Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunogenicity of biologic agents in rheumatology

Abstract

Biologic agents have become a core component of therapeutic strategies for many inflammatory rheumatic diseases. However, perhaps reflecting the specificity and generally high affinity of biologic agents, these therapeutics have been used by rheumatologists with less consideration of their pharmacokinetics than that of conventional synthetic DMARDs. Immunogenicity was recognized as a potential limitation to the use of biologic agents at an early stage in their development, although regulatory guidance was relatively limited and assays to measure immunogenicity were less sophisticated than today. The advent of biosimilars has sparked a renewed interest in immunogenicity that has resulted in the development of increasingly sensitive assays, an enhanced appreciation of the pharmacokinetic consequences of immunogenicity and the development of comprehensive and specific guidance from regulatory authorities. As a result, rheumatologists have a greatly improved understanding of the field in general, including the factors responsible for immunogenicity, its potential clinical consequences and the implications for everyday treatment. In some specialties, immunogenicity testing is becoming a part of routine clinical management, but definitive evidence of its cost-effectiveness in rheumatology is awaited.

Key points

  • All biologic agents are immunogenic and many pathways influence their bioavailability, including patient-specific factors, disease-specific features and genetic background.

  • The potential consequences of immunogenicity range from no clinical consequences to reduced therapeutic efficacy, infusion reactions and, rarely, serum sickness or anaphylaxis.

  • Group level pharmacokinetic models have consistently shown that anti-drug antibodies (ADAs) result in decreased serum drug concentrations and reduced efficacy.

  • The most important difference between available immunogenicity assays is the degree to which the assay is drug tolerant.

  • Coadministration of anti-proliferative and/or immunosuppressive agents such as methotrexate decreases ADA formation and maintains serum drug concentrations via various mechanisms.

  • Regular monitoring of serum drug and ADA levels has been proposed but not yet instigated into rheumatological practice, mainly owing to a lack of cost-effectiveness data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Factors that influence the pharmacokinetics and immunogenicity of biologic agents.
Fig. 2: Consequences of immunogenicity.
Fig. 3: Immunogenicity screening assays.
Fig. 4: Therapeutic drug monitoring strategies.

Similar content being viewed by others

References

  1. Isaacs, J. D. et al. Humanised monoclonal antibody therapy for rheumatoid arthritis. Lancet 340, 748–752 (1992).

    CAS  PubMed  Google Scholar 

  2. Dörner, T. et al. The role of biosimilars in the treatment of rheumatic diseases. Ann. Rheum. Dis. 72, 322–328 (2013).

    PubMed  Google Scholar 

  3. Dörner, T. et al. The changing landscape of biosimilars in rheumatology. Ann. Rheum. Dis. 75, 974–982 (2016).

    PubMed  PubMed Central  Google Scholar 

  4. Strand, V. et al. Immunogenicity of biologics in chronic inflammatory diseases: a systematic review. BioDrugs 31, 299–316 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kalden, J. R. & Schulze-Koops, H. Immunogenicity and loss of response to TNF inhibitors: implications for rheumatoid arthritis treatment. Nat. Rev. Rheumatol. 13, 707–718 (2017).

    CAS  PubMed  Google Scholar 

  6. Strand, V. et al. Immunogenicity of biosimilars for rheumatic diseases, plaque psoriasis, and inflammatory bowel disease: a review from clinical trials and regulatory documents. BioDrugs 34, 27–37 (2020).

    CAS  PubMed  Google Scholar 

  7. Rup, B. et al. Standardizing terms, definitions and concepts for describing and interpreting unwanted immunogenicity of biopharmaceuticals: recommendations of the innovative medicines initiative ABIRISK consortium. Clin. Exp. Immunol. 181, 385–400 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Pyzik, M. et al. The neonatal Fc receptor (FcRn): A misnomer? Front. Immunol. 10, 1540 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Schellekens, H. Bioequivalence and the immunogenicity of biopharmaceuticals. Nat. Rev. Drug Discov. 6, 457–462 (2002).

    Google Scholar 

  10. Montes, A. et al. Rheumatoid arthritis response to treatment across IgG1 allotype–anti-TNF incompatibility: a case-only study. Arthritis Res. Ther. 17, 63 (2015).

    PubMed  PubMed Central  Google Scholar 

  11. Ratanji, K. D., Derrick, J. P., Dearman, R. J. & Kimber, I. Immunogenicity of therapeutic proteins: influence of aggregation. J. Immunotoxicol. 11, 99–109 (2014).

    CAS  PubMed  Google Scholar 

  12. Gill, K. L., Machavaram, K. K., Rose, R. H. & Chetty, M. Potential sources of inter-subject variability in monoclonal antibody pharmacokinetics. Clin. Pharmacokinet. 55, 789–805 (2016).

    CAS  PubMed  Google Scholar 

  13. Carmona, L., Gómez-Reino, J. J. & BIOBADASER group. Survival of TNF antagonists in spondylarthritis is better than in rheumatoid arthritis. Data from the Spanish registry BIOBADASER. Arthritis Res. Ther. 8, R72 (2006).

    PubMed  PubMed Central  Google Scholar 

  14. Fafá, B. P. et al. Drug survival and causes of discontinuation of the first anti-TNF in ankylosing spondylitis compared with rheumatoid arthritis: analysis from BIOBADARASIL. Clin. Rheumatol. 34, 921–927 (2015).

    PubMed  Google Scholar 

  15. Park, W. et al. A randomised, double-blind, multicentre, parallel-group, prospective study comparing the pharmacokinetics, safety, and efficacy of CT-P13 and innovator infliximab in patients with ankylosing spondylitis: the PLANETAS study. Ann. Rheum. Dis. 72, 1605–1612 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ungar, B. et al. Ashkenazi Jewish origin protects against formation of antibodies to infliximab and therapy failure. Medicine 94, e673 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Atiqi, S., Hooijberg, F., Loeff, F. C., Rispens, T. & Wolbink, G. J. Immunogenicity of TNF-inhibitors. Front. Immunol. 11, 312 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Berkhout, L. C. et al. Dynamics of circulating TNF during adalimumab treatment using a drug-tolerant TNF assay. Sci. Transl. Med. 11, eaat3356 (2019).

    CAS  PubMed  Google Scholar 

  19. van Schie, K. A. et al. Therapeutic TNF inhibitors can differentially stabilize trimeric TNF by inhibiting monomer exchange. Sci. Rep. 6, 32747 (2016).

    PubMed  PubMed Central  Google Scholar 

  20. Berkhout, L. C. et al. The effect of methotrexate on tumour necrosis factor concentrations in etanercept-treated rheumatoid arthritis patients. Rheumatology 59, 1703–1708 (2019).

    Google Scholar 

  21. Benjamin, R. J., Cobbold, S. P., Clark, M. R. & Waldmann, H. Tolerance to rat monoclonal antibodies. Implications for serotherapy. J. Exp. Med. 163, 1539–1552 (1986).

    CAS  PubMed  Google Scholar 

  22. Isaacs, J. D. & Waldmann, H. Helplessness as a strategy for avoiding antiglobulin responses to therapeutic monoclonal antibodies. Ther. Immunol. 1, 303–312 (1994).

    CAS  PubMed  Google Scholar 

  23. Gilliland, L. K. et al. Elimination of the immunogenicity of therapeutic antibodies. J. Immunol. 162, 3663–3671 (1999).

    CAS  PubMed  Google Scholar 

  24. Jefferis, R. & Lefranc, M.-P. Human immunoglobulin allotypes: possible implications for immunogenicity. MAbs 1, 332–338 (2009).

    PubMed  PubMed Central  Google Scholar 

  25. Webster, C. I. et al. A comparison of the ability of the human IgG1 allotypes G1m3 and G1m1,17 to stimulate T-cell responses from allotype matched and mismatched donors. MAbs 8, 253–263 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rebello, P. R., Hale, G., Friend, P. J., Cobbold, S. P. & Waldmann, H. Anti-globulin responses to rat and humanized CAMPATH-1 monoclonal antibody used to treat transplant rejection. Transplantation 68, 1417–1420 (1999).

    CAS  PubMed  Google Scholar 

  27. Schwartzman, S. et al. United States rheumatology practice-based real-world evidence of infusion reactions in rheumatoid arthritis patients treated with intravenous golimumab or infliximab: impact of prior biologic exposure and methotrexate utilization [abstract]. Ann. Rheum. Dis. 79, 994 (2020).

    Google Scholar 

  28. Wang, J. et al. Neutralizing antibodies to therapeutic enzymes: considerations for testing, prevention and treatment. Nat. Biotechnol. 26, 901–908 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bali, D. S. et al. Predicting cross-reactive immunological material (CRIM) status in Pompe disease using GAA mutations: lessons learned from 10 years of clinical laboratory testing experince. Am. J. Med. Genet. C Semin. Med. Genet. 160C, 40–49 (2012).

    PubMed  Google Scholar 

  30. Garman, R. D., Munroe, K. & Richards, S. M. Methotrexate reduces antibody responses to recombinant human alpha-galactosidase a therapy in a mouse model of Fabry disease. Clin. Exp. Immunol. 137, 496–502 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Joseph, A., Munroe, K., Housman, M., Garman, R. & Richards, S. Immune tolerance induction to enzyme-replacement therapy by co administration of short-term, low-dose methotrexate in a murine Pompe disease model. Clin. Exp. Immunol. 152, 138–146 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Joseph, A. et al. Transient low-dose methotrexate induces tolerance to murine anti-thymocyte globulin and together they promote long-term allograft survival. J. Immunol. 189, 732–743 (2012).

    CAS  PubMed  Google Scholar 

  33. Gupta, S. et al. Association of immune response with efficacy and safety outcomes in adults with phenylketonuria administered pegvaliase in phase 3 clinical trials. EBioMedicine. 37, 366–373 (2018).

    PubMed  PubMed Central  Google Scholar 

  34. Sundy, J. S. et al. Efficacy and tolerability of pegloticase for the treatment of chronic gout in patients refractory to conventional treatment: two randomized controlled trials. JAMA 306, 711–720 (2011).

    CAS  PubMed  Google Scholar 

  35. Baraf, H. S. et al. Tophus burden reduction with pegloticase: results from phase 3 randomised trials and open-label extension in patients with chronic gout refractory to conventional therapy. Arthritis Res. Ther. 15, R137 (2013).

    PubMed  PubMed Central  Google Scholar 

  36. Baraf, H. S., Yood, R. A., Ottery, F. D., Sundy, J. S. & Becker, M. A. Infusion-related reactions with pegloticase, a recombinant uricase for the treatment of chronic gout refractory to conventional therapy. J. Clin. Rheumatol. 20, 427–432 (2014).

    PubMed  PubMed Central  Google Scholar 

  37. Keenan, R. T., Baraf, H. S. B. & LaMoreaux, B. Use of pre-infusion serum uric acid levels as a biomarker for infusion reaction risk in patients on pegloticase. Rheumatol. Ther. 6, 299–304 (2019).

    PubMed  PubMed Central  Google Scholar 

  38. Lipsky, P. E. et al. Pegloticase immunogenicity: the relationship between efficacy and antibody development in patients treated for refractory chronic gout. Arthritis Res. Ther. 16, R60 (2014).

    PubMed  PubMed Central  Google Scholar 

  39. Hershfield, M. S. et al. Induced and pre-existing anti-polyethylene glycol antibody in a trial of every 3-week dosing of pegloticase for refractory gout, including in organ transplant recipients. Arthritis Res. Ther. 16, R63 (2014).

    PubMed  PubMed Central  Google Scholar 

  40. Bessen, S. Y., Bessen, M. Y. & Yung, C. M. Recapture and improved outcome of pegloticase response with methotrexate — a report of two cases and review of the literature. Semin. Arthritis Rheum. 49, 56–61 (2019).

    CAS  PubMed  Google Scholar 

  41. Botson, J. & Peterson, J. Pretreatment and co-administration with methotrexate improved durability of pegloticase response: a prospective, observational, proof-of-concept, case series. J. Clin. Rheumatol. https://doi.org/10.1097/RHU.0000000000001639 (2020).

    Article  PubMed  Google Scholar 

  42. Bessen, M. Y., Bessen, S. Y. & Yung, C. M. Concomitant immunosuppressant use with pegloticase in patients with tophaceous gout — a case series. Int. J. Clin. Rheumatol. 14, 238–245 (2019).

    Google Scholar 

  43. Rainey, H., Baraf, H. S. B., Yeo, A. & Lipsky, P. Companion immunosuppression with azathioprine increases the frequency of persistent responsiveness to pegloticase in patients with chronic refractory gout [abstract]. Ann. Rheum. Dis. 79, 442–443 (2020).

    Google Scholar 

  44. Botson, J. et al. Pegloticase response improvement by co-treatment with methotrexate: results from the MIRROR open label clinical trial in patients with uncontrolled gout [abstract]. Ann. Rheum. Dis. 79, 446 (2020).

    Google Scholar 

  45. Masri, K., Winterling, K. & Lamoreaux, B. Leflunomide co-therapy with pegloticase in uncontrolled gout [abstract]. Ann. Rheum. Dis. 79, 454 (2020).

    Google Scholar 

  46. Kishimoto, T. K. Development of ImmTOR tolerogenic nanoparticles for the mitigation of anti-drug antibodies. Front. Immunol. 11, 969 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03905512 (2020).

  48. Krishna, M. & Nadler, S. G. Immunogenicity to biotherapeutics — the role of anti-drug immune complexes. Front. Immunol. 7, 21 (2016).

    PubMed  PubMed Central  Google Scholar 

  49. van Schie, K. A. et al. Restricted immune activation and internalisation of anti-idiotype complexes between drug and antidrug antibodies. Ann. Rheum. Dis. 77, 1471–1479 (2018).

    PubMed  Google Scholar 

  50. Lockwood, C. M., Thiru, S., Isaacs, J. D., Hale, G. & Waldmann, H. Long-term remission of intractable systemic vasculitis with monoclonal antibody therapy. Lancet 341, 1620–1622 (1993).

    CAS  PubMed  Google Scholar 

  51. Bivi, N. et al. Investigation of pre-existing reactivity to biotherapeutics can uncover potential immunogenic epitopes and predict immunogenicity risk. MAbs 11, 861–869 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Maini, R. N. et al. Therapeutic efficacy of multiple intravenous infusions of anti-tumor necrosis factor alpha monoclonal antibody combined with low-dose weekly methotrexate in rheumatoid arthritis. Arthritis Rheum. 41, 1552–1563 (1998).

    CAS  PubMed  Google Scholar 

  53. Hernandez-Florez, D. et al. Comparison of two ELISA versions for infliximab serum levels in patients diagnosed with ankylosing spondylitis. Rheumatol. Int. 35, 1021–1025 (2015).

    CAS  PubMed  Google Scholar 

  54. Steenholdt, C., Bendtzen, K., Brynskov, J., Thomsen, O. Ø. & Ainsworth, M. A. Clinical implications of measuring drug and anti-drug antibodies by different assays when optimizing infliximab treatment failure in Crohn’s disease: post hoc analysis of a randomized controlled trial. Am. J. Gastroenterol. 109, 1055–1064 (2014).

    CAS  PubMed  Google Scholar 

  55. Cohen, H. P. et al. Switching reference medicines to biosimilars: a systematic literature review of clinical outcomes. Drugs 78, 463–478 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. European Medicines Agency. Guideline on immunogenicity assessment of therapeutic proteins. EMA https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-immunogenicity-assessment-therapeutic-proteins-revision-1_en.pdf (2017).

  57. US Department of Health and Human Services. Immunogenicity testing of therapeutic protein products — developing and validating assays for anti-drug antibody detection. Guidance for industry. FDA https://www.fda.gov/regulatory-information/search-fda-guidance-documents/immunogenicity-testing-therapeutic-protein-products-developing-and-validating-assays-anti-drug (2019).

  58. Bloem, K. et al. Systematic comparison of drug-tolerant assays for anti-drug antibodies in a cohort of adalimumab-treated rheumatoid arthritis patients. J. Immunol. Methods 418, 29–38 (2015).

    CAS  PubMed  Google Scholar 

  59. Bader, L. I. et al. Assays for infliximab drug levels and antibodies: a matter of scales and categories. Scand. J. Immunol. 86, 165–170 (2017).

    CAS  PubMed  Google Scholar 

  60. Bendtzen, K. Immunogenicity of anti-TNF-α biotherapies. II. Clinical relevance of methods used for anti-drug antibody detection. Front. Immunol. 6, 109 (2015).

    PubMed  PubMed Central  Google Scholar 

  61. Cobbold, S. P., Rebello, P. R., Davies, H. F., Friend, P. J. & Clark, M. R. A simple method for measuring patient anti-globulin responses against isotypic or idiotypic determinants. J. Immunol. Methods 127, 19–24 (1990).

    CAS  PubMed  Google Scholar 

  62. van Schouwenburg, P. A., Rispens, T. & Wolbink, G. J. Immunogenicity of anti-TNF biologic therapies for rheumatoid arthritis. Nat. Rev. Rheumatol. 9, 164–172 (2013).

    PubMed  Google Scholar 

  63. Liang, M. et al. Detection of high- and low-affinity antibodies against a human monoclonal antibody using various technology platforms. Assay Drug Dev. Technol. 5, 655–662 (2007).

    CAS  PubMed  Google Scholar 

  64. Zhong, Z. D. et al. Drug target interference in immunogenicity assays: recommendations and mitigation strategies. AAPS J. 19, 1564–1575 (2017).

    CAS  PubMed  Google Scholar 

  65. Jani, M. et al. Clinical utility of random anti-tumor necrosis factor drug-level testing and measurement of antidrug antibodies on the long-term treatment response in rheumatoid arthritis. Arthritis. Rheum. 67, 2011–2019 (2015).

    CAS  Google Scholar 

  66. Dirks, N. L. & Meibohm, B. Population pharmacokinetics of therapeutic monoclonal antibodies. Clin. Pharmacokinet. 49, 633–659 (2010).

    CAS  PubMed  Google Scholar 

  67. Wolbink, G. J., Aarden, L. A. & Dijkmans, B. A. C. Dealing with immunogenicity of biologicals: assessment and clinical relevance. Curr. Opin. Rheumatol. 21, 211–215 (2009).

    PubMed  Google Scholar 

  68. Bloem, K., Hernández-Breijo, B., Martínez-Feito, A. & Rispens, T. Immunogenicity of therapeutic antibodies: monitoring antidrug antibodies in a clinical context. Ther. Drug Monit. 39, 327–332 (2017).

    CAS  PubMed  Google Scholar 

  69. Ternant, D., Bejan-Angoulvant, T., Passot, C., Mulleman, D. & Paintaud, G. Clinical pharmacokinetics and pharmacodynamics of monoclonal antibodies approved to treat rheumatoid arthritis. Clin. Pharmacokinet. 54, 1107–1123 (2015).

    CAS  PubMed  Google Scholar 

  70. Gunn, G. R. 3rd et al. From the bench to clinical practice: understanding the challenges and uncertainties in immunogenicity testing for biopharmaceuticals. Clin. Exp. Immunol. 184, 137–146 (2016).

    PubMed  PubMed Central  Google Scholar 

  71. Benucci, M. et al. Laboratory monitoring of biological therapies in rheumatology: the role of immunogenicity. Ann. Lab. Med. 40, 101–113 (2020).

    CAS  PubMed  Google Scholar 

  72. Gorovits, B. et al. Immunoassay methods used in clinical studies for the detection of anti-drug antibodies to adalimumab and infliximab. Clin. Exp. Immunol. 192, 348–365 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Freeman, K. et al. Test accuracy of drug and antibody assays for predicting response to antitumor necrosis factor treatment in Crohn’s disease: a systematic review and meta-analysis. BMJ Open 7, e014581 (2017).

    PubMed  PubMed Central  Google Scholar 

  74. Goncalves, J. et al. Antigenic response to CT-P13 and infliximab originator in inflammatory bowel disease patients shows similar epitope recognition. Aliment. Pharmacol. Ther. 48, 507–522 (2018).

    CAS  PubMed  Google Scholar 

  75. Hamze, M. et al. Characterization of CD4 T cell epitopes of infliximab and rituximab identified from healthy donors. Front. Immunol. 8, 500 (2017).

    PubMed  PubMed Central  Google Scholar 

  76. Mahler, S. M., Marquis, C. P., Brown, G., Roberts, A. & Hoogenboom, H. R. Cloning and expression of human V-genes derived from phage display libraries as fully assembled human anti-TNF alpha monoclonal antibodies. Immunotechnology 3, 31–43 (1997).

    CAS  PubMed  Google Scholar 

  77. [No authors listed] Nobel work that galvanized an industry. Nat Biotechnol. 36, 1023 (2018).

  78. Harding, F. A., Stickler, M. M., Razo, J. & DuBridge, R. B. The immunogenicity of humanized and fully human antibodies: residual immunogenicity resides in the CDR regions. MAbs 2, 256–265 (2010).

    PubMed  PubMed Central  Google Scholar 

  79. Bartelds, G. M. et al. Anti-infliximab and anti-adalimumab antibodies in relation to response to adalimumab in infliximab switchers and anti-tumour necrosis factor naive patients: a cohort study. Ann. Rheum. Dis. 69, 817–821 (2010).

    CAS  PubMed  Google Scholar 

  80. Korswagen, L. A. et al. Venous and arterial thromboembolic events in adalimumab-treated patients with anti-adalimumab antibodies: a case series and cohort study. Arthritis Rheum. 63, 877–883 (2011).

    CAS  PubMed  Google Scholar 

  81. Bartelds, G. M. et al. Development of antidrug antibodies against adalimumab and association with disease activity and treatment failure during long-term follow-up. JAMA 305, 1460–1468 (2011).

    CAS  PubMed  Google Scholar 

  82. van Schouwenburg, P. A. et al. Adalimumab elicits a restricted anti-idiotypic antibody response in autoimmune patients resulting in functional neutralisation. Ann. Rheum. Dis. 72, 104–109 (2013).

    PubMed  Google Scholar 

  83. Vogelzang, E. H. et al. Anti-adalimumab antibodies and adalimumab concentrations in psoriatic arthritis: an association with disease activity at 28 and 52 weeks follow-up. Ann. Rheum. Dis. 73, 2178–2182 (2014).

    CAS  PubMed  Google Scholar 

  84. Kneepkens, E. L. et al. Immunogenicity, adalimumab levels and clinical response in ankylosing spondylitis patients during 24 weeks of follow-up. Ann. Rheum. Dis. 74, 396–401 (2015).

    CAS  PubMed  Google Scholar 

  85. Pouw, M. F. et al. Key findings towards optimising adalimumab treatment: the concentration-effect curve. Ann. Rheum. Dis. 74, 513–518 (2015).

    CAS  PubMed  Google Scholar 

  86. Bitoun, S. et al. Methotrexate and BAFF interaction prevents immunization against TNF inhibitors. Ann. Rheum. Dis. 77, 1463–1470 (2018).

    CAS  PubMed  Google Scholar 

  87. Docourau, E. et al. Methotrexate effect on immunogenicity and long-term maintenance of adalimumab in axial spondyloarthritis: a multicentric randomised trial. RMD Open 6, e001047 (2020).

    Google Scholar 

  88. Humira® (adalimumab) US Package Insert (AbbVie Inc., 2008).

  89. Burmester, G. R. et al. Efficacy and safety of ascending methotrexate dose in combination with adalimumab: the randomised CONCERTO trial. Ann. Rheum. Dis. 74, 1037–1044 (2015).

    CAS  PubMed  Google Scholar 

  90. Deng, Y. et al. Methotrexate reduces the clearance of adalimumab by increasing the concentration of neonatal Fc receptor in tissues. Pharm. Res. 36, 157 (2019).

    PubMed  Google Scholar 

  91. Krieckaert, C. L., Nurmohamed, M. T. & Wolbink, G. J. Methotrexate reduces immunogenicity in adalimumab treated rheumatoid arthritis patients in a dose dependent manner. Ann. Rheum. Dis. 71, 1914–1915 (2012).

    CAS  PubMed  Google Scholar 

  92. Dervieux, T., Kremer, J. M. & Weinblatt, M. E. Differing contribution of methotrexate polyglutamates to adalimumab blood levels as compared with etanercept. Ann. Rheum. Dis. 78, 1285–1286 (2019).

    PubMed  PubMed Central  Google Scholar 

  93. Keizer, R. J., Huitema, A. D. R., Schellens, J. H. M. & Beijnen, J. H. Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin. Pharmacokinet. 49, 493–507 (2010).

    CAS  PubMed  Google Scholar 

  94. Chen, D.-Y. et al. Immunogenicity, drug trough levels and therapeutic response in patients with rheumatoid arthritis or ankylosing spondylitis after 24-week golimumab treatment. Ann. Rheum. Dis. 74, 2261–2264 (2015).

    PubMed  Google Scholar 

  95. Christen, U., Thuerkauf, R., Stevens, R. & Lesslauer, W. Immune response to a recombinant human TNFR55-IgG1 fusion protein: auto-antibodies in rheumatoid arthritis (RA) and multiple sclerosis (MS) patients have neither neutralizing nor agonist activities. Hum. Immunol. 60, 774–790 (1999).

    CAS  PubMed  Google Scholar 

  96. Moots, R. J. et al. The impact of anti-drug antibodies on drug concentrations and clinical outcomes in rheumatoid arthritis patients treated with adalimumab, etanercept, or infliximab: results from a multinational, real-world clinical practice, non-interventional study. PLoS ONE 12, e0175207 (2017).

    PubMed  PubMed Central  Google Scholar 

  97. Jamnitski, A. et al. Patients non-responding to etanercept obtain lower etanercept concentrations compared with responding patients. Ann. Rheum. Dis. 71, 88–91 (2012).

    CAS  PubMed  Google Scholar 

  98. Jani, M. et al. High frequency of antidrug antibodies and association of random drug levels with efficacy in certolizumab pegol-treated patients with rheumatoid arthritis: results from the BRAGGSS cohort. Ann. Rheum. Dis. 76, 208–213 (2017).

    CAS  PubMed  Google Scholar 

  99. Berkhout, L. C. et al. The effect of certolizumab drug concentration and anti-drug antibodies on TNF neutralisation. Clin. Exp. Rheum. 38, 306–313 (2020).

    Google Scholar 

  100. Yusof, M. Y. M. et al. Predicting and managing primary and secondary non-response to rituximab using B-cell biomarkers in systemic lupus erythematosus. Ann. Rheum. Dis. 76, 1829–1836 (2017).

    CAS  Google Scholar 

  101. Burmester, G. R. et al. Low immunogenicity of tocilizumab in patients with rheumatoid arthritis. Ann. Rheum. Dis. 76, 1078–1085 (2017).

    CAS  PubMed  Google Scholar 

  102. Actemra® (tocilizumab) US Package Insert (Genentech Inc., 2013).

  103. Yakota, S. et al. Efficacy and safety of tocilizumab in patients with systemic-onset juvenile idiopathic arthritis: a randomised, double-blind, placebo-controlled, withdrawal phase III trial. Lancet 371, 998–1006 (2008).

    Google Scholar 

  104. Zuelgaray, E., Domont, F., Peiffer-Smadja, N., Saadoun, D. & Cacoub, P. Tocilizumab-induced drug reaction with eosinophilia and systemic symptoms syndrome in adult-onset Still disease: a case report. Ann. Intern. Med. 167, 141–142 (2017).

    PubMed  Google Scholar 

  105. Wells, A. F. et al. Immunogenicity of sarilumab monotherapy in patients with rheumatoid arthritis who were inadequate responders or intolerant to disease-modifying antirheumatic drugs. Rheumatol. Ther. 6, 339–352 (2019).

    PubMed  PubMed Central  Google Scholar 

  106. Chiu, H.-Y., Chu, T. W., Cheng, Y.-P. & Tsai, T.-F. The association between clinical response to ustekinumab and immunogenicity to ustekinumab and prior adalimumab. PLoS ONE 10, e0142930 (2015).

    PubMed  PubMed Central  Google Scholar 

  107. Mojtahed Poor, S. et al. Immunogenicity assay development and validation for biological therapy as exemplified by ustekinumab. Clin. Exp. Immunol. 196, 259–275 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Deodar, A. et al. Secukinumab immunogenicity over 52 weeks in patients with psoriatic arthritis and ankylosing spondylitis. J. Rheumatol. 47, 539–547 (2020).

    Google Scholar 

  109. Karle, A., Spindeldreher, S. & Kolbinger, F. Secukinumab, a novel anti-IL-17A antibody, shows low immunogenicity potential in human in vitro assays comparable to other marketed biotherapeutics with low clinical immunogenicity. MAbs 8, 536–550 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Muram, T. M. et al. A highly sensitive and drug-tolerant anti-drug antibody screening assay for ixekizumab using affinity capture elution. J. Invest. Dermatol. 136, 1513–1515 (2016).

    CAS  PubMed  Google Scholar 

  111. Ritchlin, C. T., Merola, J. F., Gellet, A. M., Lin, C.-Y. & Muram, T. Anti-drug antibodies, efficacy, and impact of concomitant methotrexate in ixekizumab-treated patients with psoriatic arthritis [abstract]. Arthritis Rheumatol. 70, 2576 (2018).

    Google Scholar 

  112. Spindeldreher, S. et al. Secukinumab demonstrates significantly lower immunogenicity potential compared to ixekizumab. Dermatol. Ther. 8, 57–68 (2018).

    Google Scholar 

  113. Fleischmann, R. et al. Infliximab efficacy in rheumatoid arthritis after an inadequate response to etanercept or adalimumab: results of a target-driven active switch study. Curr. Med. Res. Opin. 30, 2139–2149 (2014).

    CAS  PubMed  Google Scholar 

  114. Jamnitski, A. et al. The presence or absence of antibodies to infliximab or adalimumab determines the outcome of switching to etanercept. Ann. Rheum. Dis. 70, 284–288 (2011).

    CAS  PubMed  Google Scholar 

  115. Reynolds, A., Koenig, A. S., Bananis, E. & Singh, A. When is switching warranted among biologic therapies in rheumatoid arthritis? Expert Rev. Pharmacoecon. Outcomes Res. 12, 319–333 (2012).

    PubMed  Google Scholar 

  116. Vincent, F. B. et al. Antidrug antibodies (ADAb) to tumour necrosis factor (TNF)-specific neutralising agents in chronic inflammatory diseases: a real issue, a clinical perspective. Ann. Rheum. Dis. 72, 165–178 (2013).

    CAS  PubMed  Google Scholar 

  117. Schaeverbeke, T. et al. Immunogenicity of biologic agents in rheumatoid arthritis patients: lessons for clinical practice. Rheumatology 55, 210–220 (2016).

    CAS  PubMed  Google Scholar 

  118. Bendtzen, K. Is there a need for immunopharmacologic guidance of anti-tumor necrosis factor therapies? Arthritis Rheum. 63, 867–870 (2011).

    PubMed  Google Scholar 

  119. Garcês, S. et al. A preliminary algorithm introducing immunogenicity assessment in the management of patients with RA receiving tumour necrosis factor inhibitor therapies. Ann. Rheum. Dis. 73, 1138–1143 (2014).

    PubMed  Google Scholar 

  120. Jani, M. et al. A microcosting study of immunogenicity and tumour necrosis factor alpha inhibitor drug level tests for therapeutic drug monitoring in clinical practice. Rheumatology 55, 2131–2137 (2016).

    PubMed  Google Scholar 

  121. l’Ami, M. J. et al. Successful reduction of overexposure in patients with rheumatoid arthritis with high serum adalimumab concentrations: an open-label, non-inferiority, randomised clinical trial. Ann. Rheum. Dis. 77, 484–487 (2018).

    PubMed  Google Scholar 

  122. Syversen, S. W. et al. Therapeutic drug monitoring compared to standard treatment of patients starting infliximab therapy: results from a multicentre randomised trial of 400 patients [abstract]. Ann. Rheum. Dis. 79, 12 (2020).

    Google Scholar 

  123. Quistrebert, J. et al. Incidence and risk factors for adalimumab and infliximab anti-drug antibodies in rheumatoid arthritis: a European retrospective multicohort analysis. Semin. Arthritis Rheum. 48, 967–975 (2019).

    CAS  PubMed  Google Scholar 

  124. Ulijn, E. et al. Therapeutic drug monitoring of adalimumab in RA: no predictive value of adalimumab serum levels and anti-adalimumab antibodies for prediction of response to the next bDMARD. Ann. Rheum. Dis. 79, 867–873 (2020).

    CAS  PubMed  Google Scholar 

  125. National Institute for Health and Care Excellence. Therapeutic monitoring of TNF-alpha inhibitors in rheumatoid arthritis. Diagnostics guidance [DG36]. NICE https://www.nice.org.uk/guidance/dg36/chapter/1-Recommendations (2019).

  126. National Institute for Health and Care Excellence. Therapeutic monitoring of TNF-alpha inhibitors in Crohn’s disease (LISA-TRACKER ELISA kits, IDKmonitor ELISA kits, and Promonitor ELISA kits). Diagnostics guidance [DG22]. NICE https://www.nice.org.uk/guidance/dg22/chapter/1-Recommendations (2016).

  127. Ricciuto, A., Dhaliwal, J., Walters, T. D., Griffiths, A. M. & Church, P. C. Clinical outcomes with therapeutic drug monitoring in inflammatory bowel disease: a systematic review with meta-analysis. J. Crohns Colitis. 12, 1302–1315 (2018).

    PubMed  Google Scholar 

  128. Tracey, D., Klareskog, L., Sasso, E. H., Salfeld, J. G. & Tak, P. P. Tumor necrosis factor antagonist mechanisms of action: a comprehensive review. Pharmacol. Ther. 117, 244–279 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the laboratory of J.G. is supported by Fundacao para a Ciencia e Tecnologia, Portugal. Work in the laboratory of J.D.I. is supported by the National Institute for Health Research Newcastle Biomedical Research Centre, based at Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, UK; the Research into Inflammatory Arthritis Centre Versus Arthritis; and the Horizon 2020 Innovative Medicines Initiative 2 Rheumatherapy Cure (RT-CURE). The authors acknowledge technical support from Lisa Tait in relation to helping with the referencing in this Review.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Vibeke Strand.

Ethics declarations

Competing interests

V.S. declares that she has received consulting fees from AbbVie, Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, BMS, Celgene, Celltrion, Crescendo/Myriad, EMD Serono, Equillium, Galapagos, Genentech/Roche, Gilead, GSK, Horizon, Ichnos, Inmedix, Janssen, Lilly, Merck, Novartis, Pfizer, Regeneron, Samsung, Sandoz, Sanofi, Servier, Setpoint and UCB. J.G. declares that he has received financial support for research projects from AstraZeneca, Biogen and Shire (Takeda). J.G. has also received consulting fees from Amgen, Biogen, Fresenius, Novartis, Samsung Bioepis and Sanofi. J.D.I. declares that he has received research funding from Pfizer and consulting or speaker fees from AbbVie, Amgen, Merck, Roche and UCB.

Additional information

Disclaimer

The views expressed are those of the authors and not necessarily those of the NHS, the National Institute for Health Research or the Department of Health.

Peer review information

Nature Reviews Rheumatology thanks G. J. Wolbink, D. Mulleman and D. H. Yoo for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Phage display

A technique whereby an antibody-variable sequence is displayed on the outside of a bacteriophage that contains the DNA encoding the variable sequence, enabling the screening and selection of bacteriophages containing the genetic sequence of interest.

Single-cell cloning

A technique whereby the antibody-encoding genetic material is extracted from a human B cell clone that produces the antibody of interest.

Idiotype

The collection of sequences (idiotopes) that form the antigen-binding site of an antibody.

Humanized antibodies

Antibodies in which the complementarity determining regions of a human antibody have been replaced with those from a mouse antibody of interest to create an antibody with the specificity of the mouse antibody in the context of a mostly human sequence.

Chimeric antibodies

Antibodies in which the variable region of a mouse antibody of interest has been genetically fused with a human constant region to create an antibody that retains the specificity of the mouse antibody in the context of a human constant region.

Fully human antibodies

Antibodies that contain only sequences derived from human genes.

Cross-reactive immunological material

An endogenous protein in the recipient that is immunologically similar to the replacement therapy.

Target-mediated drug disposition

When the binding of a drug to its target affects the pharmacokinetics of the drug.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strand, V., Goncalves, J. & Isaacs, J.D. Immunogenicity of biologic agents in rheumatology. Nat Rev Rheumatol 17, 81–97 (2021). https://doi.org/10.1038/s41584-020-00540-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-020-00540-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing