Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Adverse reactions to biologic agents and their medical management

Key Points

  • Biologic agents used for the treatment of rheumatic and immunological disorders can cause allergic adverse events (AEs), including standard infusion reactions and hypersensitivity reactions

  • Biologic agents are associated with an increased risk of severe infection, including reactivation of tuberculosis (high risk: infliximab, adalimumab; intermediate risk: etanercept, abatacept, tocilizumab; low risk: rituximab, anakinra)

  • Combination therapy using biologic agents and immunosuppressive drugs has a higher risk of serious infections than monotherapy, especially in the first 12 months of treatment

  • Organ-specific AEs are commonly hepatic, cutaneous or haematological AEs, whereas immunological syndromes and cardiovascular, noninfectious pulmonary, gastrointestinal and neurological AEs are rare

  • Whether patients receiving biologic therapy have an increased incidence of lymphomas and skin cancers, especially after combination therapy, is unknown

  • Biologic therapy decreases the immune response to primary (but not booster) vaccination; therefore, live vaccines (nasal flu; Bacillus Calmette–Guérin; measles, mumps and rubella; and yellow fever vaccines) during active biologic therapy are prohibited

Abstract

Biologic agents have substantially advanced the treatment of immunological disorders, including chronic inflammatory and autoimmune diseases. However, these drugs are often associated with adverse events (AEs), including allergic, immunological and other unwanted reactions. AEs can affect almost any organ or system in the body and can occur immediately, within minutes to hours, or with a delay of several days or more after initiation of biologic therapy. Although some AEs are a direct consequence of the functional inhibition of biologic-agent-targeted antigens, the pathogenesis of other AEs results from a drug-induced imbalance of the immune system, intermediary factors and cofactors, a complexity that complicates their prediction. Herein, we review the AEs associated with biologic therapy most relevant to rheumatic and immunological diseases, and discuss their underlying pathogenesis. We also include our recommendations for the medical management of such AEs. Increased understanding and improved risk management of AEs induced by biologic agents will enable better use of these versatile immune-response modifiers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proinflammatory networks in autoimmune and chronic inflammatory diseases.
Figure 2: Biologic agents can inhibit immunity to pathogens.

Similar content being viewed by others

References

  1. Pichler, W. J. Adverse side-effects to biological agents. Allergy 61, 912–920 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Lenz, H. J. Management and preparedness for infusion and hypersensitivity reactions. Oncologist 12, 601–609 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Johansson, S. G. et al. Revised nomenclature for allergy for global use: Report of the Nomenclature Review Committee of the World Allergy Organization, October 2003. J. Allergy Clin. Immunol. 113, 832–836 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Matucci, A. et al. Allergological in vitro and in vivo evaluation of patients with hypersensitivity reactions to infliximab. Clin. Exp. Allergy 43, 659–664 (2013).

    CAS  PubMed  Google Scholar 

  5. Dillman, R. O. & Hendrix, C. S. Unique aspects of supportive care using monoclonal antibodies in cancer treatment. Support Cancer Ther. 1, 38–48 (2003).

    Article  PubMed  Google Scholar 

  6. Coiffier, B. et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N. Engl. J. Med. 346, 235–242 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Dillman, R. O. Infusion reactions associated with the therapeutic use of monoclonal antibodies in the treatment of malignancy. Cancer Metastasis Rev. 18, 465–471 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Chung, C. H. et al. Cetuximab-induced anaphylaxis and IgE specific for galactose-α-1, 3-galactose. N. Engl. J. Med. 358, 1109–1117 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brennan, P. J., Rodriguez Bouza, T., Hsu, F. I., Sloane, D. E. & Castells, M. C. Hypersensitivity reactions to mAbs: 105 desensitizations in 23 patients, from evaluation to treatment. J. Allergy Clin. Immunol. 124, 1259–1266 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Vultaggio, A. et al. Anti-infliximab IgE and non-IgE antibodies and induction of infusion-related severe anaphylactic reactions. Allergy 65, 657–661 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Vultaggio, A. et al. Drug-specific TH2 cells and IgE antibodies in a patient with anaphylaxis to rituximab. Int. Arch. Allergy Immunol. 159, 321–326 (2012).

    Article  PubMed  Google Scholar 

  12. Finkelman, F. D. Anaphylaxis: lessons from mouse models. J. Allergy Clin. Immunol. 120, 506–515 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Jönsson, F. et al. Mouse and human neutrophils induce anaphylaxis. J. Clin. Invest. 121, 1484–1496 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Vadas, P. et al. Platelet-activating factor, PAF acetylhydrolase, and severe anaphylaxis. N. Engl. J. Med. 358, 28–35 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Cheifetz, A. & Mayer, L. Monoclonal antibodies, immunogenicity, and associated infusion reactions. Mt Sinai J. Med. 72, 250–256 (2005).

    PubMed  Google Scholar 

  16. Svenson, M., Geborek, P., Saxne, T. & Bendtzen, K. Monitoring patients treated with anti-TNF-α biopharmaceuticals: assessing serum infliximab and anti-infliximab antibodies. Rheumatology (Oxford) 46, 1828–1834 (2007).

    Article  CAS  Google Scholar 

  17. Krintel, S. B. et al. The frequency of anti-infliximab antibodies in patients with rheumatoid arthritis treated in routine care and the associations with adverse drug reactions and treatment failure. Rheumatology (Oxford) 52, 1245–1253 (2013).

    Article  CAS  Google Scholar 

  18. Wolbink, G. J. et al. Development of antiinfliximab antibodies and relationship to clinical response in patients with rheumatoid arthritis. Arthritis Rheum. 54, 711–715 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Baert, F. et al. Influence of immunogenicity on the long-term efficacy of infliximab in Crohn's disease. N. Engl. J. Med. 348, 601–608 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Bartelds, G. M. et al. Development of antidrug antibodies against adalimumab and association with disease activity and treatment failure during long-term follow-up. JAMA 305, 1460–1468 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Maneiro, J. R., Salgado, E. & Gomez-Reino, J. J. Immunogenicity of monoclonal antibodies against tumor necrosis factor used in chronic immune-mediated inflammatory conditions: systematic review and meta-analysis. JAMA Intern. Med. 173, 1416–1428 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. de Vries, M. K. et al. Immunogenicity does not influence treatment with etanercept in patients with ankylosing spondylitis. Ann. Rheum. Dis. 68, 531–535 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Dore, R. K. et al. The immunogenicity, safety, and efficacy of etanercept liquid administered once weekly in patients with rheumatoid arthritis. Clin. Exp. Rheumatol. 25, 40–46 (2007).

    CAS  PubMed  Google Scholar 

  24. van Schouwenburg, P. A., Rispens, T. & Wolbink, G. J. Immunogenicity of anti-TNF biologic therapies for rheumatoid arthritis. Nat. Rev. Rheumatol. 9, 164–172 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Haggerty, H. G. et al. Evaluation of immunogenicity of the T cell costimulation modulator abatacept in patients treated for rheumatoid arthritis. J. Rheumatol. 34, 2365–2373 (2007).

    CAS  PubMed  Google Scholar 

  26. Thurlings, R. M. et al. Clinical response, pharmacokinetics, development of human anti-chimaeric antibodies, and synovial tissue response to rituximab treatment in patients with rheumatoid arthritis. Ann. Rheum. Dis. 69, 409–412 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Zhou, H. et al. Pharmacokinetics and safety of golimumab, a fully human anti-TNF-α monoclonal antibody, in subjects with rheumatoid arthritis. J. Clin. Pharmacol. 47, 383–396 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Stubenrauch, K. et al. Subset analysis of patients experiencing clinical events of a potentially immunogenic nature in the pivotal clinical trials of tocilizumab for rheumatoid arthritis: Evaluation of an antidrug antibody ELISA using clinical adverse event-driven immunogenicity testing. Clin. Ther. 32, 1597–1609 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Bingham, C. O. 3rd et al. Effectiveness and safety of etanercept in subjects with RA who have failed infliximab therapy: 16-week, open-label, observational study. Curr. Med. Res. Opin. 25, 1131–1142 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Chatzidionysiou, K., Askling, J., Eriksson, J., Kristensen, L. E. & van Vollenhoven, R. Effectiveness of TNF inhibitor switch in RA: results from the national Swedish register. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2013-204714.

  31. Furst, D. E. et al. Open-label, pilot protocol of patients with rheumatoid arthritis who switch to infliximab after an incomplete response to etanercept: the opposite study. Ann. Rheum. Dis. 66, 893–899 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Karlsson, J. A. et al. Treatment response to a second or third TNF-inhibitor in RA: results from the South Swedish Arthritis Treatment Group Register. Rheumatology (Oxford) 47, 507–513 (2008).

    Article  CAS  Google Scholar 

  33. Smolen, J. S. et al. Golimumab in patients with active rheumatoid arthritis after treatment with tumour necrosis factor α inhibitors (GO-AFTER study): a multicentre, randomised, double-blind, placebo-controlled, phase III trial. Lancet 374, 210–221 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. van der Bijl, A. E. et al. An open-label pilot study of the effectiveness of adalimumab in patients with rheumatoid arthritis and previous infliximab treatment: relationship to reasons for failure and anti-infliximab antibody status. Clin. Rheumatol. 27, 1021–1028 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hanekom, W. A., Abel, B. & Scriba, T. J. Immunological protection against tuberculosis. S. Afr. Med. J. 97, 973–977 (2007).

    PubMed  Google Scholar 

  36. Harris, J. & Keane, J. How tumour necrosis factor blockers interfere with tuberculosis immunity. Clin. Exp. Immunol. 161, 1–9 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Keane, J. et al. Tuberculosis associated with infliximab, a tumor necrosis factor α-neutralizing agent. N. Engl. J. Med. 345, 1098–1104 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Winthrop, K. L., Siegel, J. N., Jereb, J., Taylor, Z. & Iademarco, M. F. Tuberculosis associated with therapy against tumor necrosis factor α. Arthritis Rheum. 52, 2968–2974 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Furst, D. E. The risk of infections with biologic therapies for rheumatoid arthritis. Semin. Arthritis Rheum. 39, 327–346 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Tubach, F. et al. Risk of tuberculosis is higher with anti-tumor necrosis factor monoclonal antibody therapy than with soluble tumor necrosis factor receptor therapy: the three-year prospective French Research Axed on Tolerance of Biotherapies registry. Arthritis Rheum. 60, 1884–1894 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Winthrop, K. L. et al. Mycobacterial diseases and antitumour necrosis factor therapy in USA. Ann. Rheum. Dis. 72, 37–42 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Curtis, J. R. et al. The comparative risk of serious infections among rheumatoid arthritis patients starting or switching biological agents. Ann. Rheum. Dis. 70, 1401–1406 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Mohan, A. K. et al. Tuberculosis following the use of etanercept, a tumor necrosis factor inhibitor. Clin. Infect. Dis. 39, 295–299 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Keane, J. & Bresnihan, B. Tuberculosis reactivation during immunosuppressive therapy in rheumatic diseases: diagnostic and therapeutic strategies. Curr. Opin. Rheumatol. 20, 443–449 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Fallahi-Sichani, M., Flynn, J. L., Linderman, J. J. & Kirschner, D. E. Differential risk of tuberculosis reactivation among anti-TNF therapies is due to drug binding kinetics and permeability. J. Immunol. 188, 3169–3178 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Takeuchi, T. et al. Golimumab monotherapy in Japanese patients with active rheumatoid arthritis despite prior treatment with disease-modifying antirheumatic drugs: results of the phase 2/3, multicentre, randomised, double-blind, placebo-controlled GO-MONO study through 24 weeks. Ann. Rheum. Dis. 72, 1488–1495 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Hsia, E. C. et al. Comprehensive tuberculosis screening program in patients with inflammatory arthritides treated with golimumab, a human anti-tumor necrosis factor antibody, in phase III clinical trials. Arthritis Care Res. (Hoboken) 65, 309–313 (2013).

    Article  CAS  Google Scholar 

  48. Smolen, J. et al. Efficacy and safety of certolizumab pegol plus methotrexate in active rheumatoid arthritis: the RAPID 2 study. A randomised controlled trial. Ann. Rheum. Dis. 68, 797–804 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Campbell, L., Chen, C., Bhagat, S. S., Parker, R. A. & Östör, A. J. Risk of adverse events including serious infections in rheumatoid arthritis patients treated with tocilizumab: a systematic literature review and meta-analysis of randomized controlled trials. Rheumatology (Oxford) 50, 552–562 (2011).

    Article  CAS  Google Scholar 

  50. Smolen, J. S. et al. Consensus statement on blocking the effects of interleukin-6 and in particular by interleukin-6 receptor inhibition in rheumatoid arthritis and other inflammatory conditions. Ann. Rheum. Dis. 72, 482–492 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Mohrbacher, A. B cell non-Hodgkin's lymphoma: rituximab safety experience. Arthritis Res. Ther. 7 (Suppl. 3), S19–S25 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Burr, M. L., Malaviya, A. P., Gaston, J. H., Carmichael, A. J. & Östör, A. J. Rituximab in rheumatoid arthritis following anti-TNF-associated tuberculosis. Rheumatology (Oxford) 47, 738–739 (2008).

    Article  CAS  Google Scholar 

  53. Chen, Y. M. et al. The effects of rituximab therapy on released interferon-gamma levels in the QuantiFERON assay among RA patients with different status of Mycobacterium tuberculosis infection. Rheumatology (Oxford) 52, 697–704 (2013).

    Article  CAS  Google Scholar 

  54. Fleishmann, R. M. Safety of anakinra, a recombinant interleukin-1 receptor antagonist (r-metHuIL-1ra), in patients with rheumatoid arthritis and comparison to anti-TNF-α agents. Clin. Exp. Rheumatol. 20 (Suppl. 27), S35–S41 (2002).

    CAS  PubMed  Google Scholar 

  55. Winthrop, K. L. Infections and biologic therapy in rheumatoid arthritis: our changing understanding of risk and prevention. Rheum. Dis. Clin. North Am. 38, 727–745 (2012).

    Article  PubMed  Google Scholar 

  56. Filler, S. G., Yeaman, M. R. & Sheppard, D. C. Tumor necrosis factor inhibition and invasive fungal infections. Clin. Infect. Dis. 41 (Suppl. 3), S208–S212 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Salmon-Ceron, D. et al. Drug-specific risk of non-tuberculosis opportunistic infections in patients receiving anti-TNF therapy reported to the 3-year prospective French RATIO registry. Ann. Rheum. Dis. 70, 616–623 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Patel, D. D., Lee, D. M., Kolbinger, F. & Antoni, C. Effect of IL-17A blockade with secukinumab in autoimmune diseases. Ann. Rheum. Dis. 72 (Suppl. 2), ii116–ii123 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. O'Quinn, D. B., Palmer, M. T., Lee, Y. K. & Weaver, C. T. Emergence of the TH17 pathway and its role in host defense. Adv. Immunol. 99, 115–163 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Singh, J. A. et al. Adverse effects of biologics: a network meta-analysis and Cochrane overview. Cochrane Database of Systematic Reviews, Issue 16. Art No.: CD008794. http://dx.doi.org/10.1002/14651858.CD008794.pub2.

  61. Salliot, C. et al. Infections during tumour necrosis factor-α blocker therapy for rheumatic diseases in daily practice: a systematic retrospective study of 709 patients. Rheumatology (Oxford) 46, 327–334 (2007).

    Article  CAS  Google Scholar 

  62. Genovese, M. C. et al. Longterm safety and efficacy of tocilizumab in patients with rheumatoid arthritis: a cumulative analysis of up to 4.6 years of exposure. J. Rheumatol. 40, 768–780 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Schiff, M. H. et al. Integrated safety in tocilizumab clinical trials. Arthritis Res. Ther. 13, R141 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fleischmann, R. M. et al. Safety of extended treatment with anakinra in patients with rheumatoid arthritis. Ann. Rheum. Dis. 65, 1006–1012 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Salliot, C., Dougados, M. & Gossec, L. Risk of serious infections during rituximab, abatacept and anakinra treatments for rheumatoid arthritis: meta-analyses of randomised placebo-controlled trials. Ann. Rheum. Dis. 68, 25–32 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Kremer, J. M. et al. Long-term safety, efficacy and inhibition of radiographic progression with abatacept treatment in patients with rheumatoid arthritis and an inadequate response to methotrexate: 3-year results from the AIM trial. Ann. Rheum. Dis. 70, 1826–1830 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Weinblatt, M. E. et al. Safety of abatacept administered intravenously in treatment of rheumatoid arthritis: integrated analyses of up to 8 years of treatment from the abatacept clinical trial program. J. Rheumatol. 40, 787–797 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Weinblatt, M. et al. Safety of the selective costimulation modulator abatacept in rheumatoid arthritis patients receiving background biologic and nonbiologic disease-modifying antirheumatic drugs: a one-year randomized, placebo-controlled study. Arthritis Rheum. 54, 2807–2816 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Weinblatt, M. et al. Selective costimulation modulation using abatacept in patients with active rheumatoid arthritis while receiving etanercept: a randomised clinical trial. Ann. Rheum. Dis. 66, 228–234 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Cohen, S. B. et al. Rituximab for rheumatoid arthritis refractory to anti-tumor necrosis factor therapy: results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial evaluating primary efficacy and safety at twenty-four weeks. Arthritis Rheum. 54, 2793–2806 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Askling, J. et al. Time-dependent increase in risk of hospitalisation with infection among Swedish RA patients treated with TNF antagonists. Ann. Rheum. Dis. 66, 1339–1344 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Dixon, W. G. et al. Serious infection following anti-tumor necrosis factor α therapy in patients with rheumatoid arthritis: lessons from interpreting data from observational studies. Arthritis Rheum. 56, 2896–2904 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Galloway, J. B. et al. Anti-TNF therapy is associated with an increased risk of serious infections in patients with rheumatoid arthritis especially in the first 6 months of treatment: updated results from the British Society for Rheumatology Biologics Register with special emphasis on risks in the elderly. Rheumatology (Oxford) 50, 124–131 (2011).

    Article  CAS  Google Scholar 

  74. Bongartz, T. et al. Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials. JAMA 295, 2275–2285 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Curtis, J. R. et al. Risk of serious bacterial infections among rheumatoid arthritis patients exposed to tumor necrosis factor α antagonists. Arthritis Rheum. 56, 1125–1133 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Greenberg, J. D. et al. Association of methotrexate and tumour necrosis factor antagonists with risk of infectious outcomes including opportunistic infections in the CORRONA registry. Ann. Rheum. Dis. 69, 380–386 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Listing, J. et al. Infections in patients with rheumatoid arthritis treated with biologic agents. Arthritis Rheum. 52, 3403–3412 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Strangfeld, A. et al. Treatment benefit or survival of the fittest: what drives the time-dependent decrease in serious infection rates under TNF inhibition and what does this imply for the individual patient? Ann. Rheum. Dis. 70, 1914–1920 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. van Vollenhoven, R. F. et al. Longterm safety of patients receiving rituximab in rheumatoid arthritis clinical trials. J. Rheumatol. 37, 558–567 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Rigby, W. F., Mease, P. J., Olech, E., Ashby, M. & Tole, S. Safety of rituximab in combination with other biologic disease-modifying antirheumatic drugs in rheumatoid arthritis: an open-label study. J. Rheumatol. 40, 599–604 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Genovese, M. C. et al. Safety of biological therapies following rituximab treatment in rheumatoid arthritis patients. Ann. Rheum. Dis. 68, 1894–1897 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. van Vollenhoven, R. F. et al. Long-term safety of rituximab in rheumatoid arthritis: 9.5-year follow-up of the global clinical trial programme with a focus on adverse events of interest in RA patients. Ann. Rheum. Dis. 72, 1496–1502 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Furie, R. et al. A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum. 63, 3918–3930 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Merrill, J. T. et al. Long-term safety profile of belimumab plus standard therapy in patients with systemic lupus erythematosus. Arthritis Rheum. 64, 3364–3373 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Strangfeld, A. et al. Risk of herpes zoster in patients with rheumatoid arthritis treated with anti-TNF-α agents. JAMA 301, 737–744 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Dreiher, J., Kresch, F. S., Comaneshter, D. & Cohen, A. D. Risk of Herpes zoster in patients with psoriasis treated with biologic drugs. J. Eur. Acad. Dermatol. Venereol. 26, 1127–1132 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. McDonald, J. R. et al. Herpes zoster risk factors in a national cohort of veterans with rheumatoid arthritis. Clin. Infect. Dis. 48, 1364–1371 (2009).

    Article  PubMed  Google Scholar 

  88. Wendling, D., Streit, G., Toussirot, E. & Prati, C. Herpes zoster in patients taking TNFα antagonists for chronic inflammatory joint disease. Joint Bone Spine 75, 540–543 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Failla, V., Jacques, J., Castronovo, C. & Nikkels, A. F. Herpes zoster in patients treated with biologicals. Dermatology 224, 251–256 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Koike, T. et al. Postmarketing surveillance of tocilizumab for rheumatoid arthritis in Japan: interim analysis of 3881 patients. Ann. Rheum. Dis. 70, 2148–2151 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Terrier, B. & Cacoub, P. Cryoglobulinemia vasculitis: an update. Curr. Opin. Rheumatol. 25, 10–18 (2013).

    Article  PubMed  Google Scholar 

  92. Ferri, C. et al. Safety of anti-tumor necrosis factor-α therapy in patients with rheumatoid arthritis and chronic hepatitis C virus infection. J. Rheumatol. 35, 1944–1949 (2008).

    CAS  PubMed  Google Scholar 

  93. Lee, Y. H., Bae, S. C. & Song, G. G. Hepatitis B virus (HBV) reactivation in rheumatic patients with hepatitis core antigen (HBV occult carriers) undergoing anti-tumor necrosis factor therapy. Clin. Exp. Rheumatol. 31, 118–121 (2013).

    PubMed  Google Scholar 

  94. Perez-Alvarez, R. et al. Hepatitis B virus (HBV) reactivation in patients receiving tumor necrosis factor (TNF)-targeted therapy: analysis of 257 cases. Medicine (Baltimore) 90, 359–371 (2011).

    Article  CAS  Google Scholar 

  95. Sarrecchia, C., Cappelli, A. & Aiello, P. HBV reactivation with fatal fulminating hepatitis during rituximab treatment in a subject negative for HBsAg and positive for HBsAb and HBcAb. J. Infect. Chemother. 11, 189–191 (2005).

    Article  PubMed  Google Scholar 

  96. Westhoff, T. H. et al. Fatal hepatitis B virus reactivation by an escape mutant following rituximab therapy. Blood 102, 1930 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Sneller, M. C., Hu, Z. & Langford, C. A. A randomized controlled trial of rituximab following failure of antiviral therapy for hepatitis C virus-associated cryoglobulinemic vasculitis. Arthritis Rheum. 64, 835–842 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Day, R. Adverse reactions to TNF-α inhibitors in rheumatoid arthritis. Lancet 359, 540–541 (2002).

    Article  PubMed  Google Scholar 

  99. Wetter, D. A. & Davis, M. D. Lupus-like syndrome attributable to anti-tumor necrosis factor α therapy in 14 patients during an 8-year period at Mayo Clinic. Mayo Clin. Proc. 84, 979–984 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kerbleski, J. F. & Gottlieb, A. B. Dermatological complications and safety of anti-TNF treatments. Gut 58, 1033–1039 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Williams, V. L. & Cohen, P. R. TNF alpha antagonist-induced lupus-like syndrome: report and review of the literature with implications for treatment with alternative TNF α antagonists. Int. J. Dermatol. 50, 619–625 (2011).

    Article  PubMed  Google Scholar 

  102. De Bandt, M. et al. Systemic lupus erythematosus induced by anti-tumour necrosis factor α therapy: a French national survey. Arthritis Res. Ther. 7, R545–R551 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Nosbaum, A. et al. Arterial thrombosis with anti-phospholipid antibodies induced by infliximab. Eur. J. Dermatol. 17, 546–547 (2007).

    PubMed  Google Scholar 

  104. Ramos-Casals, M., Roberto Perez, A., Diaz-Lagares, C., Cuadrado, M. J. & Khamashta, M. A. Autoimmune diseases induced by biological agents: a double-edged sword? Autoimmun. Rev. 9, 188–193 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Charles, P. J., Smeenk, R. J., De Jong, J., Feldmann, M. & Maini, R. N. Assessment of antibodies to double-stranded DNA induced in rheumatoid arthritis patients following treatment with infliximab, a monoclonal antibody to tumor necrosis factor α: findings in open-label and randomized placebo-controlled trials. Arthritis Rheum. 43, 2383–2390 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Ramos-Casals, M. et al. Autoimmune diseases induced by TNF-targeted therapies: analysis of 233 cases. Medicine 86, 242–251 (2007).

    Article  PubMed  Google Scholar 

  107. Tan, E. M. et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 25, 1271–1277 (1982).

    Article  CAS  PubMed  Google Scholar 

  108. de Gannes, G. C. et al. Psoriasis and pustular dermatitis triggered by TNF-(α) inhibitors in patients with rheumatologic conditions. Arch. Dermatol. 143, 223–231 (2007).

    CAS  PubMed  Google Scholar 

  109. Seneschal, J. et al. Cytokine imbalance with increased production of interferon-α in psoriasiform eruptions associated with antitumour necrosis factor-α treatments. Br. J. Dermatol. 161, 1081–1088 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Perez-Alvarez, R., Perez-de-Lis, M. & Ramos-Casals, M. Biologics-induced autoimmune diseases. Curr. Opin. Rheumatol. 25, 56–64 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Guillevin, L. & Mouthon, L. Tumor necrosis factor-α blockade and the risk of vasculitis. J. Rheumatol. 31, 1885–1887 (2004).

    PubMed  Google Scholar 

  112. Giezen, T. J. et al. Rituximab-induced thrombocytopenia: a cohort study. Eur. J. Haematol. 89, 256–266 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. El-Osta, H. & Nair, B. Rituximab-induced acute thrombocytopenia: an underappreciated entity. Leuk. Lymphoma (2013).

  114. Szalay, B., Acs, L., Vásárhelyi, B., Kovács, L. & Balog, A. Successful use of tocilizumab in a patient with rheumatoid arthritis following severe pancytopenia during etanercept therapy. J. Clin. Rheumatol. 17, 377–379 (2011).

    Article  PubMed  Google Scholar 

  115. Martínez Santana, V., Izquierdo Navarro, M., Calleja Hernández, M. Á., Sánchez Sánchez, T. & Sainz Gil, M. Severe pancytopenia following etanercept administration in rheumatoid arthritis. Int. J. Rheum. Dis. 15, e78–e79 (2012).

    Article  PubMed  Google Scholar 

  116. Kuruvilla, J. et al. Aplastic anemia following administration of a tumor necrosis factor-α inhibitor. Eur. J. Haematol. 71, 396–398 (2003).

    Article  PubMed  Google Scholar 

  117. Korswagen, L. A. et al. Venous and arterial thromboembolic events in adalimumab-treated patients with antiadalimumab antibodies: a case series and cohort study. Arthritis Rheum. 63, 877–883 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Jones, G. et al. Comparison of tocilizumab monotherapy versus methotrexate monotherapy in patients with moderate to severe rheumatoid arthritis: the AMBITION study. Ann. Rheum. Dis. 69, 88–96 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Kwon, H. J., Coté, T. R., Cuffe, M. S., Kramer, J. M. & Braun, M. M. Case reports of heart failure after therapy with a tumor necrosis factor antagonist. Ann. Intern. Med. 138, 807–811 (2003).

    Article  PubMed  Google Scholar 

  120. Listing, J. et al. Does tumor necrosis factor α inhibition promote or prevent heart failure in patients with rheumatoid arthritis? Arthritis Rheum. 58, 667–677 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Barnabe, C., Martin, B. J. & Ghali, W. A. Systematic review and meta-analysis: anti-tumor necrosis factor α therapy and cardiovascular events in rheumatoid arthritis. Arthritis Care Res. 63, 522–529 (2011).

    Article  CAS  Google Scholar 

  122. Greenberg, J. D. et al. Tumour necrosis factor antagonist use and associated risk reduction of cardiovascular events among patients with rheumatoid arthritis. Ann. Rheum. Dis. 70, 576–582 (2011).

    Article  PubMed  Google Scholar 

  123. Jacobsson, L. T. et al. Treatment with tumor necrosis factor blockers is associated with a lower incidence of first cardiovascular events in patients with rheumatoid arthritis. J. Rheumatol. 32, 1213–1218 (2005).

    CAS  PubMed  Google Scholar 

  124. Carmona, L. et al. All-cause and cause-specific mortality in rheumatoid arthritis are not greater than expected when treated with tumour necrosis factor antagonists. Ann. Rheum. Dis. 66, 880–885 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Dixon, W. G. et al. Reduction in the incidence of myocardial infarction in patients with rheumatoid arthritis who respond to anti-tumor necrosis factor α therapy: results from the British Society for Rheumatology Biologics Register. Arthritis Rheum. 56, 2905–2912 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chung, E. S., Packer, M., Lo, K. H., Fasanmade, A. A. & Willerson, J. T. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-α, in patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation 107, 3133–3140 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Mann, D. L. et al. Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation 109, 1594–1602 (2004).

    Article  CAS  Google Scholar 

  128. Petrou, I. Systemic medications for psoriasis therapy must be prescribed with caution. Dermatology Times: Modern Medicine [online]. (2014).

  129. Ryan, C. et al. Association between biologic therapies for chronic plaque psoriasis and cardiovascular events: a meta-analysis of randomized controlled trials. JAMA 306, 864–871 (2011).

    CAS  PubMed  Google Scholar 

  130. Tzellos, T., Kyrgidis, A. & Zouboulis, C. C. Re-evaluation of the risk for major adverse cardiovascular events in patients treated with anti-IL-12/23 biological agents for chronic plaque psoriasis: a meta-analysis of randomized controlled trials. J. Eur. Acad. Dermatol. Venereol. 27, 622–627 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Dommasch, E. D., Troxel, A. B. & Gelfand, J. M. Major cardiovascular events associated with anti-IL 12/23 agents: a tale of two meta-analyses. J. Am. Acad. Dermatol. 68, 863–865 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Myasoedova, E., Crowson, C. S., Turesson, C., Gabriel, S. E. & Matteson, E. L. Incidence of extraarticular rheumatoid arthritis in Olmsted County, Minnesota, in 1995–2007 versus 1985–1994: a population-based study. J. Rheumatol. 38, 983–989 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Hadjinicolaou, A. V. et al. Non-infectious pulmonary complications of newer biological agents for rheumatic diseases—a systematic literature review. Rheumatology 50, 2297–2305 (2011).

    Article  PubMed  Google Scholar 

  134. Jani, M., Hirani, N., Matteson, E. L. & Dixon, W. G. The safety of biologic therapies in RA-associated interstitial lung disease. Nat. Rev. Rheumatol. 10, 284–294 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Lateef, O., Shakoor, N. & Balk, R. A. Methotrexate pulmonary toxicity. Expert Opin. Drug Saf. 4, 723–730 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. Kim, D. S. Interstitial lung disease in rheumatoid arthritis: recent advances. Curr. Opin. Pulm. Med. 12, 346–353 (2006).

    Article  PubMed  Google Scholar 

  137. Khasnis, A. A. & Calabrese, L. H. Tumor necrosis factor inhibitors and lung disease: a paradox of efficacy and risk. Semin. Arthritis Rheum. 40, 147–163 (2010).

    Article  CAS  PubMed  Google Scholar 

  138. Wada, T. et al. A case of rheumatoid arthritis complicated with deteriorated interstitial pneumonia after the administration of abatacept [Japanese]. Nihon Rinsho Men'eki Gakkai Kaishi 35, 433–438 (2012).

    Article  PubMed  Google Scholar 

  139. Curtis, J. R. et al. The incidence of gastrointestinal perforations among rheumatoid arthritis patients. Arthritis Rheum. 63, 346–351 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Glund, S. & Krook, A. Role of interleukin-6 signalling in glucose and lipid metabolism. Acta Physiol. 192, 37–48 (2008).

    Article  CAS  Google Scholar 

  141. Furst, D. E. et al. Updated consensus statement on biological agents for the treatment of rheumatic diseases, 2011. Ann. Rheum. Dis. 71 (Suppl. 2), i2–i45 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Stone, N. J. et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation http://dx.doi.org/10.1016/j.jacc.2013.11.002.

  143. Collamer, A. N. & Battafarano, D. F. Psoriatic skin lesions induced by tumor necrosis factor antagonist therapy: clinical features and possible immunopathogenesis. Semin. Arthritis Rheum. 40, 233–240 (2010).

    Article  CAS  PubMed  Google Scholar 

  144. Wollina, U. et al. Tumor necrosis factor-α inhibitor-induced psoriasis or psoriasiform exanthemata: first 120 cases from the literature including a series of six new patients. Am. J. Clin. Dermatol. 9, 1–14 (2008).

    Article  PubMed  Google Scholar 

  145. Harrison, M. J. et al. Rates of new-onset psoriasis in patients with rheumatoid arthritis receiving anti-tumour necrosis factor α therapy: results from the British Society for Rheumatology Biologics Register. Ann. Rheum. Dis. 68, 209–215 (2009).

    Article  CAS  PubMed  Google Scholar 

  146. Shmidt, E., Wetter, D. A., Ferguson, S. B. & Pittelkow, M. R. Psoriasis and palmoplantar pustulosis associated with tumor necrosis factor-α inhibitors: the Mayo Clinic experience, 1998 to 2010. J. Am. Acad. Dermatol. 67, e179–e185 (2012).

    Article  PubMed  Google Scholar 

  147. Dass, S., Vital, E. M. & Emery, P. Development of psoriasis after B cell depletion with rituximab. Arthritis Rheum. 56, 2715–2718 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Mielke, F., Schneider-Obermeyer, J. & Dörner, T. Onset of psoriasis with psoriatic arthropathy during rituximab treatment of non-Hodgkin lymphoma. Ann. Rheum. Dis. 67, 1056–1057 (2008).

    Article  CAS  PubMed  Google Scholar 

  149. Laurent, S., Le Parc, J. M., Clérici, T., Bréban, M. & Mahé, E. Onset of psoriasis following treatment with tocilizumab. Br. J. Dermatol. 163, 1364–1365 (2010).

    Article  CAS  PubMed  Google Scholar 

  150. Hawryluk, E. B., Linskey, K. R., Duncan, L. M. & Nazarian, R. M. Broad range of adverse cutaneous eruptions in patients on TNF-α antagonists. J. Cutan Pathol. 39, 481–492 (2012).

    Article  PubMed  Google Scholar 

  151. Nakamura, M. & Tokura, Y. Tocilizumab-induced erythroderma. Eur. J. Dermatol. 19, 273–274 (2009).

    PubMed  Google Scholar 

  152. Brunasso, A. M., Laimer, M. & Massone, C. Paradoxical reactions to targeted biological treatments: A way to treat and trigger? Acta Derm. Venereol. 90, 183–185 (2010).

    Article  PubMed  Google Scholar 

  153. Mohan, N. et al. Leukocytoclastic vasculitis associated with tumor necrosis factor-α blocking agents. J. Rheumatol. 31, 1955–1958 (2004).

    CAS  PubMed  Google Scholar 

  154. Dereure, O., Navarro, R., Rossi, J. F. & Guilhou, J. J. Rituximab-induced vasculitis. Dermatology 203, 83–84 (2001).

    Article  CAS  PubMed  Google Scholar 

  155. Kandula, P. & Kouides, P. A. Rituximab-induced leukocytoclastic vasculitis: a case report. Arch. Dermatol. 142, 246–247 (2006).

    Article  PubMed  Google Scholar 

  156. Kim, M. J., Kim, H. O., Kim, H. Y. & Park, Y. M. Rituximab-induced vasculitis: a case report and review of the medical published work. J. Dermatol. 36, 284–287 (2009).

    Article  PubMed  Google Scholar 

  157. RITUXAN (rituximab) - Toxic Epidermal Necrolysis and Stevens-Johnson Syndrome - for health professionals. Government of Canada, Healthy Canadians [online]. (2014).

  158. Seror, R. et al. Pattern of demyelination occurring during anti-TNF-α therapy: a French national survey. Rheumatology (Oxford) 52, 868–874 (2013).

    Article  CAS  Google Scholar 

  159. Cruz Fernández-Espartero, M. et al. Demyelinating disease in patients treated with TNF antagonists in rheumatology: data from BIOBADASER, a pharmacovigilance database, and a systematic review. Semin. Arthritis Rheum. 41, 524–533 (2011).

    Article  CAS  PubMed  Google Scholar 

  160. Bernatsky, S., Renoux, C. & Suissa, S. Demyelinating events in rheumatoid arthritis after drug exposures. Ann. Rheum. Dis. 69, 1691–1693 (2010).

    Article  CAS  PubMed  Google Scholar 

  161. Fromont, A., De Seze, J., Fleury, M. C., Maillefert, J. F. & Moreau, T. Inflammatory demyelinating events following treatment with anti-tumor necrosis factor. Cytokine 45, 55–57 (2009).

    Article  CAS  PubMed  Google Scholar 

  162. Matsumoto, T., Nakamura, I., Miura, A., Momoyama, G. & Ito, K. New-onset multiple sclerosis associated with adalimumab treatment in rheumatoid arthritis: a case report and literature review. Clin. Rheumatol. 32, 271–275 (2013).

    Article  PubMed  Google Scholar 

  163. Gomez-Gallego, M., Meca-Lallana, J. & Fernandez-Barreiro, A. Multiple sclerosis onset during etanercept treatment. Eur. Neurol. 59, 91–93 (2008).

    Article  PubMed  Google Scholar 

  164. Bensouda-Grimaldi, L., Mulleman, D., Valat, J. P. & Autret-Leca, E. Adalimumab-associated multiple sclerosis. J. Rheumatol. 34, 239–240 (2007).

    PubMed  Google Scholar 

  165. Alvarez-Lario, B., Prieto-Tejedo, R., Colazo-Burlato, M. & Macarrón-Vicente, J. Severe Guillain-Barre syndrome in a patient receiving anti-TNF therapy. Consequence or coincidence. A case-based review. Clin. Rheumatol. 32, 1407–1412 (2013).

    Article  PubMed  Google Scholar 

  166. Silburn, S., McIvor, E., McEntegart, A. & Wilson, H. Guillain-Barre syndrome in a patient receiving anti-tumour necrosis factor α for rheumatoid arthritis: a case report and discussion of literature. Ann. Rheum. Dis. 67, 575–576 (2008).

    Article  CAS  PubMed  Google Scholar 

  167. de Masson, A. et al. Optic neuritis associated with tumor necrosis factor-α antagonists for the treatment of psoriasis. J. Am. Acad. Dermatol. 67, e280–e282 (2012).

    Article  PubMed  Google Scholar 

  168. Simsek, I., Erdem, H., Pay, S., Sobaci, G. & Dinc, A. Optic neuritis occurring with anti-tumour necrosis factor α therapy. Ann. Rheum. Dis. 66, 1255–1258 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kleinschmidt-DeMasters, B. K. & Tyler, K. L. Progressive multifocal leukoencephalopathy complicating treatment with natalizumab and interferon β-1a for multiple sclerosis. N. Engl. J. Med. 353, 369–374 (2005).

    Article  CAS  PubMed  Google Scholar 

  170. Langer-Gould, A., Atlas, S. W., Green, A. J., Bollen, A. W. & Pelletier, D. Progressive multifocal leukoencephalopathy in a patient treated with natalizumab. N. Engl. J. Med. 353, 375–381 (2005).

    Article  CAS  PubMed  Google Scholar 

  171. Van Assche, G. et al. Progressive multifocal leukoencephalopathy after natalizumab therapy for Crohn's disease. N. Engl. J. Med. 353, 362–368 (2005).

    Article  CAS  PubMed  Google Scholar 

  172. Palazzo, E. & Yahia, S. A. Progressive multifocal leukoencephalopathy in autoimmune diseases. Joint Bone Spine 79, 351–355 (2012).

    Article  PubMed  Google Scholar 

  173. Molloy, E. S. & Calabrese, L. H. Progressive multifocal leukoencephalopathy associated with immunosuppressive therapy in rheumatic diseases: evolving role of biologic therapies. Arthritis Rheum. 64, 3043–3051 (2012).

    Article  CAS  PubMed  Google Scholar 

  174. Bharat, A. et al. Incidence and risk factors for progressive multifocal leukoencephalopathy among patients with selected rheumatic diseases. Arthritis Care Res. (Hoboken) 64, 612–615 (2012).

    Article  CAS  Google Scholar 

  175. Clifford, D. B. et al. Rituximab-associated progressive multifocal leukoencephalopathy in rheumatoid arthritis. Arch. Neurol. 68, 1156–1164 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Kumar, D., Bouldin, T. W. & Berger, R. G. A case of progressive multifocal leukoencephalopathy in a patient treated with infliximab. Arthritis Rheum. 62, 3191–3195 (2010).

    Article  PubMed  Google Scholar 

  177. Fleischmann, R. M. Progressive multifocal leukoencephalopathy following rituximab treatment in a patient with rheumatoid arthritis. Arthritis Rheum. 60, 3225–3228 (2009).

    Article  CAS  PubMed  Google Scholar 

  178. Lopez-Olivo, M. A. et al. Risk of malignancies in patients with rheumatoid arthritis treated with biologic therapy: a meta-analysis. JAMA 308, 898–908 (2012).

    Article  CAS  PubMed  Google Scholar 

  179. Rennard, S. I. et al. The safety and efficacy of infliximab in moderate to severe chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 175, 926–934 (2007).

    Article  CAS  PubMed  Google Scholar 

  180. Stone, J. H. et al. Solid malignancies among patients in the Wegener's Granulomatosis Etanercept Trial. Arthritis Rheum. 54, 1608–1618 (2006).

    Article  CAS  PubMed  Google Scholar 

  181. Diak, P. et al. Tumor necrosis factor α blockers and malignancy in children: forty-eight cases reported to the Food and Drug Administration. Arthritis Rheum. 62, 2517–2524 (2010).

    Article  PubMed  Google Scholar 

  182. Wolfe, F. & Michaud, K. Lymphoma in rheumatoid arthritis: the effect of methotrexate and anti-tumor necrosis factor therapy in 18,572 patients. Arthritis Rheum. 50, 1740–1751 (2004).

    Article  CAS  PubMed  Google Scholar 

  183. Wong, A. K., Kerkoutian, S., Said, J., Rashidi, H. & Pullarkat, S. T. Risk of lymphoma in patients receiving antitumor necrosis factor therapy: a meta-analysis of published randomized controlled studies. Clin. Rheumatol. 31, 631–636 (2012).

    Article  PubMed  Google Scholar 

  184. Mariette, X. et al. Malignancies associated with tumour necrosis factor inhibitors in registries and prospective observational studies: a systematic review and meta-analysis. Ann. Rheum. Dis. 70, 1895–1904 (2011).

    Article  PubMed  Google Scholar 

  185. Ramiro, S. et al. Safety of synthetic and biological DMARDs: a systematic literature review informing the 2013 update of the EULAR recommendations for management of rheumatoid arthritis. Ann. Rheum. Dis. 73, 529–535 (2014).

    Article  CAS  PubMed  Google Scholar 

  186. Adler, S. et al. Protective effect of A/H1N1 vaccination in immune-mediated disease—a prospectively controlled vaccination study. Rheumatology (Oxford) 51, 695–700 (2012).

    Article  CAS  Google Scholar 

  187. Bingham, C. O. 3rd. et al. Immunization responses in rheumatoid arthritis patients treated with rituximab: results from a controlled clinical trial. Arthritis Rheum. 62, 64–74 (2010).

    Article  CAS  PubMed  Google Scholar 

  188. Tay, L., Leon, F., Vratsanos, G., Raymond, R. & Corbo, M. Vaccination response to tetanus toxoid and 23-valent pneumococcal vaccines following administration of a single dose of abatacept: a randomized, open-label, parallel group study in healthy subjects. Arthritis Res. Ther. 9, R38 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Eisenberg, R. A. et al. Rituximab-treated patients have a poor response to influenza vaccination. J. Clin. Immunol. 33, 388–396 (2013).

    Article  CAS  PubMed  Google Scholar 

  190. van Assen, S. et al. Humoral responses after influenza vaccination are severely reduced in patients with rheumatoid arthritis treated with rituximab. Arthritis Rheum. 62, 75–81 (2010).

    Article  CAS  PubMed  Google Scholar 

  191. Mori, S. et al. Impact of tocilizumab therapy on antibody response to influenza vaccine in patients with rheumatoid arthritis. Ann. Rheum. Dis. 71, 2006–2010 (2012).

    Article  CAS  PubMed  Google Scholar 

  192. Ribeiro, A. C. et al. Abatacept and reduced immune response to pandemic 2009 influenza A/H1N1 vaccination in patients with rheumatoid arthritis. Arthritis Care Res. (Hoboken) 65, 476–80 (2013).

    Article  CAS  Google Scholar 

  193. Schiff, M., Saewert, M. & Bahrt, K. Response to influenza vaccine in rheumatoid arthritis patients with an inadequate response to anti-TNF therapy treated with abatacept in the ARRIVE trial. Arthritis Rheum. 56, S392 (2007).

    Google Scholar 

  194. Elkayam, O. et al. The effect of infliximab and timing of vaccination on the humoral response to influenza vaccination in patients with rheumatoid arthritis and ankylosing spondylitis. Semin. Arthritis Rheum. 39, 442–447 (2010).

    Article  CAS  PubMed  Google Scholar 

  195. Yri, O. E. et al. Rituximab blocks protective serologic response to influenza A (H1N1) 2009 vaccination in lymphoma patients during or within 6 months after treatment. Blood 118, 6769–6771 (2011).

    Article  CAS  PubMed  Google Scholar 

  196. Kapetanovic, M. C. et al. Antibody response is reduced following vaccination with 7-valent conjugate pneumococcal vaccine in adult methotrexate-treated patients with established arthritis, but not those treated with tumor necrosis factor inhibitors. Arthritis Rheum. 63, 3723–3732 (2011).

    Article  CAS  PubMed  Google Scholar 

  197. Kapetanovic, M. C. et al. Influence of methotrexate, TNF blockers and prednisolone on antibody responses to pneumococcal polysaccharide vaccine in patients with rheumatoid arthritis. Rheumatology (Oxford) 45, 106–111 (2006).

    Article  CAS  Google Scholar 

  198. Gelinck, L. B. et al. Synergistic immunosuppressive effect of anti-TNF combined with methotrexate on antibody responses to the 23 valent pneumococcal polysaccharide vaccine. Vaccine 26, 3528–3533 (2008).

    Article  CAS  PubMed  Google Scholar 

  199. Bijl, M. et al. Vaccination of patients with auto-immune inflammatory rheumatic diseases requires careful benefit-risk assessment. Autoimmun. Rev. 11, 572–576 (2012).

    Article  CAS  PubMed  Google Scholar 

  200. Winthrop, K. L. & Furst, D. E. Rheumatoid arthritis and herpes zoster: risk and prevention in those treated with anti-tumour necrosis factor therapy. Ann. Rheum. Dis. 69, 1735–1737 (2010).

    Article  CAS  PubMed  Google Scholar 

  201. Simons, F. E. et al. 2012 Update: World Allergy Organization Guidelines for the assessment and management of anaphylaxis. Curr. Opin. Allergy Clin. Immunol. 12, 389–399 (2012).

    Article  PubMed  Google Scholar 

  202. Keating, G. M. Shingles (herpes zoster) vaccine (zostavax®): a review of its use in the prevention of herpes zoster and postherpetic neuralgia in adults aged >50 years. Drugs 73, 1227–1244 (2013).

    Article  CAS  PubMed  Google Scholar 

  203. Pollak, A. W. & McBane, R. D. 2nd. Succinct review of the new VTE prevention and management guidelines. Mayo Clin. Proc. 89, 394–408 (2014).

    Article  PubMed  Google Scholar 

  204. Boyman, O. et al. Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis factor-α. J. Exp. Med. 199, 731–736 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Mease, P. J. et al. Etanercept in the treatment of psoriatic arthritis and psoriasis: a randomised trial. Lancet 356, 385–390 (2000).

    Article  CAS  PubMed  Google Scholar 

  206. Chaudhari, U. et al. Efficacy and safety of infliximab monotherapy for plaque-type psoriasis: a randomised trial. Lancet 357, 1842–1847 (2001).

    Article  CAS  PubMed  Google Scholar 

  207. Bouchaud, G. et al. Epidermal IL-15Rα acts as an endogenous antagonist of psoriasiform inflammation in mouse and man. J. Exp. Med. 210, 2105–2117 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Nestle, F. O. et al. Plasmacytoid predendritic cells initiate psoriasis through interferon-α production. J. Exp. Med. 202, 135–143 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Sancho-Serra Mdel, C., Simarro, M. & Castells, M. Rapid IgE desensitization is antigen specific and impairs early and late mast cell responses targeting FcεRI internalization. Eur. J. Immunol. 41, 1004–1013 (2011).

    Article  CAS  PubMed  Google Scholar 

  210. Hong, D. I., Bankova, L., Cahill, K. N., Kyin, T. & Castells, M. C. Allergy to monoclonal antibodies: cutting-edge desensitization methods for cutting-edge therapies. Expert Rev. Clin. Immunol. 8, 43–52 (2012).

    Article  CAS  PubMed  Google Scholar 

  211. Quercia, O., Emiliani, F., Foschi, F. G. & Stefanini, G. F. Adalimumab desensitization after anaphylactic reaction. Ann. Allergy Asthma Immunol. 106, 547–548 (2011).

    Article  PubMed  Google Scholar 

  212. Rodriguez-Jiménez, B. et al. Successful adalimumab desensitization after generalized urticaria and rhinitis. J. Investig. Allergol. Clin. Immunol. 19, 246–247 (2009).

    PubMed  Google Scholar 

Download references

Acknowledgements

O.B. is funded by Swiss National Science Foundation grants PP00P3-128421 and PP00P3-150751, Stiftung für wissenschaftliche Forschung from the University of Zurich, National Psoriasis Foundation, and a Novartis Foundation grant. D.C. is funded by a SICPA Foundation grant.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to researching the data for the article, provided a substantial contribution to discussions of the content, and contributed to writing the article and to review and/or editing of the manuscript.

Corresponding author

Correspondence to François Spertini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Box 1

Screening and prophylaxis of latent TB (DOCX 21 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyman, O., Comte, D. & Spertini, F. Adverse reactions to biologic agents and their medical management. Nat Rev Rheumatol 10, 612–627 (2014). https://doi.org/10.1038/nrrheum.2014.123

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2014.123

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing