Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

p53-Mediated transactivation of LIMK2b links actin dynamics to cell cycle checkpoint control

Abstract

The p53 tumor suppressor protein is widely known for its role as a sequence-specific transcription factor that regulates the expression of stress response genes. Here, we report the identification of LIMK2, which encodes a kinase that regulates actin dynamics through phosphorylation of cofilin, as a p53 target upregulated by DNA damage. Interestingly, the splice variant LIMK2b, but not LIMK2a, was induced in a p53-dependent manner through an intronic consensus p53-binding site. Depletion of LIMK2b leads to early exit of G2/M arrest after DNA damage, whereas its overexpression prolongs the arrest. These responses are recapitulated by ectopic expression of the active cofilin S3A mutant and the inactive cofilin S3D mutant, respectively, suggesting that LIMK2b may modulate G2/M arrest through cofilin phosphorylation. Furthermore, in support of its potential role as a tumor suppressor, LIMK2b was downregulated in esophageal and thyroid cancers, as well as in a number of established cancer cell lines, and its expression suppresses cancer cell migration. Taken together, our results unveil a novel pathway whereby LIMK2b, acting downstream of p53, ensures proper execution of checkpoint arrest by modulating the dynamics of actin polymerization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Abe H, Obinata T, Minamide LS, Bamburg JR . (1996). Xenopus laevis actin-depolymerizing factor/cofilin: a phosphorylation-regulated protein essential for development. J Cell Biol 132: 871–885.

    Article  CAS  PubMed  Google Scholar 

  • Amano T, Kaji N, Ohashi K, Mizuno K . (2002). Mitosis-specific activation of LIM motif-containing protein kinase and roles of cofilin phosphorylation and dephosphorylation in mitosis. J Biol Chem 277: 22093–22102.

    Article  CAS  PubMed  Google Scholar 

  • Amano T, Tanabe K, Eto T, Narumiya S, Mizuno K . (2001). LIM-kinase 2 induces formation of stress fibres, focal adhesions and membrane blebs, dependent on its activation by Rho-associated kinase-catalysed phosphorylation at threonine-505. Biochem J 354: 149–159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arber S, Barbayannis FA, Hanser H, Schneider C, Stanyon CA, Bernard O et al. (1998). Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393: 805–809.

    Article  CAS  PubMed  Google Scholar 

  • Bode AM, Dong Z . (2004). Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 4: 793–805.

    Article  CAS  PubMed  Google Scholar 

  • Croft DR, Olson MF . (2006). The Rho GTPase effector ROCK regulates cyclin A, cyclin D1, and p27Kip1 levels by distinct mechanisms. Mol Cell Biol 26: 4612–4627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gadéa G, de Toledo M, Anguille C, Roux P . (2007). Loss of p53 promotes RhoA-ROCK-dependent cell migration and invasion in 3D matrices. J Cell Biol 178: 23–30.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gadéa G, Lapasset L, Gauthier-Rouvière C, Roux P . (2002). Regulation of Cdc42-mediated morphological effects: a novel function for p53. EMBO J 21: 2373–2382.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goyal P, Pandey D, Behring A, Siess W . (2005). Inhibition of nuclear import of LIMK2 in endothelial cells by protein kinase C-dependent phosphorylation at Ser-283. J Biol Chem 280: 27569–27577.

    Article  CAS  PubMed  Google Scholar 

  • Gunsalus KC, Bonaccorsi S, Williams E, Verni F, Gatti M, Goldberg ML . (1995). Mutations in twinstar, a Drosophila gene encoding a cofilin/ADF homologue, result in defects in centrosome migration and cytokinesis. J Cell Biol 131: 1243–1259.

    Article  CAS  PubMed  Google Scholar 

  • Guo F, Gao Y, Wang L, Zheng Y . (2003). p19ARF-p53 tumor suppressor pathway regulates cell motility by suppression of phosphoinositide 3-kinase and Rac1 GTPase activities. J Biol Chem 278: 14414–14419.

    Article  CAS  PubMed  Google Scholar 

  • Harms K, Nozell S, Chen X . (2004). The common and distinct target genes of the p53 family transcription factors. Cell Mol Life Sci 61: 822–842.

    Article  CAS  PubMed  Google Scholar 

  • Hotulainen P, Paunola E, Vartiainen MK, Lappalainen P . (2005). Actin-depolymerizing factor and cofilin-1 play overlapping roles in promoting rapid F-actin depolymerization in mammalian nonmuscle cells. Mol Biol Cell 16: 649–664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikebe C, Ohashi K, Fujimori T, Bernard O, Noda T, Robertson EJ et al. (1997). Mouse LIM-kinase 2 gene: cDNA cloning, genomic organization, and tissue-specific expression of two alternatively initiated transcripts. Genomics 46: 504–508.

    Article  CAS  PubMed  Google Scholar 

  • Jetten AM . (2009). Retinoid-related orphan receptors (RORs):critical roles in development, immunity, circadian rhythm, and cellular metabolism. Nucl Recept Signal 7: e003.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lavin MF, Gueven N . (2006). The complexity of p53 stabilization and activation. Cell Death Differ 13: 941–950.

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Helfman DM . (2004). Cytoplasmic p21Cip1 is involved in Ras-induced inhibition of the ROCK/LIMK/Cofilin pathway. J Biol Chem 279: 1885–1891.

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Wang C, Jiao X, Lu W, Fu M, Quong AA et al. (2006). Cyclin D1 regulates cellular migration through the inhibition of thrombospondin 1 and ROCK signaling. Mol Cell Biol 26: 4240–4256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Yi Y, Liu P, Wen W, James M, Wang D et al. (2007). Common human cancer genes discovered by integrated gene-expression analysis. PLoS ONE 2: e1149.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maekawa M, Ishizaki T, Boku S, Watanabe N, Fujita A, Iwamatsu A et al. (1999). Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285: 895–898.

    Article  CAS  PubMed  Google Scholar 

  • Murray-Zmijewski F, Slee EA, Lu X . (2008). A complex barcode underlies the heterogeneous response of p53 to stress. Nat Rev Mol Cell Biol 9: 702–712.

    Article  CAS  PubMed  Google Scholar 

  • Nomoto S, Tatematsu Y, Takahashi T, Osada H . (1999). Cloning and characterization of the alternative promoter regions of the human LIMK2 gene responsible for alternative transcripts with tissue-specific expression. Gene 236: 259–271.

    Article  CAS  PubMed  Google Scholar 

  • Ohashi K, Nagata K, Maekawa M, Ishizaki T, Narumiya S, Mizuno K . (2000). Rho-associated kinase ROCK activates LIM-kinase 1 by phosphorylation at threonine 508 within the activation loop. J Biol Chem 275: 3577–3582.

    Article  CAS  PubMed  Google Scholar 

  • Okano I, Hiraoka J, Otera H, Nunoue K, Ohashi K, Iwashita S et al. (1995). Identification and characterization of a novel family of serine/threonine kinases containing two N-terminal LIM motifs. J Biol Chem 270: 31321–31330.

    Article  CAS  PubMed  Google Scholar 

  • Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P . (2002). The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat 19: 607–614.

    Article  CAS  PubMed  Google Scholar 

  • Olsson A, Manzl C, Strasser A, Villunger A . (2007). How important are post-translational modifications in p53 for selectivity in target-gene transcription and tumour suppression? Cell Death Differ 14: 1561–1575.

    Article  CAS  PubMed  Google Scholar 

  • Ongusaha PP, Kim HG, Boswell SA, Ridley AJ, Der CJ, Dotto GP et al. (2006). RhoE is a pro-survival p53 target gene that inhibits ROCK I-mediated apoptosis in response to genotoxic stress. Curr Biol 16: 2466–2472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osada H, Hasada K, Inazawa J, Uchida K, Ueda R, Takahashi T et al. (1996). Subcellular localization and protein interaction of the human LIMK2 gene expressing alternative transcripts with tissue-specific regulation. Biochem Biophys Res Commun 229: 582–589.

    Article  CAS  PubMed  Google Scholar 

  • Ou Y-H, Chung P-H, Hsu F-F, Sun T-P, Chang W-Y, Shieh S-Y . (2007). The candidate tumor suppressor BTG3 is a transcriptional target of p53 that inhibits E2F1. EMBO J 26: 3968–3980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riley T, Sontag E, Chen P, Levine A . (2008). Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9: 402–412.

    Article  CAS  PubMed  Google Scholar 

  • Sahai E, Olson MF, Marshall CJ . (2001). Cross-talk between Ras and Rho signaling pathways in transformation favours proliferation and increased motility. EMBO J 20: 755–766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott RW, Olson MF . (2007). LIM kinases: function, regulation and association with human disease. J Mol Med 85: 555–568.

    Article  CAS  PubMed  Google Scholar 

  • Smolich B, Vo M, Buckley S, Plowman G, Papkoff J . (1997). Cloning and biochemical characterization of LIMK-2, a protein kinase containing two LIM domains. J Biochem 121: 382–388.

    Article  CAS  PubMed  Google Scholar 

  • Sumi T, Matsumoto K, Nakamura T . (2001). Specific activation of LIM kinase 2 via phosphorylation of threonine 505 by ROCK, a Rho-dependent protein kinase. J Biol Chem 276: 670–676.

    Article  CAS  PubMed  Google Scholar 

  • Sumi T, Matsumoto K, Takai Y, Nakamura T . (1999). Cofilin phosphorylation and actin cytoskeletal dynamics regulated by Rho- and Cdc42-activated LIM-kinase 2. J Cell Biol 147: 1519–1532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi T, Koshimizu U, Abe H, Ohinata T, Nakamura T . (2001). Functional involvement of Xenopus LIM kinases in progression of oocyte maturation. Dev Biol 229: 554–567.

    Article  CAS  PubMed  Google Scholar 

  • Toledo F, Wahl GM . (2006). Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 6: 909–923.

    Article  CAS  PubMed  Google Scholar 

  • Vardouli L, Moustakas A, Stournaras C . (2005). LIM-kinase 2 and cofilin phosphorylation mediate actin cytoskeleton reorganization induced by transforming growth factor-beta. J Biol Chem 280: 11448–11457.

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, McAvoy S, Kuhn R, Smith DI . (2006). RORA, a large common fragile site gene, is involved in cellular stress response. Oncogene 25: 2901–2908.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Hsiu-Ting Lin for her expert technical assistance with the RT–PCR. This work was supported by funding from Academia Sinica to S-Y Shieh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S-Y Shieh.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, FF., Lin, TY., Chen, JY. et al. p53-Mediated transactivation of LIMK2b links actin dynamics to cell cycle checkpoint control. Oncogene 29, 2864–2876 (2010). https://doi.org/10.1038/onc.2010.40

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.40

Keywords

This article is cited by

Search

Quick links