Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fibroblast and myofibroblast activation in normal tissue repair and fibrosis

Abstract

The term ‘fibroblast’ often serves as a catch-all for a diverse array of mesenchymal cells, including perivascular cells, stromal progenitor cells and bona fide fibroblasts. Although phenotypically similar, these subpopulations are functionally distinct, maintaining tissue integrity and serving as local progenitor reservoirs. In response to tissue injury, these cells undergo a dynamic fibroblast–myofibroblast transition, marked by extracellular matrix secretion and contraction of actomyosin-based stress fibres. Importantly, whereas transient activation into myofibroblasts aids in tissue repair, persistent activation triggers pathological fibrosis. In this Review, we discuss the roles of mechanical cues, such as tissue stiffness and strain, alongside cell signalling pathways and extracellular matrix ligands in modulating myofibroblast activation and survival. We also highlight the role of epigenetic modifications and myofibroblast memory in physiological and pathological processes. Finally, we discuss potential strategies for therapeutically interfering with these factors and the associated signal transduction pathways to improve the outcome of dysregulated healing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Myofibroblast activation states in normal and pathological tissue repair.
Fig. 2: Signalling pathways regulating myofibroblast activation.
Fig. 3: Nuclear mechanotransduction and myofibroblast memory.

Similar content being viewed by others

References

  1. Virchow, R. A. Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre (Hirschwald, 1858).

  2. Schwann, T. Microscopical Researches into the Accordance in the Structure and Growth of Animals and Plants (English translation by Henry Smith, for the Sydenham Society, 1847) (Sydenham Society, 1839).

  3. Liebert, H. Abhandlungen aus dem Gebiete der praktischen Chirurgie und der pathologischen Physiologie. Nach eigenen Untersuchungen und Erfahrungen und mit besonderer Rücksicht auf die Dieffenbach’sche Klinik in Berlin (Veit, 1849).

  4. Ziegler, E. General Pathology; or, The Science of the Causes, Nature and Course of the Pathological Disturbances which Occur in the Living Subject (W. Wood and Company, 1899).

  5. Tomasek, J. J., Gabbiani, G., Hinz, B., Chaponnier, C. & Brown, R. A. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 3, 349–363 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Pakshir, P. et al. The myofibroblast at a glance. J. Cell Sci. 133, jcs227900 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Abercrombie, M., Flint, M. H. & James, D. W. Wound contraction in relation to collagen formation in scorbutic guinea pigs. J. Embryol. Exp. Morphol. 4, 167–175 (1956).

    Google Scholar 

  8. Gabbiani, G., Ryan, G. B. & Majno, G. Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia 27, 549–550 (1971).

    Article  CAS  PubMed  Google Scholar 

  9. Majno, G., Gabbiani, G., Hirschel, B. J., Ryan, G. B. & Statkov, P. R. Contraction of granulation tissue in vitro: similarity to smooth muscle. Science 173, 548–550 (1971).

    Article  CAS  PubMed  Google Scholar 

  10. Schuster, R., Younesi, F., Ezzo, M. & Hinz, B. The role of myofibroblasts in physiological and pathological tissue repair. Cold Spring Harb. Perspect. Biol. 15, a041231 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Tallquist, M. D. & Molkentin, J. D. Redefining the identity of cardiac fibroblasts. Nat. Rev. Cardiol. 14, 484–491 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  12. de Oliveira Camargo, R., Abual’anaz, B., Rattan, S. G., Filomeno, K. L. & Dixon, I. M. C. Novel factors that activate and deactivate cardiac fibroblasts: a new perspective for treatment of cardiac fibrosis. Wound Repair Regen. 29, 667–677 (2021).

    Article  PubMed  Google Scholar 

  13. Schreibing, F., Anslinger, T. M. & Kramann, R. Fibrosis in pathology of heart and kidney: from deep RNA-sequencing to novel molecular targets. Circ. Res. 132, 1013–1033 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. Tacke, F., Puengel, T., Loomba, R. & Friedman, S. L. An integrated view of anti-inflammatory and antifibrotic targets for the treatment of NASH. J. Hepatol. 79, 552–566 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Brugger, M. D. & Basler, K. The diverse nature of intestinal fibroblasts in development, homeostasis, and disease. Trends Cell Biol. 33, 834–849 (2023).

    Article  PubMed  Google Scholar 

  16. Wang, J. et al. Novel mechanisms and clinical trial endpoints in intestinal fibrosis. Immunol. Rev. 302, 211–227 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Adams, K. L. & Gallo, V. The diversity and disparity of the glial scar. Nat. Neurosci. 21, 9–15 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Moss, B. J., Ryter, S. W. & Rosas, I. O. Pathogenic mechanisms underlying idiopathic pulmonary fibrosis. Annu. Rev. Pathol. 17, 515–546 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Talbott, H. E., Mascharak, S., Griffin, M., Wan, D. C. & Longaker, M. T. Wound healing, fibroblast heterogeneity, and fibrosis. Cell Stem Cell 29, 1161–1180 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Layton, T. & Nanchahal, J. Recent advances in the understanding of Dupuytren’s disease. F1000Res 8, 231 (2019).

    Article  CAS  Google Scholar 

  21. Wilson, S. E. Corneal myofibroblasts and fibrosis. Exp. Eye Res. 201, 108272 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Powell, S., Irnaten, M. & O’Brien, C. Glaucoma — ‘a stiff eye in a stiff body’. Curr. Eye Res. 48, 152–160 (2023).

    Article  PubMed  Google Scholar 

  23. Zeisberg, M. & Duffield, J. S. Resolved: EMT produces fibroblasts in the kidney. J. Am. Soc. Nephrol. 21, 1247–1253 (2010).

    Article  PubMed  Google Scholar 

  24. Rock, J. R. et al. Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc. Natl Acad. Sci. USA 108, E1475–E1483 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhao, J. et al. Sox9 and Rbpj differentially regulate endothelial to mesenchymal transition and wound scarring in murine endovascular progenitors. Nat. Commun. 12, 2564 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sinha, M. et al. Direct conversion of injury-site myeloid cells to fibroblast-like cells of granulation tissue. Nat. Commun. 9, 936 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bucala, R., Spiegel, L. A., Chesney, J., Hogan, M. & Cerami, A. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol. Med. 1, 71–81 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dias, D. O. et al. Pericyte-derived fibrotic scarring is conserved across diverse central nervous system lesions. Nat. Commun. 12, 5501 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Soliman, H. et al. Multipotent stromal cells: one name, multiple identities. Cell Stem Cell 28, 1690–1707 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Wirka, R. C. et al. Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis. Nat. Med. 25, 1280–1289 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shook, B. et al. The role of adipocytes in tissue regeneration and stem cell niches. Annu. Rev. Cell Dev. Biol. 6, 609–631 (2016).

    Article  Google Scholar 

  32. Rognoni, E. et al. Fibroblast state switching orchestrates dermal maturation and wound healing. Mol. Syst. Biol. 14, e8174 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jiang, D., Guo, R., Machens, H. G. & Rinkevich, Y. Diversity of fibroblasts and their roles in wound healing. Cold Spring Harb. Perspect. Biol. 15, a041222 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Papayannopoulou, T. G. & Martin, G. M. Alkaline phosphatase “constitutive” clones: evidence for de-novo heterogeneity of established human skin fibroblast strains. Exp. Cell Res. 45, 72–84 (1967).

    Article  CAS  PubMed  Google Scholar 

  35. Kisseleva, T. et al. Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc. Natl Acad. Sci. USA 109, 9448–9453 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yao, L. et al. Temporal control of PDGFRα regulates the fibroblast-to-myofibroblast transition in wound healing. Cell Rep. 40, 111192 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Scott, R. W., Arostegui, M., Schweitzer, R., Rossi, F. M. V. & Underhill, T. M. Hic1 defines quiescent mesenchymal progenitor subpopulations with distinct functions and fates in skeletal muscle regeneration. Cell Stem Cell 25, 797–813.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Abbasi, S. et al. Distinct regulatory programs control the latent regenerative potential of dermal fibroblasts during wound healing. Cell Stem Cell 27, 396–412.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Hagood, J. S. et al. Loss of fibroblast Thy-1 expression correlates with lung fibrogenesis. Am. J. Pathol. 167, 365–379 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fendt, B. M. et al. Protein atlas of fibroblast specific protein 1 (FSP1)/S100A4. Histol. Histopathol. 38, 1391–1401 (2023).

    CAS  PubMed  Google Scholar 

  41. Ramachandran, P. et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 575, 512–518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mederacke, I. et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat. Commun. 4, 2823 (2013).

    Article  PubMed  Google Scholar 

  43. Di Carlo, S. E. & Peduto, L. The perivascular origin of pathological fibroblasts. J. Clin. Invest. 128, 54–63 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Younesi, F. S., Son, D. O., Firmino, J. & Hinz, B. Myofibroblast markers and microscopy detection methods in cell culture and histology. Methods Mol. Biol. 2299, 17–47 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Guimaraes-Camboa, N. et al. Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo. Cell Stem Cell 20, 296–297 (2017).

    Article  Google Scholar 

  46. Lemos, D. R. & Duffield, J. S. Tissue-resident mesenchymal stromal cells: implications for tissue-specific antifibrotic therapies. Sci. Transl. Med. 10, eaan5174 (2018).

    Article  PubMed  Google Scholar 

  47. Pittenger, M. F. et al. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen. Med. 4, 22 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  48. El Agha, E. et al. Mesenchymal stem cells in fibrotic disease. Cell Stem Cell 21, 166–177 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Shaw, T. J. & Rognoni, E. Dissecting fibroblast heterogeneity in health and fibrotic disease. Curr. Rheumatol. Rep. 22, 33 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Muhl, L. et al. Single-cell analysis uncovers fibroblast heterogeneity and criteria for fibroblast and mural cell identification and discrimination. Nat. Commun. 11, 3953 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Soliman, H. et al. Pathogenic potential of Hic1-expressing cardiac stromal progenitors. Cell Stem Cell 26, 205–220.e8 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Kramann, R. et al. Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 16, 51–66 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Buechler, M. B. et al. Cross-tissue organization of the fibroblast lineage. Nature 593, 575–579 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Ascension, A. M., Fuertes-Alvarez, S., Ibanez-Sole, O., Izeta, A. & Arauzo-Bravo, M. J. Human dermal fibroblast subpopulations are conserved across single-cell RNA sequencing studies. J. Invest. Dermatol. 141, 1735–1744.e35 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Ushakumary, M. G., Riccetti, M. & Perl, A. T. Resident interstitial lung fibroblasts and their role in alveolar stem cell niche development, homeostasis, injury, and regeneration. Stem Cell Transl. Med. 10, 1021–1032 (2021).

    Article  CAS  Google Scholar 

  56. Tsukui, T. et al. Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis. Nat. Commun. 11, 1920 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kadur Lakshminarasimha Murthy, P. et al. Human distal lung maps and lineage hierarchies reveal a bipotent progenitor. Nature 604, 111–119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Konkimalla, A. et al. Transitional cell states sculpt tissue topology during lung regeneration. Cell Stem Cell 30, 1486–1502.e9 (2023).

    Article  CAS  PubMed  Google Scholar 

  59. Sikkema, L. et al. An integrated cell atlas of the lung in health and disease. Nat. Med. 29, 1563–1577 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Krishnamurty, A. T. et al. LRRC15+ myofibroblasts dictate the stromal setpoint to suppress tumour immunity. Nature 611, 148–154 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ligresti, G. et al. Mesenchymal cells in the lung: evolving concepts and their role in fibrosis. Gene 859, 147142 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kuppe, C. et al. Spatial multi-omic map of human myocardial infarction. Nature 608, 766–777 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Filliol, A. et al. Opposing roles of hepatic stellate cell subpopulations in hepatocarcinogenesis. Nature 610, 356–365 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Davidson, S. et al. Fibroblasts as immune regulators in infection, inflammation and cancer. Nat. Rev. Immunol. 21, 704–717 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Rodda, L. B. et al. Single-cell RNA sequencing of lymph node stromal cells reveals niche-associated heterogeneity. Immunity 48, 1014–1028.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Link, A. et al. Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nat. Immunol. 8, 1255–1265 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Maglaviceanu, A., Wu, B. & Kapoor, M. Fibroblast-like synoviocytes: role in synovial fibrosis associated with osteoarthritis. Wound Repair Regen. 29, 642–649 (2021).

    Article  PubMed  Google Scholar 

  68. Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. MacCarthy-Morrogh, L. & Martin, P. The hallmarks of cancer are also the hallmarks of wound healing. Sci. Signal. 13, eaay8690 (2020).

    Article  CAS  PubMed  Google Scholar 

  70. Tsukui, T. & Sheppard, D. Tracing the origin of pathologic pulmonary fibroblasts. Preprint at bioRxiv https://doi.org/10.1101/2022.11.18.517147 (2022).

    Article  Google Scholar 

  71. Correa-Gallegos, D. et al. CD201+ fascia progenitors choreograph injury repair. Nature 623, 792–802 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hinz, B., McCulloch, C. A. & Coelho, N. M. Mechanical regulation of myofibroblast phenoconversion and collagen contraction. Exp. Cell Res. 379, 119–128 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Hinz, B., Celetta, G., Tomasek, J. J., Gabbiani, G. & Chaponnier, C. Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Mol. Biol. Cell 12, 2730–2741 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hinz, B., Mastrangelo, D., Iselin, C. E., Chaponnier, C. & Gabbiani, G. Mechanical tension controls granulation tissue contractile activity and myofibroblast differentiation. Am. J. Pathol. 159, 1009–1020 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hinz, B., Gabbiani, G. & Chaponnier, C. The NH2-terminal peptide of α-smooth muscle actin inhibits force generation by the myofibroblast in vitro and in vivo. J. Cell Biol. 157, 657–663 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Prunotto, M. et al. Stable incorporation of α-smooth muscle actin into stress fibers is dependent on specific tropomyosin isoforms. Cytoskeleton 72, 257–267 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Chen, A., Arora, P. D., McCulloch, C. A. & Wilde, A. Cytokinesis requires localized β-actin filament production by an actin isoform specific nucleator. Nat. Commun. 8, 1530 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ronty, M. J. et al. Isoform-specific regulation of the actin-organizing protein palladin during TGF-β1-induced myofibroblast differentiation. J. Invest. Dermatol. 126, 2387–2396 (2006).

    Article  PubMed  Google Scholar 

  79. Alexander, J. I. et al. Palladin isoforms 3 and 4 regulate cancer-associated fibroblast pro-tumor functions in pancreatic ductal adenocarcinoma. Sci. Rep. 11, 3802 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jiang, D. et al. Two succeeding fibroblastic lineages drive dermal development and the transition from regeneration to scarring. Nat. Cell Biol. 20, 422–431 (2018).

    Article  CAS  PubMed  Google Scholar 

  81. Duong, T. E. et al. A single-cell regulatory map of postnatal lung alveologenesis in humans and mice. Cell Genom. 2, 100108 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Green, J., Endale, M., Auer, H. & Perl, A. K. Diversity of interstitial lung fibroblasts is regulated by platelet-derived growth factor receptor α kinase activity. Am. J. Respir. Cell Mol. Biol. 54, 532–545 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Desmouliere, A., Geinoz, A., Gabbiani, F. & Gabbiani, G. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J. Cell Biol. 122, 103–111 (1993).

    Article  CAS  PubMed  Google Scholar 

  84. Serini, G. & Gabbiani, G. Modulation of α-smooth muscle actin expression in fibroblasts by transforming growth factor-β isoforms: an in vivo and in vitro study. Wound Rep. Reg. 4, 278–287 (1996).

    Article  CAS  Google Scholar 

  85. Lodyga, M. & Hinz, B. TGF-β1 — a truly transforming growth factor in fibrosis and immunity. Semin. Cell Dev. Biol. 101, 123–139 (2020).

    Article  CAS  PubMed  Google Scholar 

  86. Massague, J. & Sheppard, D. TGF-β signaling in health and disease. Cell 186, 4007–4037 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Frangogiannis, N. G. Transforming growth factor-β in myocardial disease. Nat. Rev. Cardiol. 19, 435–455 (2022).

    Article  CAS  PubMed  Google Scholar 

  88. Bialik, J. F. et al. Profibrotic epithelial phenotype: a central role for MRTF and TAZ. Sci. Rep. 9, 4323 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Luo, K. Signaling cross talk between TGF-β/Smad and other signaling pathways. Cold Spring Harb. Perspect. Biol. 9, a022137 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Zhang, Y. E. Non-smad signaling pathways of the TGF-β family. Cold Spring Harb. Perspect. Biol. 19, 128–139 (2017).

    CAS  Google Scholar 

  91. Derynck, R. & Budi, E. H. Specificity, versatility, and control of TGF-β family signaling. Sci. Signal. 12, eaav5183 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bhattacharyya, S. et al. Pharmacological inhibition of Toll-like receptor-4 signaling by TAK242 prevents and induces regression of experimental organ fibrosis. Front. Immunol. 9, 2434 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Ng, B., Cook, S. A. & Schafer, S. Interleukin-11 signaling underlies fibrosis, parenchymal dysfunction, and chronic inflammation of the airway. Exp. Mol. Med. 52, 1871–1878 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Schuppan, D., Ashfaq-Khan, M., Yang, A. T. & Kim, Y. O. Liver fibrosis: direct antifibrotic agents and targeted therapies. Matrix Biol. 68-69, 435–451 (2018).

    Article  CAS  PubMed  Google Scholar 

  95. Sato, S., Yanagihara, T. & Kolb, M. R. J. Therapeutic targets and early stage clinical trials for pulmonary fibrosis. Expert Opin. Investig. Drugs 28, 19–28 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Lagares, D. & Hinz, B. Animal and human models of tissue repair and fibrosis: an introduction. Methods Mol. Biol. 2299, 277–290 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Tschumperlin, D. J., Ligresti, G., Hilscher, M. B. & Shah, V. H. Mechanosensing and fibrosis. J. Clin. Invest. 128, 74–84 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Sawant, M. et al. A story of fibers and stress: matrix-embedded signals for fibroblast activation in the skin. Wound Repair Regen. 29, 515–530 (2021).

    Article  PubMed  Google Scholar 

  99. Janmey, P. A., Georges, P. C. & Hvidt, S. Basic rheology for biologists. Methods Cell Biol. 83, 3–27 (2007).

    CAS  PubMed  Google Scholar 

  100. Dooling, L. J., Saini, K., Anlas, A. A. & Discher, D. E. Tissue mechanics coevolves with fibrillar matrisomes in healthy and fibrotic tissues. Matrix Biol. 111, 153–188 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kuehlmann, B., Bonham, C. A., Zucal, I., Prantl, L. & Gurtner, G. C. Mechanotransduction in wound healing and fibrosis. J. Clin. Med. 9, 1423 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Brown, R. A., Prajapati, R., McGrouther, D. A., Yannas, I. V. & Eastwood, M. Tensional homeostasis in dermal fibroblasts: mechanical responses to mechanical loading in three-dimensional substrates. J. Cell Physiol. 175, 323–332 (1998).

    Article  CAS  PubMed  Google Scholar 

  103. Pehrsson, M. et al. An MMP-degraded and cross-linked fragment of type III collagen as a non-invasive biomarker of hepatic fibrosis resolution. Liver Int. 42, 1605–1617 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ravassa, S. et al. Prediction of left ventricular reverse remodeling and outcomes by circulating collagen-derived peptides. JACC Heart Fail. 11, 58–72 (2023).

    Article  PubMed  Google Scholar 

  105. Hansen, A. H. et al. A serologically assessed neo-epitope biomarker of cellular fibronectin degradation is related to pulmonary fibrosis. Clin. Biochem. 118, 110599 (2023).

    Article  CAS  PubMed  Google Scholar 

  106. Leeming, D. J. et al. A serological marker of the N-terminal neoepitope generated during LOXL2 maturation is elevated in patients with cancer or idiopathic pulmonary fibrosis. Biochem. Biophys. Rep. 17, 38–43 (2019).

    CAS  PubMed  Google Scholar 

  107. Litvinov, R. I. & Weisel, J. W. Fibrin mechanical properties and their structural origins. Matrix Biol. 60-61, 110–123 (2017).

    Article  CAS  PubMed  Google Scholar 

  108. Barker, T. H. & Engler, A. J. The provisional matrix: setting the stage for tissue repair outcomes. Matrix Biol. 60-61, 1–4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lin, J., Sorrells, M. G., Lam, W. A. & Neeves, K. B. Physical forces regulating hemostasis and thrombosis: vessels, cells, and molecules in illustrated review. Res. Pract. Thromb. Haemost. 5, e12548 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Georges, P. C. et al. Increased stiffness of the rat liver precedes matrix deposition: implications for fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G1147–G1154 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Selcuk, K. et al. Tissue transglutaminase 2 has higher affinity for relaxed than for stretched fibronectin fibers. Matrix Biol. 125, 113–132 (2023).

    Article  PubMed  Google Scholar 

  112. Achterberg, V. F. et al. The nano-scale mechanical properties of the extracellular matrix regulate dermal fibroblast function. J. Invest. Dermatol. 134, 1862–1872 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Fell, S., Wang, Z., Blanchard, A., Nanthakumar, C. & Griffin, M. Transglutaminase 2: a novel therapeutic target for idiopathic pulmonary fibrosis using selective small molecule inhibitors. Amino Acids 53, 205–217 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Piersma, B. & Bank, R. A. Collagen cross-linking mediated by lysyl hydroxylase 2: an enzymatic battlefield to combat fibrosis. Essays Biochem. 63, 377–387 (2019).

    Article  CAS  PubMed  Google Scholar 

  115. Vallet, S. D. & Ricard-Blum, S. Lysyl oxidases: from enzyme activity to extracellular matrix cross-links. Essays Biochem. 63, 349–364 (2019).

    Article  CAS  PubMed  Google Scholar 

  116. Barry-Hamilton, V. et al. Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat. Med. 16, 1009–1017 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Bhole, A. P. et al. Mechanical strain enhances survivability of collagen micronetworks in the presence of collagenase: implications for load-bearing matrix growth and stability. Philos. Trans. A Math. Phys. Eng. Sci. 367, 3339–3362 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Saini, K., Cho, S., Dooling, L. J. & Discher, D. E. Tension in fibrils suppresses their enzymatic degradation — a molecular mechanism for ‘use it or lose it’. Matrix Biol. 85-86, 34–46 (2020).

    Article  CAS  PubMed  Google Scholar 

  119. Schuster, R., Rockel, J. S., Kapoor, M. & Hinz, B. The inflammatory speech of fibroblasts. Immunol. Rev. 302, 126–146 (2021).

    Article  CAS  PubMed  Google Scholar 

  120. Saraswathibhatla, A., Indana, D. & Chaudhuri, O. Cell-extracellular matrix mechanotransduction in 3D. Nat. Rev. Mol. Cell Biol. 24, 495–416 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kanchanawong, P. & Calderwood, D. A. Organization, dynamics and mechanoregulation of integrin-mediated cell–ECM adhesions. Nat. Rev. Mol. Cell Biol. 24, 142–161 (2023).

    Article  CAS  PubMed  Google Scholar 

  122. Govindaraju, P., Todd, L., Shetye, S., Monslow, J. & Pure, E. CD44-dependent inflammation, fibrogenesis, and collagenolysis regulates extracellular matrix remodeling and tensile strength during cutaneous wound healing. Matrix Biol. 75-76, 314–330 (2019).

    Article  CAS  PubMed  Google Scholar 

  123. Razinia, Z. et al. Stiffness-dependent motility and proliferation uncoupled by deletion of CD44. Sci. Rep. 7, 16499 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Coelho, N. M. et al. Discoidin domain receptor 1 mediates myosin-dependent collagen contraction. Cell Rep. 18, 1774–1790 (2017).

    Article  CAS  PubMed  Google Scholar 

  125. Guerrot, D. et al. Discoidin domain receptor 1 is a major mediator of inflammation and fibrosis in obstructive nephropathy. Am. J. Pathol. 179, 83–91 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Moll, S. et al. DDR1 role in fibrosis and its pharmacological targeting. Biochim. Biophys. Acta Mol. Cell Res. 1866, 118474 (2019).

    Article  CAS  PubMed  Google Scholar 

  127. Li, R. & Frangogiannis, N. G. Integrins in cardiac fibrosis. J. Mol. Cell Cardiol. 172, 1–13 (2022).

    Article  CAS  PubMed  Google Scholar 

  128. Levine, D. et al. Expression of the integrin α8β1 during pulmonary and hepatic fibrosis. Am. J. Pathol. 156, 1927–1935 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Primac, I. et al. Stromal integrin α11 regulates PDGFR-β signaling and promotes breast cancer progression. J. Clin. Invest. 129, 4609–4628 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Yokosaki, Y. & Nishimichi, N. New therapeutic targets for hepatic fibrosis in the integrin family, α8β1 and α11β1, induced specifically on activated stellate cells. Int. J. Mol. Sci. 22, 12794 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Schulz, J. N. et al. Reduced granulation tissue and wound strength in the absence of α11β1 integrin. J. Invest. Dermatol. 135, 1435–1444 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Frangogiannis, N. G. The extracellular matrix in myocardial injury, repair, and remodeling. J. Clin. Invest. 127, 1600–1612 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Klingberg, F., Hinz, B. & White, E. S. The myofibroblast matrix: implications for tissue repair and fibrosis. J. Pathol. 229, 298–309 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Fiore, V. F. et al. αvβ3 integrin drives fibroblast contraction and strain stiffening of soft provisional matrix during progressive fibrosis. JCI Insight 3, e97597 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Goffin, J. M. et al. Focal adhesion size controls tension-dependent recruitment of α-smooth muscle actin to stress fibers. J. Cell Biol. 172, 259–268 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hu, P. et al. SEMA7a primes integrin α5β1 engagement instructing fibroblast mechanotransduction, phenotype and transcriptional programming. Matrix Biol. 121, 179–193 (2023).

    Article  CAS  PubMed  Google Scholar 

  137. Reed, N. I. et al. The αvβ1 integrin plays a critical in vivo role in tissue fibrosis. Sci. Transl. Med. 7, 288ra279 (2015).

    Article  Google Scholar 

  138. Munger, J. S. et al. A mechanism for regulating pulmonary inflammation and fibrosis: the integrin αvβ6 binds and activates latent TGF β1. Cell 96, 319–328 (1999).

    Article  CAS  PubMed  Google Scholar 

  139. Edwards, J. P., Thornton, A. M. & Shevach, E. M. Release of active TGF-β1 from the latent TGF-β1/GARP complex on T regulatory cells is mediated by integrin β8. J. Immunol. 193, 2843–2849 (2014).

    Article  CAS  PubMed  Google Scholar 

  140. Prager-Khoutorsky, M. et al. Fibroblast polarization is a matrix-rigidity-dependent process controlled by focal adhesion mechanosensing. Nat. Cell Biol. 13, 1457–U1178 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. Noskovicova, N., Hinz, B. & Pakshir, P. Implant fibrosis and the underappreciated role of myofibroblasts in the foreign body reaction. Cells 10, 1794 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Dugina, V., Fontao, L., Chaponnier, C., Vasiliev, J. & Gabbiani, G. Focal adhesion features during myofibroblastic differentiation are controlled by intracellular and extracellular factors. J. Cell Sci. 114, 3285–3296 (2001).

    Article  CAS  PubMed  Google Scholar 

  143. Singer, I. I., Kawka, D. W., Kazazis, D. M. & Clark, R. A. In vivo co-distribution of fibronectin and actin fibers in granulation tissue: immunofluorescence and electron microscope studies of the fibronexus at the myofibroblast surface. J. Cell Biol. 98, 2091–2106 (1984).

    Article  CAS  PubMed  Google Scholar 

  144. Goult, B. T., Yan, J. & Schwartz, M. A. Talin as a mechanosensitive signaling hub. J. Cell Biol. 217, 3776–3784 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Sun, Z., Costell, M. & Fassler, R. Integrin activation by talin, kindlin and mechanical forces. Nat. Cell Biol. 21, 25–31 (2019).

    Article  CAS  PubMed  Google Scholar 

  146. Godbout, E. et al. Kindlin-2 mediates mechanical activation of cardiac myofibroblasts. Cells 9, 2702 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zhang, P. et al. Kindlin-2 acts as a key mediator of lung fibroblast activation and pulmonary fibrosis progression. Am. J. Respir. Cell Mol. Biol. 65, 54–69 (2021).

    Article  CAS  PubMed  Google Scholar 

  148. Yamamura, Y. et al. Myocardin-related transcription factor contributes to renal fibrosis through the regulation of extracellular microenvironment surrounding fibroblasts. FASEB J. 37, e23005 (2023).

    Article  CAS  PubMed  Google Scholar 

  149. Nuchel, J. et al. TGFB1 is secreted through an unconventional pathway dependent on the autophagic machinery and cytoskeletal regulators. Autophagy 14, 465–486 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Thannickal, V. J. et al. Myofibroblast differentiation by transforming growth factor-β1 is dependent on cell adhesion and integrin signaling via focal adhesion kinase. J. Biol. Chem. 278, 12384–12389 (2003).

    Article  CAS  PubMed  Google Scholar 

  151. Chen, K. et al. Disrupting mechanotransduction decreases fibrosis and contracture in split-thickness skin grafting. Sci. Transl. Med. 14, eabj9152 (2022).

    Article  CAS  PubMed  Google Scholar 

  152. Wipff, P. J., Rifkin, D. B., Meister, J. J. & Hinz, B. Myofibroblast contraction activates latent TGF-β1 from the extracellular matrix. J. Cell Biol. 179, 1311–1323 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Henderson, N. C. et al. Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat. Med. 19, 1617–1624 (2013).

    Article  CAS  PubMed  Google Scholar 

  154. Shi, M. et al. Latent TGF-β structure and activation. Nature 474, 343–349 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Rifkin, D. B., Rifkin, W. J. & Zilberberg, L. LTBPs in biology and medicine: LTBP diseases. Matrix Biol. 71-72, 90–99 (2018).

    Article  CAS  PubMed  Google Scholar 

  156. Qin, Y. et al. A milieu molecule for TGF-β required for microglia function in the nervous system. Cell 174, 156–171 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Lienart, S. et al. Structural basis of latent TGF-β1 presentation and activation by GARP on human regulatory T cells. Science 362, 952–956 (2018).

    Article  CAS  PubMed  Google Scholar 

  158. Murphy-Ullrich, J. E. & Suto, M. J. Thrombospondin-1 regulation of latent TGF-β activation: a therapeutic target for fibrotic disease. Matrix Biol. 68-69, 28–43 (2018).

    Article  CAS  PubMed  Google Scholar 

  159. Noskovicova, N. et al. Suppression of the fibrotic encapsulation of silicone implants by inhibiting the mechanical activation of pro-fibrotic TGF-β. Nat. Biomed. Eng. 5, 1437–1456 (2021).

    Article  CAS  PubMed  Google Scholar 

  160. Liu, S. et al. Expression of integrin β1 by fibroblasts is required for tissue repair in vivo. J. Cell Sci. 123, 3674–3682 (2010).

    Article  CAS  PubMed  Google Scholar 

  161. Le, V. Q. et al. A specialized integrin-binding motif enables proTGF-β2 activation by integrin αVβ6 but not αVβ8. Proc. Natl Acad. Sci. USA 120, e2304874120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Goodwin, A. T. et al. Stretch regulates alveologenesis and homeostasis via mesenchymal Gαq/11-mediated TGFβ2 activation. Development 150, dev201046 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Klingberg, F. et al. Prestress in the extracellular matrix sensitizes latent TGF-β1 for activation. J. Cell Biol. 207, 283–297 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Zollinger, A. J. & Smith, M. L. Fibronectin, the extracellular glue. Matrix Biol. 60-61, 27–37 (2017).

    Article  CAS  PubMed  Google Scholar 

  165. Dinesh, N. E. H., Campeau, P. M. & Reinhardt, D. P. Fibronectin isoforms in skeletal development and associated disorders. Am. J. Physiol. Cell Physiol. 323, C536–C549 (2022).

    Article  CAS  PubMed  Google Scholar 

  166. Serini, G. et al. The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-β1. J. Cell Biol. 142, 873–881 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Klingberg, F. et al. The fibronectin ED-A domain enhances recruitment of latent TGF-β-binding protein-1 to the fibroblast matrix. J. Cell Sci. 131, jcs201293 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Vogel, V. Unraveling the mechanobiology of extracellular matrix. Annu. Rev. Physiol. 80, 353–387 (2018).

    Article  CAS  PubMed  Google Scholar 

  169. Zhong, C. et al. Rho-mediated contractility exposes a cryptic site in fibronectin and induces fibronectin matrix assembly. J. Cell Biol. 141, 539–551 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Gao, M. et al. Structure and functional significance of mechanically unfolded fibronectin type III1 intermediates. Proc. Natl Acad. Sci. USA 100, 14784–14789 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Oberhauser, A. F., Badilla-Fernandez, C., Carrion-Vazquez, M. & Fernandez, J. M. The mechanical hierarchies of fibronectin observed with single-molecule AFM. J. Mol. Biol. 319, 433–447 (2002).

    Article  CAS  PubMed  Google Scholar 

  172. Adapala, R. K. et al. TRPV4 mechanotransduction in fibrosis. Cells 10, 3053 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Stewart, L. & Turner, N. A. Channelling the force to reprogram the matrix: mechanosensitive ion channels in cardiac fibroblasts. Cells 10, 990 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Wang, A. Y. et al. DDR1 associates with TRPV4 in cell-matrix adhesions to enable calcium-regulated myosin activity and collagen compaction. J. Cell Physiol. 237, 2451–2468 (2022).

    Article  CAS  PubMed  Google Scholar 

  175. Matthews, B. D. et al. Ultra-rapid activation of TRPV4 ion channels by mechanical forces applied to cell surface β1 integrins. Integr. Biol. 2, 435–442 (2010).

    Article  CAS  Google Scholar 

  176. Grove, L. M. et al. Translocation of TRPV4-PI3Kγ complexes to the plasma membrane drives myofibroblast transdifferentiation. Sci. Signal. 12, eaau1533 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Zou, Y. et al. Activation of transient receptor potential vanilloid 4 is involved in pressure overload-induced cardiac hypertrophy. eLife 11, e74519 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Sharma, S. et al. TRPV4 ion channel is a novel regulator of dermal myofibroblast differentiation. Am. J. Physiol. Cell Physiol. 312, C562–C572 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Um, J. Y. et al. Transient receptor potential vanilloid-3 (TRPV3) channel induces dermal fibrosis via the TRPV3/TSLP/Smad2/3 pathways in dermal fibroblasts. J. Dermatol. Sci. 97, 117–124 (2020).

    Article  CAS  PubMed  Google Scholar 

  180. Coste, B. et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330, 55–60 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. He, J. et al. Mechanical stretch promotes hypertrophic scar formation through mechanically activated cation channel Piezo1. Cell Death Dis. 12, 226 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Fu, Y. et al. Targeting mechanosensitive piezo1 alleviated renal fibrosis through p38MAPK-YAP pathway. Front. Cell Dev. Biol. 9, 741060 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Emig, R. et al. Piezo1 channels contribute to the regulation of human atrial fibroblast mechanical properties and matrix stiffness sensing. Cells 10, 663 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Yao, M. et al. Force- and cell state-dependent recruitment of Piezo1 drives focal adhesion dynamics and calcium entry. Sci. Adv. 8, eabo1461 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Follonier, L., Schaub, S., Meister, J. J. & Hinz, B. Myofibroblast communication is controlled by intercellular mechanical coupling. J. Cell Sci. 121, 3305–3316 (2008).

    Article  CAS  PubMed  Google Scholar 

  186. Ellefsen, K. L. et al. Myosin-II mediated traction forces evoke localized Piezo1-dependent Ca2+ flickers. Commun. Biol. 2, 298 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Follonier Castella, L., Buscemi, L., Godbout, C., Meister, J. J. & Hinz, B. A new lock-step mechanism of matrix remodelling based on subcellular contractile events. J. Cell Sci. 123, 1751–1760 (2010).

    Article  Google Scholar 

  188. Parizi, M., Howard, E. W. & Tomasek, J. J. Regulation of LPA-promoted myofibroblast contraction: role of Rho, myosin light chain kinase, and myosin light chain phosphatase. Exp. Cell Res. 254, 210–220 (2000).

    Article  CAS  PubMed  Google Scholar 

  189. Burridge, K. & Guilluy, C. Focal adhesions, stress fibers and mechanical tension. Exp. Cell Res. 343, 14–20 (2016).

    Article  CAS  PubMed  Google Scholar 

  190. Kim, T. J. et al. Substrate rigidity regulates Ca2+ oscillation via RhoA pathway in stem cells. J. Cell Physiol. 218, 285–293 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Godbout, C. et al. The mechanical environment modulates intracellular calcium oscillation activities of myofibroblasts. PLoS One 8, e64560 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Nomikou, E., Livitsanou, M., Stournaras, C. & Kardassis, D. Transcriptional and post-transcriptional regulation of the genes encoding the small GTPases RhoA, RhoB, and RhoC: implications for the pathogenesis of human diseases. Cell Mol. Life Sci. 75, 2111–2124 (2018).

    Article  CAS  PubMed  Google Scholar 

  193. Htwe, S. S. et al. Role of Rho-associated coiled-coil forming kinase isoforms in regulation of stiffness-induced myofibroblast differentiation in lung fibrosis. Am. J. Respir. Cell Mol. Biol. 56, 772–783 (2017).

    Article  CAS  PubMed  Google Scholar 

  194. Liu, Q. et al. Belumosudil, ROCK2-specific inhibitor, alleviates cardiac fibrosis by inhibiting cardiac fibroblasts activation. Am. J. Physiol. Heart Circ. Physiol. 323, H235–H247 (2022).

    Article  CAS  PubMed  Google Scholar 

  195. Knipe, R. S. et al. The Rho kinase isoforms ROCK1 and ROCK2 each contribute to the development of experimental pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 58, 471–481 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Sakai, N. et al. Lysophosphatidic acid signaling through its receptor initiates profibrotic epithelial cell fibroblast communication mediated by epithelial cell derived connective tissue growth factor. Kidney Int. 91, 628–641 (2017).

    Article  CAS  PubMed  Google Scholar 

  197. Ungefroren, H. et al. Signaling crosstalk of TGF-β/ALK5 and PAR2/PAR1: a complex regulatory network controlling fibrosis and cancer. Int. J. Mol. Sci. 19, 1568 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Zhang, H., Ren, L. & Shivnaraine, R. V. Targeting GPCRs to treat cardiac fibrosis. Front. Cardiovasc. Med. 9, 1011176 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Haak, A. J. et al. Selective YAP/TAZ inhibition in fibroblasts via dopamine receptor D1 agonism reverses fibrosis. Sci. Transl. Med. 11, eaau6296 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Dooling, L. J. & Discher, D. E. Inhibiting tumor fibrosis and actomyosin through GPCR activation. Trends Cancer 5, 197–199 (2019).

    Article  CAS  PubMed  Google Scholar 

  201. Oh, R. S. et al. RNAi screening identifies a mechanosensitive ROCK-JAK2-STAT3 network central to myofibroblast activation. J. Cell Sci. 131, jcs209932 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Eguchi, A. et al. GRK5 is a regulator of fibroblast activation and cardiac fibrosis. Proc. Natl Acad. Sci. USA 118, e2012854118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Dey, A., Varelas, X. & Guan, K. L. Targeting the hippo pathway in cancer, fibrosis, wound healing and regenerative medicine. Nat. Rev. Drug Discov. 19, 480–494 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    Article  CAS  PubMed  Google Scholar 

  205. Elosegui-Artola, A. et al. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell 171, 1397–1410.e14 (2017).

    Article  CAS  PubMed  Google Scholar 

  206. Kofler, M. et al. Mediated nuclear import and export of TAZ and the underlying molecular requirements. Nat. Commun. 9, 4966 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  207. He, X. et al. Myofibroblast YAP/TAZ activation is a key step in organ fibrogenesis. JCI Insight 7, e146243 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Szeto, S. G. et al. YAP/TAZ are mechanoregulators of TGF-β-smad signaling and renal fibrogenesis. J. Am. Soc. Nephrol. 27, 3117–3128 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Link, P. A. et al. Combined control of the fibroblast contractile program by YAP and TAZ. Am. J. Physiol. Lung Cell Mol. Physiol. 322, L23–L32 (2022).

    Article  CAS  PubMed  Google Scholar 

  210. Reggiani, F. et al. Not identical twins. Trends Biochem. Sci. 46, 154–168 (2021).

    Article  CAS  PubMed  Google Scholar 

  211. Miranda, M. Z., Lichner, Z., Szaszi, K. & Kapus, A. MRTF: basic biology and role in kidney disease. Int. J. Mol. Sci. 22, 6040 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Masszi, A. et al. Fate-determining mechanisms in epithelial-myofibroblast transition: major inhibitory role for Smad3. J. Cell Biol. 188, 383–399 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Ezzo, M. & Hinz, B. Novel approaches to target fibroblast mechanotransduction in fibroproliferative diseases. Pharmacol. Ther. 250, 108528 (2023).

    Article  CAS  PubMed  Google Scholar 

  214. Velasquez, L. S. et al. Activation of MRTF-A-dependent gene expression with a small molecule promotes myofibroblast differentiation and wound healing. Proc. Natl Acad. Sci. USA 110, 16850–16855 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Leal, A. S., Misek, S. A., Lisabeth, E. M., Neubig, R. R. & Liby, K. T. The Rho/MRTF pathway inhibitor CCG-222740 reduces stellate cell activation and modulates immune cell populations in KrasG12D; Pdx1-Cre (KC) mice. Sci. Rep. 9, 7072 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Johnson, L. A. et al. Novel Rho/MRTF/SRF inhibitors block matrix-stiffness and TGF-β-induced fibrogenesis in human colonic myofibroblasts. Inflamm. Bowel Dis. 20, 154–165 (2014).

    Article  PubMed  Google Scholar 

  217. Yu-Wai-Man, C. et al. Local delivery of novel MRTF/SRF inhibitors prevents scar tissue formation in a preclinical model of fibrosis. Sci. Rep. 7, 518 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Basta, M. D. et al. Changes in nascent chromatin structure regulate activation of the pro-fibrotic transcriptome and myofibroblast emergence in organ fibrosis. iScience 26, 106570 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Hinz, B. & Lagares, D. Evasion of apoptosis by myofibroblasts: a hallmark of fibrotic diseases. Nat. Rev. Rheumatol. 16, 11–31 (2020).

    Article  CAS  PubMed  Google Scholar 

  220. Merkt, W., Zhou, Y., Han, H. & Lagares, D. Myofibroblast fate plasticity in tissue repair and fibrosis: deactivation, apoptosis, senescence and reprogramming. Wound Repair Regen. 29, 678–691 (2021).

    Article  PubMed  Google Scholar 

  221. Desmoulière, A., Redard, M., Darby, I. & Gabbiani, G. Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am. J. Pathol. 146, 56–66 (1995).

    PubMed  PubMed Central  Google Scholar 

  222. Soppert, J. et al. Soluble CD74 reroutes MIF/CXCR4/AKT-mediated survival of cardiac myofibroblasts to necroptosis. J. Am. Heart Assoc. 7, e009384 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Takemura, G. et al. Role of apoptosis in the disappearance of infiltrated and proliferated interstitial cells after myocardial infarction. Circ. Res. 82, 1130–1138 (1998).

    Article  CAS  PubMed  Google Scholar 

  224. Tschumperlin, D. J. & Lagares, D. Mechano-therapeutics: targeting mechanical signaling in fibrosis and tumor stroma. Pharmacol. Ther. 212, 107575 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. O’Reilly, S. Epigenetics in fibrosis. Mol. Asp. Med. 54, 89–102 (2017).

    Article  Google Scholar 

  226. Moran-Salvador, E. & Mann, J. Epigenetics and liver fibrosis. Cell Mol. Gastroenterol. Hepatol. 4, 125–134 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Balestrini, J. L., Chaudhry, S., Sarrazy, V., Koehler, A. & Hinz, B. The mechanical memory of lung myofibroblasts. Integr. Biol. 4, 410–421 (2012).

    Article  CAS  Google Scholar 

  228. Li, C. X. et al. MicroRNA-21 preserves the fibrotic mechanical memory of mesenchymal stem cells. Nat. Mater. 16, 379–389 (2017).

    Article  CAS  PubMed  Google Scholar 

  229. Yang, C., Tibbitt, M. W., Basta, L. & Anseth, K. S. Mechanical memory and dosing influence stem cell fate. Nat. Mater. 13, 645–652 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Lee, J., Abdeen, A. A. & Kilian, K. A. Rewiring mesenchymal stem cell lineage specification by switching the biophysical microenvironment. Sci. Rep. 4, 5188 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Talele, N. P., Fradette, J., Davies, J. E., Kapus, A. & Hinz, B. Expression of α-smooth muscle actin determines the fate of mesenchymal stromal cells. Stem Cell Rep. 4, 1016–1030 (2015).

    Article  CAS  Google Scholar 

  232. Scott, A. K. et al. Mechanical memory stored through epigenetic remodeling reduces cell therapeutic potential. Biophys. J. 122, 1428–1444 (2023).

    Article  CAS  PubMed  Google Scholar 

  233. Roy, B. et al. Fibroblast rejuvenation by mechanical reprogramming and redifferentiation. Proc. Natl Acad. Sci. USA 117, 10131–10141 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Price, C. C., Mathur, J., Boerckel, J. D., Pathak, A. & Shenoy, V. B. Dynamic self-reinforcement of gene expression determines acquisition of cellular mechanical memory. Biophys. J. 120, 5074–5089 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Heo, S. J. et al. Biophysical regulation of chromatin architecture instills a mechanical memory in mesenchymal stem cells. Sci. Rep. 5, 16895 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Ligresti, G. et al. CBX5/G9a/H3K9me-mediated gene repression is essential to fibroblast activation during lung fibrosis. JCI Insight 4, e127111 (2019).

    Article  PubMed Central  Google Scholar 

  237. Killaars, A. R. et al. Extended exposure to stiff microenvironments leads to persistent chromatin remodeling in human mesenchymal stem cells. Adv. Sci. 6, 1801483 (2019).

    Article  Google Scholar 

  238. Killaars, A. R., Walker, C. J. & Anseth, K. S. Nuclear mechanosensing controls MSC osteogenic potential through HDAC epigenetic remodeling. Proc. Natl Acad. Sci. USA 117, 21258–21266 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Walker, C. J. et al. Nuclear mechanosensing drives chromatin remodelling in persistently activated fibroblasts. Nat. Biomed. Eng. 5, 1485–1499 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Walker, C. J. et al. Extracellular matrix stiffness controls cardiac valve myofibroblast activation through epigenetic remodeling. Bioeng. Transl. Med. 7, e10394 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Swift, J. et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341, 1240104 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Miroshnikova, Y. A. & Wickstrom, S. A. Mechanical forces in nuclear organization. Cold Spring Harb. Perspect. Biol. 14, a039685 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Janota, C. S., Calero-Cuenca, F. J. & Gomes, E. R. The role of the cell nucleus in mechanotransduction. Curr. Opin. Cell Biol. 63, 204–211 (2020).

    Article  CAS  PubMed  Google Scholar 

  244. Kalukula, Y., Stephens, A. D., Lammerding, J. & Gabriele, S. Mechanics and functional consequences of nuclear deformations. Nat. Rev. Mol. Cell Biol. 23, 583–602 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Dupont, S. & Wickstrom, S. A. Mechanical regulation of chromatin and transcription. Nat. Rev. Genet. 23, 624–643 (2022).

    Article  CAS  PubMed  Google Scholar 

  246. Maniotis, A. J., Chen, C. S. & Ingber, D. E. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl Acad. Sci. USA 94, 849–854 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Xia, Y. et al. Rescue of DNA damage after constricted migration reveals a mechano-regulated threshold for cell cycle. J. Cell Biol. 218, 2545–2563 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Nava, M. M. et al. Heterochromatin-driven nuclear softening protects the genome against mechanical stress-induced damage. Cell 181, 800–817.e22 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Tajik, A. et al. Transcription upregulation via force-induced direct stretching of chromatin. Nat. Mater. 15, 1287–1296 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Rai, R. et al. A novel acetyltransferase p300 inhibitor ameliorates hypertension-associated cardio-renal fibrosis. Epigenetics 12, 1004–1013 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Nural-Guvener, H. F. et al. HDAC class I inhibitor, Mocetinostat, reverses cardiac fibrosis in heart failure and diminishes CD90+ cardiac myofibroblast activation. Fibrogenesis Tissue Repair 7, 10 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Ghosh, A. K. et al. p300 is elevated in systemic sclerosis and its expression is positively regulated by TGF-β: epigenetic feed-forward amplification of fibrosis. J. Investig. Dermatol. 133, 1302–1310 (2013).

    Article  CAS  PubMed  Google Scholar 

  253. Williams, L. M. et al. Identifying collagen VI as a target of fibrotic diseases regulated by CREBBP/EP300. Proc. Natl Acad. Sci. USA 117, 20753–20763 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Saito, S. et al. HDAC8 inhibition ameliorates pulmonary fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 316, L175–L186 (2019).

    Article  CAS  PubMed  Google Scholar 

  255. Jones, D. L. et al. TGFβ-induced fibroblast activation requires persistent and targeted HDAC-mediated gene repression. J. Cell Sci. 132, jcs233486 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Guo, W., Shan, B., Klingsberg, R. C., Qin, X. & Lasky, J. A. Abrogation of TGF-β1-induced fibroblast-myofibroblast differentiation by histone deacetylase inhibition. Am. J. Physiol. Lung Cell Mol. Physiol. 297, L864–L870 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Pang, M. et al. Inhibition of histone deacetylase activity attenuates renal fibroblast activation and interstitial fibrosis in obstructive nephropathy. Am. J. Physiol. Renal Physiol. 297, F996–F1005 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Dou, C. et al. P300 acetyltransferase mediates stiffness-induced activation of hepatic stellate cells into tumor-promoting myofibroblasts. Gastroenterology 154, 2209–2221.e14 (2018).

    Article  CAS  PubMed  Google Scholar 

  259. Krämer, M. et al. Inhibition of H3K27 histone trimethylation activates fibroblasts and induces fibrosis. Ann. Rheum. Dis. 72, 614–620 (2013).

    Article  PubMed  Google Scholar 

  260. Perugorria, M. J. et al. Histone methyltransferase ASH1 orchestrates fibrogenic gene transcription during myofibroblast transdifferentiation. Hepatology 56, 1129–1139 (2012).

    Article  CAS  PubMed  Google Scholar 

  261. Tian, W. et al. Myocardin-related transcription factor A (MRTF-A) plays an essential role in hepatic stellate cell activation by epigenetically modulating TGF-β signaling. Int. J. Biochem. Cell Biol. 71, 35–43 (2016).

    Article  CAS  PubMed  Google Scholar 

  262. Page, A. et al. Alcohol directly stimulates epigenetic modifications in hepatic stellate cells. J. Hepatol. 62, 388–397 (2015).

    Article  CAS  PubMed  Google Scholar 

  263. Mann, J. et al. MeCP2 controls an epigenetic pathway that promotes myofibroblast transdifferentiation and fibrosis. Gastroenterology 138, 705–714 (2010).

    Article  CAS  PubMed  Google Scholar 

  264. Jiang, Y. et al. Histone H3K9 demethylase JMJD1A modulates hepatic stellate cells activation and liver fibrosis by epigenetically regulating peroxisome proliferator‐activated receptor γ. FASEB J. 29, 1830–1841 (2015).

    Article  CAS  PubMed  Google Scholar 

  265. Irifuku, T. et al. Inhibition of H3K9 histone methyltransferase G9a attenuates renal fibrosis and retains klotho expression. Kidney Int. 89, 147–157 (2016).

    Article  CAS  PubMed  Google Scholar 

  266. Dowson, C. & O’Reilly, S. DNA methylation in fibrosis. Eur. J. Cell Biol. 95, 323–330 (2016).

    Article  CAS  PubMed  Google Scholar 

  267. Zhang, X. et al. DNA methylation regulated gene expression in organ fibrosis. Biochim. Biophys. Acta Mol. Basis Dis. 1863, 2389–2397 (2017).

    Article  CAS  PubMed  Google Scholar 

  268. Dees, C. et al. TGF-β-induced epigenetic deregulation of SOCS3 facilitates STAT3 signaling to promote fibrosis. J. Clin. Invest. 130, 2347–2363 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Watson, C. J. et al. Hypoxia-induced epigenetic modifications are associated with cardiac tissue fibrosis and the development of a myofibroblast-like phenotype. Hum. Mol. Genet. 23, 2176–2188 (2014).

    Article  CAS  PubMed  Google Scholar 

  270. Sanders, Y. Y. et al. Altered DNA methylation profile in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 186, 525–535 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Bechtel, W. et al. Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat. Med. 16, 544–550 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Zhao, S., Cao, M., Wu, H., Hu, Y. & Xue, X. 5-Aza-2′-deoxycytidine inhibits the proliferation of lung fibroblasts in neonatal rats exposed to hyperoxia. Pediatr. Neonatol. 58, 122–127 (2017).

    Article  CAS  PubMed  Google Scholar 

  273. Dees, C., Chakraborty, D. & Distler, J. H. W. Cellular and molecular mechanisms in fibrosis. Exp. Dermatol. 30, 121–131 (2021).

    Article  CAS  PubMed  Google Scholar 

  274. Robinson, C. M. et al. Hypoxia-induced DNA hypermethylation in human pulmonary fibroblasts is associated with Thy-1 promoter methylation and the development of a pro-fibrotic phenotype. Respir. Res. 13, 74 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Huang, S. K. et al. Hypermethylation of PTGER2 confers prostaglandin E2 resistance in fibrotic fibroblasts from humans and mice. Am. J. Pathol. 177, 2245–2255 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Liu, F. et al. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J. Cell Biol. 190, 693–706 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Cisneros, J. et al. Hypermethylation-mediated silencing of p14ARF in fibroblasts from idiopathic pulmonary fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 303, L295–L303 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Bernau, K. et al. Selective inhibition of bromodomain-containing protein 4 reduces myofibroblast transdifferentiation and pulmonary fibrosis. Front. Mol. Med. 2, 842558 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  279. Hu, B., Gharaee-Kermani, M., Wu, Z. & Phan, S. H. Epigenetic regulation of myofibroblast differentiation by DNA methylation. Am. J. Pathol. 177, 21–28 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Xu, X. et al. Epigenetic balance of aberrant Rasal1 promoter methylation and hydroxymethylation regulates cardiac fibrosis. Cardiovasc. Res. 105, 279–291 (2015).

    Article  CAS  PubMed  Google Scholar 

  281. Chen, X. et al. Suppression of SUN2 by DNA methylation is associated with HSCs activation and hepatic fibrosis. Cell Death Dis. 9, 1021 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  282. Xie, S. A. et al. Matrix stiffness determines the phenotype of vascular smooth muscle cell in vitro and in vivo: role of DNA methyltransferase 1. Biomaterials 155, 203–216 (2018).

    Article  CAS  PubMed  Google Scholar 

  283. Xing, W. J. et al. MRTF‐A and STAT 3 promote MDA‐MB‐231 cell migration via hypermethylating BRSM1. IUBMB Life 67, 202–217 (2015).

    Article  CAS  PubMed  Google Scholar 

  284. Hu, S. et al. NOTCH-YAP1/TEAD-DNMT1 axis drives hepatocyte reprogramming into intrahepatic cholangiocarcinoma. Gastroenterology 163, 449–465 (2022).

    Article  CAS  PubMed  Google Scholar 

  285. Henderson, N. C., Rieder, F. & Wynn, T. A. Fibrosis: from mechanisms to medicines. Nature 587, 555–566 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. El Agha, E. & Thannickal, V. J. The lung mesenchyme in development, regeneration, and fibrosis. J. Clin. Invest. 133, e170498 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Gieseck, R. L. 3rd, Wilson, M. S. & Wynn, T. A. Type 2 immunity in tissue repair and fibrosis. Nat. Rev. Immunol. 18, 62–76 (2018).

    Article  CAS  PubMed  Google Scholar 

  288. Pakshir, P. & Hinz, B. The big five in fibrosis: macrophages, myofibroblasts, matrix, mechanics, and miscommunication. Matrix Biol. 68-69, 81–93 (2018).

    Article  CAS  PubMed  Google Scholar 

  289. Forbes, S. J. & Rosenthal, N. Preparing the ground for tissue regeneration: from mechanism to therapy. Nat. Med. 20, 857–869 (2014).

    Article  CAS  PubMed  Google Scholar 

  290. Wynn, T. A., Chawla, A. & Pollard, J. W. Macrophage biology in development, homeostasis and disease. Nature 496, 445–455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Mori, R., Shaw, T. J. & Martin, P. Molecular mechanisms linking wound inflammation and fibrosis: knockdown of osteopontin leads to rapid repair and reduced scarring. J. Exp. Med. 205, 43–51 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Cash, J. L. et al. Resolution mediator chemerin15 reprograms the wound microenvironment to promote repair and reduce scarring. Curr. Biol. 24, 1406–1414 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Knipper, J. A. et al. Interleukin-4 receptor α signaling in myeloid cells controls collagen fibril assembly in skin repair. Immunity 43, 803–816 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Ploeger, D. T. et al. Cell plasticity in wound healing: paracrine factors of M1/ M2 polarized macrophages influence the phenotypical state of dermal fibroblasts. Cell Commun. Signal. 11, 29 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Eming, S. A., Wynn, T. A. & Martin, P. Inflammation and metabolism in tissue repair and regeneration. Science 356, 1026–1030 (2017).

    Article  CAS  PubMed  Google Scholar 

  296. Mirza, R., DiPietro, L. A. & Koh, T. J. Selective and specific macrophage ablation is detrimental to wound healing in mice. Am. J. Pathol. 175, 2454–2462 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. MacLeod, A. S. & Mansbridge, J. N. The innate immune system in acute and chronic wounds. Adv. Wound Care 5, 65–78 (2016).

    Article  Google Scholar 

  298. Fritz, J. M. et al. Depletion of tumor-associated macrophages slows the growth of chemically induced mouse lung adenocarcinomas. Front. Immunol. 5, 587 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  299. Duffield, J. S., Lupher, M., Thannickal, V. J. & Wynn, T. A. Host responses in tissue repair and fibrosis. Annu. Rev. Pathol. 8, 241–276 (2013).

    Article  CAS  PubMed  Google Scholar 

  300. Shook, B. A. et al. Myofibroblast proliferation and heterogeneity are supported by macrophages during skin repair. Science 362, eaar2971 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  301. Minutti, C. M., Knipper, J. A., Allen, J. E. & Zaiss, D. M. Tissue-specific contribution of macrophages to wound healing. Semin. Cell Dev. Biol. 61, 3–11 (2017).

    Article  CAS  PubMed  Google Scholar 

  302. Campbell, L., Saville, C. R., Murray, P. J., Cruickshank, S. M. & Hardman, M. J. Local arginase 1 activity is required for cutaneous wound healing. J. Invest. Dermatol. 133, 2461–2470 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Glim, J. E., Niessen, F. B., Everts, V., van Egmond, M. & Beelen, R. H. Platelet derived growth factor-CC secreted by M2 macrophages induces alpha-smooth muscle actin expression by dermal and gingival fibroblasts. Immunobiology 218, 924–929 (2013).

    Article  CAS  PubMed  Google Scholar 

  304. Lanone, S. et al. Overlapping and enzyme-specific contributions of matrix metalloproteinases-9 and -12 in IL-13-induced inflammation and remodeling. J. Clin. Invest. 110, 463–474 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Lodyga, M. et al. Cadherin-11-mediated adhesion of macrophages to myofibroblasts establishes a profibrotic niche of active TGF-β. Sci. Signal. 12, eaao3469 (2019).

    Article  CAS  PubMed  Google Scholar 

  306. Skalli, O. et al. A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation. J. Cell Biol. 103, 2787–2796 (1986).

    Article  CAS  PubMed  Google Scholar 

  307. Zeltz, C. et al. Cancer-associated fibroblasts in desmoplastic tumors: emerging role of integrins. Semin. Cancer Biol. 62, 166–181 (2020).

    Article  CAS  PubMed  Google Scholar 

  308. Riley, L. A. & Merryman, W. D. Cadherin-11 and cardiac fibrosis: a common target for a common pathology. Cell Signal. 78, 109876 (2021).

    Article  CAS  PubMed  Google Scholar 

  309. Chavula, T., To, S. & Agarwal, S. K. Cadherin-11 and its role in tissue fibrosis. Cell Tissues Organs 212, 293–303 (2023).

    CAS  Google Scholar 

  310. Nikoloudaki, G., Creber, K. & Hamilton, D. W. Wound healing and fibrosis: a contrasting role for periostin in skin and the oral mucosa. Am. J. Physiol. Cell Physiol. 318, C1065–C1077 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Yeo, S. Y. et al. A positive feedback loop bi-stably activates fibroblasts. Nat. Commun. 9, 3016 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  312. Leask, A. The hard problem: mechanotransduction perpetuates the myofibroblast phenotype in scleroderma fibrosis. Wound Repair Regen. 29, 582–587 (2021).

    Article  PubMed  Google Scholar 

  313. Ruiz-Villalba, A. et al. Single-cell RNA sequencing analysis reveals a crucial role for CTHRC1 (collagen triple helix repeat containing 1) cardiac fibroblasts after myocardial infarction. Circulation 142, 1831–1847 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Naba, A. Ten years of extracellular matrix proteomics: accomplishments, challenges, and future perspectives. Mol. Cell Proteom. 22, 100528 (2023).

    Article  CAS  Google Scholar 

  315. Bingham, G. C., Lee, F., Naba, A. & Barker, T. H. Spatial-omics: novel approaches to probe cell heterogeneity and extracellular matrix biology. Matrix Biol. 91-92, 152–166 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Tomasek, J. J., Haaksma, C. J., Schwartz, R. J. & Howard, E. W. Whole animal knockout of smooth muscle alpha-actin does not alter excisional wound healing or the fibroblast-to-myofibroblast transition. Wound Repair Regen. 21, 166–176 (2013).

    Article  PubMed  Google Scholar 

  317. Arnoldi, R., Chaponnier, C., Gabbiani, G. & Hinz, B. in Muscle: Fundamental Biology and Mechanisms of Disease (ed. Hill, J.) 1183–1195 (Elsevier, 2012).

  318. Chang, S. K., Gu, Z. & Brenner, M. B. Fibroblast-like synoviocytes in inflammatory arthritis pathology: the emerging role of cadherin-11. Immunol. Rev. 233, 256–266 (2010).

    Article  CAS  PubMed  Google Scholar 

  319. Tan, C. et al. Soluble Thy-1 reverses lung fibrosis via its integrin-binding motif. JCI Insight 4, e131152 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  320. Marangoni, R. G. et al. Thy-1 plays a pathogenic role and is a potential biomarker for skin fibrosis in scleroderma. JCI Insight 7, e149426 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  321. Hudon-David, F., Bouzeghrane, F., Couture, P. & Thibault, G. Thy-1 expression by cardiac fibroblasts: lack of association with myofibroblast contractile markers. J. Mol. Cell Cardiol. 42, 991–1000 (2007).

    Article  CAS  PubMed  Google Scholar 

  322. Schliekelman, M. J. et al. Thy-1+ cancer-associated fibroblasts adversely impact lung cancer prognosis. Sci. Rep. 7, 6478 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  323. Cao, Y., Wang, X. & Peng, G. SCSA: a cell type annotation tool for single-cell RNA-seq data. Front. Genet. 11, 490 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Hou, R., Denisenko, E. & Forrest, A. R. R. scMatch: a single-cell gene expression profile annotation tool using reference datasets. Bioinformatics 35, 4688–4695 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Ohlund, D. et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med. 214, 579–596 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Dominguez, C. X. et al. Single-cell RNA sequencing reveals stromal evolution into LRRC15+ myofibroblasts as a determinant of patient response to cancer immunotherapy. Cancer Discov. 10, 232–253 (2020).

    Article  CAS  PubMed  Google Scholar 

  327. Zhang, W. et al. Necrotic myocardial cells release damage-associated molecular patterns that provoke fibroblast activation in vitro and trigger myocardial inflammation and fibrosis in vivo. J. Am. Heart Assoc. 4, e001993 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  328. Madaro, L. et al. Denervation-activated STAT3-IL-6 signalling in fibro-adipogenic progenitors promotes myofibres atrophy and fibrosis. Nat. Cell Biol. 20, 917–927 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Gschwandtner, M., Derler, R. & Midwood, K. S. More than just attractive: how CCL2 influences myeloid cell behavior beyond chemotaxis. Front. Immunol. 10, 2759 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Kouzeli, A. et al. CXCL14 preferentially synergizes with homeostatic chemokine receptor systems. Front. Immunol. 11, 561404 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Kastenschmidt, J. M. et al. A stromal progenitor and ILC2 niche promotes muscle eosinophilia and fibrosis-associated gene expression. Cell Rep. 35, 108997 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Kuswanto, W. et al. Poor repair of skeletal muscle in aging mice reflects a defect in local, interleukin-33-dependent accumulation of regulatory T cells. Immunity 44, 355–367 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Bujak, M. et al. Interleukin-1 receptor type I signaling critically regulates infarct healing and cardiac remodeling. Am. J. Pathol. 173, 57–67 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  334. Turner, N. A. et al. Interleukin-1α stimulates proinflammatory cytokine expression in human cardiac myofibroblasts. Am. J. Physiol. Heart Circ. Physiol. 297, H1117–H1127 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research of B.H. is supported by a foundation grant from the Canadian Institutes of Health Research (#375597) and support from the John Evans Leadership funds (#36050 and #38861), as well as innovation funds (‘Fibrosis Network, #36349’) from the Canada Foundation for Innovation (CFI) and the Ontario Research Fund (ORF). F.M.V.R. is supported by the Canadian Institutes of Health Research (#38395). T.H.B. is supported by the National Institute of Health (NIH) funds NIH R01-HL130918 and NIH R01-HL155143. The original figures were generated with the assistance of BioRender.

Author information

Authors and Affiliations

Authors

Contributions

F.S.Y. and A.E.M. contributed equally to all aspects of the article. All authors contributed to discussion of the content and wrote sections of the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Boris Hinz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Arginine–glycine–aspartate (RGD) motif

The RGD amino acid sequence is a motif in the latent transforming growth factor-β1 complex and many proteins of the extracellular matrix, where it promotes specific binding of αv integrins; the presence of an adjacent ‘synergy sequence’ in fibronectin also allows integrins αIIbβ3 and α5β1 to bind to RGD.

Granulation tissue

This provisional tissue fills wounds during healing, is rich in various cells and small vessels, and appears in histological cross-sections as ‘granulose’.

Pericytes

Also referred to as perivascular cells, pericytes show fibroblast-like morphology, are closely associated with endothelial cells of the microvasculature and often have progenitor capacity, that is, the ability to differentiate into multiple cell types, including fibroblasts.

Stiffness

Most biological studies dealing with cell, extracellular matrix or tissue ‘stiffness’ refer to the elastic modulus (that is, stress over strain) in pascal, which is a relatively accurate parameter when measured at the length scale of cells and below.

Strain stiffening

In contrast to ideally elastic synthetic polymers, biological polymers such as collagen, fibrin and cytoskeletal filaments get stiffer when they are extended (that is, strained). Strain stiffening protects tissues from overstraining and enables the fibrous collagen around large blood vessels to undergo small peristaltic movements but to cuff the vessel under high blood pressure.

Stress fibres

Contractile bundles composed of actin and myosin filaments as part of the cytoskeleton that are typically formed in response to mechanical stress and often terminate in cell adhesions, which connect to the extracellular matrix or other cells.

Tropomyosin

Tropomyosins are filamentous (F-)actin-binding proteins that regulate actin–myosin interactions in adult striated and smooth muscle, as well as in non-muscle contractile cells such as myofibroblasts.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Younesi, F.S., Miller, A.E., Barker, T.H. et al. Fibroblast and myofibroblast activation in normal tissue repair and fibrosis. Nat Rev Mol Cell Biol (2024). https://doi.org/10.1038/s41580-024-00716-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41580-024-00716-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing