASEB J. 23, 114–22 (2009).

    Article  CAS  Google Scholar 

  23. Zhou, B., von Gise, A., Ma, Q., Rivera-Feliciano, J. & Pu, W. T. Nkx2-5- and Isl1-expressing cardiac progenitors contribute to proepicardium. Biochem. Biophys. Res. Commun. 375, 450–453 (2008).

    Article  CAS  Google Scholar 

  24. Yu, P. et al. FGF2 sustains NANOG and switches the outcome of BMP4-induced human embryonic stem cell differentiation. Cell Stem Cell 8, 326–334 (2011).

    Article  CAS  Google Scholar 

  25. Moore, A. W., McInnes, L., Kreidberg, J., Hastie, N. D. & Schedl, A. YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis. Development 126, 1845–1857 (1999).

    CAS  PubMed  Google Scholar 

  26. Martínez-Estrada, O. M. et al. Wt1 is required for cardiovascular progenitor cell formation through transcriptional control of Snail and E-cadherin. Nat. Genet. 42, 89–93 (2010).

    Article  Google Scholar 

  27. Hockemeyer, D. et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nat. Biotechnol. 29, 731–734 (2011).

    Article  CAS  Google Scholar 

  28. Chen, Y. et al. Engineering human stem cell lines with inducible gene knockout using CRISPR/Cas9. Cell Stem Cell 17, 233–244 (2015).

    Article  Google Scholar 

  29. Kofidis, T. et al. Insulin-like growth factor promotes engraftment, differentiation, and functional improvement after transfer of embryonic stem cells for myocardial restoration. Stem Cells 22, 1239–1245 (2004).

    Article  CAS  Google Scholar 

  30. Engels, M. C. et al. Insulin-like growth factor promotes cardiac lineage induction in vitro by selective expansion of early mesoderm. Stem Cells 32, 1493–1502 (2014).

    Article  CAS  Google Scholar 

  31. Cao, N. et al. Ascorbic acid enhances the cardiac differentiation of induced pluripotent stem cells through promoting the proliferation of cardiac progenitor cells. Cell Res. 22, 219–236 (2012).

    Article  CAS  Google Scholar 

  32. Ueno, S. et al. Biphasic role for Wnt/β-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proc. Natl Acad. Sci. USA 104, 9685–9690 (2007).

    Article  CAS  Google Scholar 

  33. David, R. et al. MesP1 drives vertebrate cardiovascular differentiation through Dkk-1-mediated blockade of Wnt-signalling. Nat. Cell Biol. 10, 338–345 (2008).

    Article  CAS  Google Scholar 

  34. Ruiz-Villalba, A., Ziogas, A., Ehrbar, M. & Pérez-Pomares, J. M. Characterization of epicardial-derived cardiac interstitial cells: differentiation and mobilization of heart fibroblast progenitors. PLoS ONE 8, e53694 (2013).

    Article  CAS  Google Scholar 

  35. Pérez-Pomares, J. M. et al. Experimental studies on the spatiotemporal expression of WT1 and RALDH2 in the embryonic avian heart: a model for the regulation of myocardial and valvuloseptal development by epicardially derived cells (EPDCs). Dev. Biol. 247, 307–326 (2002).

    Article  Google Scholar 

  36. Lian, X. et al. A small molecule inhibitor of SRC family kinases promotes simple epithelial differentiation of human pluripotent stem cells. PLoS ONE 8, e60016 (2013).

    Article  CAS  Google Scholar 

  37. Garriock, R. J., Mikawa, T. & Yamaguchi, T. P. Isolation and culture of mouse proepicardium using serum-free conditions. Methods 66, 365–369 (2014).

    Article  CAS  Google Scholar 

  38. Dye, B. R. et al. In vitro generation of human pluripotent stem cell derived lung organoids. eLife 4, e05098 (2015).

    Article  Google Scholar 

  39. Tadeu, A. M. B. et al. Transcriptional profiling of ectoderm specification to keratinocyte fate in human embryonic stem cells. PLoS ONE 10, e0122493 (2015).

    Article  Google Scholar 

  40. Prasain, N. et al. Differentiation of human pluripotent stem cells to cells similar to cord-blood endothelial colony-forming cells. Nat. Biotechnol. 32, 1151–1157 (2014).

    Article  CAS  Google Scholar 

  41. Palpant, N. J. et al. Inhibition of β-catenin signaling respecifies anterior-like endothelium into beating human cardiomyocytes. Development 142, 3198–3209 (2015).

    Article  CAS  Google Scholar 

  42. Bochmann, L. et al. Revealing new mouse epicardial cell markers through transcriptomics. PLoS ONE 5, e11429 (2010).

    Article  Google Scholar 

  43. Lian, X., Xu, J., Bao, X. & Randolph, L. N. Interrogating canonical Wnt signaling pathway in human pluripotent stem cell fate decisions using CRISPR-Cas9. Cell. Mol. Bioeng. 9, 325–334 (2016).

    Article  CAS  Google Scholar 

  44. Lam, J. T., Moretti, A. & Laugwitz, K.-L. Multipotent progenitor cells in regenerative cardiovascular medicine. Pediatr. Cardiol. 30, 690–698 (2009).

    Article  Google Scholar 

  45. Winter, E. M. et al. Preservation of left ventricular function and attenuation of remodeling after transplantation of human epicardium-derived cells into the infarcted mouse heart. Circulation 116, 917–927 (2007).

    Article  CAS  Google Scholar 

  46. Wang, J., Cao, J., Dickson, A. L. & Poss, K. D. Epicardial regeneration is guided by cardiac outflow tract and Hedgehog signalling. Nature 522, 226–230 (2015).

    Article  CAS  Google Scholar 

  47. Xiao, Y., Liu, K., Shen, J., Xu, G. & Ye, W. SB-431542 inhibition of scar formation after filtration surgery and its potential mechanism. Invest. Ophthalmol. Vis. Sci. 50, 1698–1706 (2009).

    Article  Google Scholar 

  48. Phillips, M. D., Mukhopadhyay, M., Poscablo, C. & Westphal, H. Dkk1 and Dkk2 regulate epicardial specification during mouse heart development. Int. J. Cardiol. 150, 186–192 (2011).

    Article  Google Scholar 

  49. Bao, X., Lian, X. & Palecek, S. P. Directed endothelial progenitor differentiation from human pluripotent stem cells via Wnt activation under defined conditions. Methods Mol. Biol. 1481, 183–196 (2016).

    Article  CAS  Google Scholar 

  50. Schmuck, E. G. et al. Cardiac fibroblast-derived 3D extracellular matrix seeded with mesenchymal stem cells as a novel device to transfer cells to the ischemic myocardium. Cardiovasc. Eng. Technol. 5, 119–131 (2014).

    Article  Google Scholar 

  51. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    Article  CAS  Google Scholar 

  52. Ramsköld, D., Wang, E. T., Burge, C. B. & Sandberg, R. An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data. PLoS Comput. Biol. 5, e1000598 (2009).

    Article  Google Scholar 

  53. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  Google Scholar 

  54. Bao, X. et al. Dataset for Long-term self-renewing human epicardial cells generated from pluripotent stem cells under defined xeno-free conditions. figsharehttp://dx.doi.org/10.6084/m9.figshare.3971748 (2016).

Download references

Acknowledgements

We thank D.A. Roenneburg and X. Wang for their technical support. We also thank members of the Palecek group for critical discussion of the manuscript. This work was supported by NIH grant EB007534 (S.P.P.), NSF grant 1547225 (S.P.P.), and a fellowship from the University of Wisconsin Stem Cell and Regenerative Medicine Center (X.B.).

Author information

Authors and Affiliations

Authors

Contributions

X.B. and S.P.P. designed this study and prepared the manuscript. X.B. undertook experimentation and data analysis. X.L. contributed to the study design and assisted in writing the manuscript. T.A.H. and E.G.S. designed and performed the in vivo study. T.H., V.J.B., T.Q. and M.S. assisted in differentiation experiments and data analysis. L.D., A.T.P., Q.-D.W. and M.-J.G. isolated and provided the human primary donor samples for RNA-seq. All authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Sean P. Palecek.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures and tables, and movie legends. (PDF 3818 kb)

Supplementary Movie 1

Non-contracting hESC-derived pro-epicardial cells at day 12. (AVI 18384 kb)

Supplementary Movie 2

Spontaneously contracting hESC-derived cardiomyocytes at day 12. (AVI 17886 kb)

Supplementary Movie 3

Spontaneously contracting hESC-derived cardiomyocytes at day 12. (AVI 9065 kb)

Supplementary Movie 4

Non-contracting iPSC-derived pro-epicardial cells at day 12. (AVI 22676 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, X., Lian, X., Hacker, T. et al. Long-term self-renewing human epicardial cells generated from pluripotent stem cells under defined xeno-free conditions. Nat Biomed Eng 1, 0003 (2017). https://doi.org/10.1038/s41551-016-0003

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41551-016-0003

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research