Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging treatments for post-transplantation diabetes mellitus

Key Points

  • Post-transplantation diabetes mellitus (PTDM) is a frequent complication among renal transplant recipients and is associated with a reduced life expectancy

  • Pretransplantation risk factors for PTDM include family history of diabetes mellitus, increasing age, obesity, a sedentary lifestyle, and impaired glucose tolerance before transplantation

  • Diagnosis of PTDM should be made on the basis of fasting glucose levels, supplemented with an oral glucose tolerance test if needed; the glycated haemoglobin test is not a well validated diagnostic tool

  • Drugs used to treat PTDM should not interact with immunosuppressive agents, elicit weight gain or hypoglycaemic events, or reduce glomerular filtration rate

  • Short-term use of the DPP-4 inhibitors sitagliptin and vildagliptin, as well as glinides have been shown to be safe and effective in small clinical trials

  • The use of GLP-1 analogues, SGLT2 inhibitors, and metformin at GFR <60 ml/min/1.73 m2 needs to be explored among patients with PTDM

Abstract

Post-transplantation diabetes mellitus (PTDM), also known as new-onset diabetes mellitus (NODM), occurs in 10–15% of renal transplant recipients and is associated with cardiovascular disease and reduced lifespan. In the majority of cases, PTDM is characterized by β-cell dysfunction, as well as reduced insulin sensitivity in liver, muscle and adipose tissue. Glucose-lowering therapy must be compatible with immunosuppressant agents, reduced glomerular filtration rate (GFR) and severe arteriosclerosis. Such therapy should not place the patient at risk by inducing hypoglycaemic episodes or exacerbating renal function owing to adverse gastrointestinal effects with hypovolaemia. First-generation and second-generation sulphonylureas are generally avoided, and caution is currently advocated for the use of metformin in patients with GFR <60 ml/min/1.73 m2. DPP-4 inhibitors do not interact with immunosuppressant drugs and have demonstrated safety in small clinical trials. Other therapeutic options include glinides and glitazones. Evidence-based treatment regimens used in patients with type 2 diabetes mellitus cannot be directly implemented in patients with PTDM. Studies investigating the latest drugs are required to direct the development of improved treatment strategies for patients with PTDM. This Review outlines the modern principles of glucose-lowering treatment in PTDM with specific reference to renal transplant recipients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: First and second phase insulin release and corresponding glycaemia after an intravenous glucose challenge.
Figure 2: Target organs of current and candidate glucose-lowering drugs in post-transplantation diabetes mellitus.

Similar content being viewed by others

References

  1. Davidson, J. et al. New-onset diabetes after transplantation: 2003 International consensus guidelines. Proceedings of an international expert panel meeting. Barcelona, Spain, 19 February 2003. Transplantation 75, SS3–SS24 (2003).

    Article  PubMed  Google Scholar 

  2. Wilkinson, A. et al. Guidelines for the treatment and management of new-onset diabetes after transplantation. Clin. Transplant. 19, 291–298 (2005).

    Article  PubMed  Google Scholar 

  3. Sharif, A. et al. Proceedings from an international consensus meeting on posttransplantation diabetes mellitus: recommendations and future directions. Am. J. Transplant. 14, 1992–2000 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cosio, F. G. et al. New onset hyperglycemia and diabetes are associated with increased cardiovascular risk after kidney transplantation. Kidney Int. 67, 2415–2421 (2005).

    Article  PubMed  Google Scholar 

  5. Kasiske, B. L., Snyder, J. J., Gilbertson, D. & Matas, A. J. Diabetes mellitus after kidney transplantation in the United States. Am. J. Transplant. 3, 178–185 (2003).

    Article  PubMed  Google Scholar 

  6. Valderhaug, T. G. et al. The association of early post-transplant glucose levels with long-term mortality. Diabetologia 54, 1341–1349 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hecking, M. et al. Glucose metabolism after renal transplantation. Diabetes Care 36, 2763–2771 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hjelmesaeth, J. et al. The impact of impaired insulin release and insulin resistance on glucose intolerance after renal transplantation. Clin. Transplant. 16, 389–396 (2002).

    Article  PubMed  Google Scholar 

  9. Vincenti, F. et al. Results of an international, randomized trial comparing glucose metabolism disorders and outcome with cyclosporine versus tacrolimus. Am. J. Transplant. 7, 1506–1514 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Chakkera, H. A., Weil, E. J., Pham, P. T., Pomeroy, J. & Knowler, W. C. Can new-onset diabetes after kidney transplant be prevented? Diabetes Care 36, 1406–1412 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hjelmesaeth, J., Midtvedt, K., Jenssen, T. & Hartmann, A. Insulin resistance after renal transplantation: impact of immunosuppressive and antihypertensive therapy. Diabetes Care 24, 2121–2126 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Hornum, M. et al. New-onset diabetes mellitus after kidney transplantation in Denmark. Clin. J. Am. Soc. Nephrol. 5, 709–716 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Voytovich, M. H. et al. Short-term treatment with rosiglitazone improves glucose tolerance, insulin sensitivity and endothelial function in renal transplant recipients. Nephrol. Dial. Transplant. 20, 413–418 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Werzowa, J. et al. Vildagliptin and pioglitazone in patients with impaired glucose tolerance after kidney transplantation: a randomized, placebo-controlled clinical trial. Transplantation 95, 456–462 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Delaunay, F. et al. Pancreatic beta cells are important targets for the diabetogenic effects of glucocorticoids. J. Clin. Invest. 100, 2094–2098 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Andrews, R. C. & Walker, B. R. Glucocorticoids and insulin resistance: old hormones, new targets. Clin. Sci. (Lond.) 96, 513–523 (1999).

    Article  CAS  Google Scholar 

  17. Hjelmesaeth, J. et al. The impact of short-term ciclosporin A treatment on insulin secretion and insulin sensitivity in man. Nephrol. Dial. Transplant. 22, 1743–1749 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Jenssen, T. & Hartmann, A. Prevention and management of transplant-associated diabetes. Expert. Opin. Pharmacother. 12, 2641–2655 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Alberti, K. G. & Zimmet, P. Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabetic Medicine 15, 539–553 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 34, S62–S69 (2011).

  21. Eide, I. A. et al. Limitations of hemoglobin A1c for the diagnosis of posttransplant diabetes mellitus. Transplantation 99, 629–635 (2014).

    Article  CAS  Google Scholar 

  22. Inzucchi, S. E. et al. Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 35, 1364–1379 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cole, E. H., Johnston, O., Rose, C. L. & Gill, J. S. Impact of acute rejection and new-onset diabetes on long-term transplant graft and patient survival. Clin. J. Am. Soc. Nephrol. 3, 814–821 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hjelmesaeth, J. et al. The impact of early-diagnosed new-onset post-transplantation diabetes mellitus on survival and major cardiac events. Kidney Int. 69, 588–595 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Wolfe, R. A. et al. Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N. Engl. J. Med. 341, 1725–1730 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Miller, L. W. Cardiovascular toxicities of immunosuppressive agents. Am. J. Transplant. 2, 807–818 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. [No authors listed] Glucose tolerance and mortality: comparison of WHO and American Diabetes Association diagnostic criteria. The DECODE study group. European Diabetes Epidemiology Group. Diabetes Epidemiology: Collaborative analysis of diagnostic criteria in Europe. Lancet 354, 617–621 (1999).

  28. Valderhaug, T. G. et al. Fasting plasma glucose and glycosylated hemoglobin in the screening for diabetes mellitus after renal transplantation. Transplantation 88, 429–434 (2009).

    Article  PubMed  Google Scholar 

  29. Valderhaug, T. G. et al. Early posttransplantation hyperglycemia in kidney transplant recipients is associated with overall long-term graft losses. Transplantation 94, 714–720 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Dinneen, S., Gerich, J. & Rizza, R. Carbohydrate metabolism in non-insulin-dependent diabetes mellitus. N. Engl. J. Med. 327, 707–713 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Grodsky, G. M. A new phase of insulin secretion. How will it contribute to our understanding of beta-cell function? Diabetes 38, 673–678 (1989).

    Article  CAS  PubMed  Google Scholar 

  32. Pimenta, W. et al. Pancreatic β-cell dysfunction as the primary genetic lesion in NIDDM. Evidence from studies in normal glucose-tolerant individuals with a first-degree NIDDM relative. JAMA 273, 1855–1861 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Weyer, C., Bogardus, C., Mott, D. M. & Pratley, R. E. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J. Clin. Invest. 104, 787–794 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. van Haeften, T. W. et al. Relative contributions of beta-cell function and tissue insulin sensitivity to fasting and postglucose-load glycemia. Metabolism 49, 1318–1325 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Drucker, D. J. & Nauck, M. A. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368, 1696–1705 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Strom Halden, T. A., Asberg, A., Vik, K., Hartmann, A. & Jenssen, T. Short-term efficacy and safety of sitagliptin treatment in long-term stable renal recipients with new-onset diabetes after transplantation. Nephrol. Dial. Transplant. 29, 926–933 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Ferrannini, E. et al. beta-Cell function in subjects spanning the range from normal glucose tolerance to overt diabetes: a new analysis. J. Clin. Endocrinol. Metab. 90, 493–500 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Gerich, J. E. et al. Contribution of impaired muscle glucose clearance to reduced postabsorptive systemic glucose clearance in NIDDM. Diabetes 39, 211–216 (1990).

    Article  CAS  PubMed  Google Scholar 

  39. Kahn, S. E. et al. Quantification of the relationship between insulin sensitivity and β-cell function in human subjects. Evidence for a hyperbolic function. Diabetes 42, 1663–1672 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Gerich, J. E. Physiology of glucose homeostasis. Diabetes Obes. Metab. 2, 345–350 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Muller, W. A., Faloona, G. R., Aguilar-Parada, E. & Unger, R. H. Abnormal α-cell function in diabetes. Response to carbohydrate and protein ingestion. N. Engl. J. Med. 283, 109–115 (1970).

    Article  CAS  PubMed  Google Scholar 

  42. Consoli, A., Nurjhan, N., Capani, F. & Gerich, J. Predominant role of gluconeogenesis in increased hepatic glucose production in NIDDM. Diabetes 38, 550–557 (1989).

    Article  CAS  PubMed  Google Scholar 

  43. Yki-Jarvinen, H. Acute and chronic effects of hyperglycaemia on glucose metabolism: implications for the development of new therapies. Diabet. Med. 14 (Suppl. 3), S32–S37 (1997).

    Article  PubMed  Google Scholar 

  44. Segaert, M. F., De, S. C., Vandewiele, I. & Verbanck, J. Drug-interaction-induced rhabdomyolysis. Nephrol. Dial. Transplant. 11, 1846–1847 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Maggio, T. G. & Bartels, D. W. Increased cyclosporine blood concentrations due to verapamil administration. Drug Intell. Clin. Pharm. 22, 705–707 (1988).

    Article  CAS  PubMed  Google Scholar 

  46. Drugs.com [Internet]. Mycophenolate mofetil drug interactions [online], (2015).

  47. Arora, S., Tangirala, B., Osadchuk, L. & Sureshkumar, K. K. Belatacept: a new biological agent for maintenance immunosuppression in kidney transplantation. Expert Opin. Biol. Ther. 12, 965–979 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Su, V. C., Harrison, J., Rogers, C. & Ensom, M. H. Belatacept: a new biologic and its role in kidney transplantation. Ann. Pharmacother. 46, 57–67 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Gerich, J. E. Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications. Diabet. Med. 27, 136–142 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Meyer, C., Dostou, J. M. & Gerich, J. E. Role of the human kidney in glucose counterregulation. Diabetes 48, 943–948 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Bruderer, S. G. et al. Incidence of and risk factors for severe hypoglycaemia in treated type 2 diabetes mellitus patients in the UK—a nested case-control analysis. Diabetes Obes. Metab. (2014).

  52. Koch, M., Gradaus, F., Schoebel, F. C., Leschke, M. & Grabensee, B. Relevance of conventional cardiovascular risk factors for the prediction of coronary artery disease in diabetic patients on renal replacement therapy. Nephrol. Dial. Transplant. 12, 1187–1191 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Frier, B. M., Schernthaner, G. & Heller, S. R. Hypoglycemia and cardiovascular risks. Diabetes Care 34 (Suppl. 2), S132–S137 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Robinson, R. T. et al. Mechanisms of abnormal cardiac repolarization during insulin-induced hypoglycaemia. Diabetes 52, 1469–1474 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Koivikko, M. L. et al. Effects of controlled hypoglycaemia on cardiac repolarisation in patients with type 1 diabetes. Diabetologia 51, 426–435 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Dichtwald, S., Weinbroum, A. A., Sorkine, P., Ekstein, M. P. & Dahan, E. Metformin-associated lactic acidosis following acute kidney injury. Efficacious treatment with continuous renal replacement therapy. Diabet. Med. 29, 245–250 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Wang, C. H., Weisel, R. D., Liu, P. P., Fedak, P. W. & Verma, S. Glitazones and heart failure: critical appraisal for the clinician. Circulation 107, 1350–1354 (2003).

    Article  PubMed  Google Scholar 

  58. Sharif, A., Moore, R. & Baboolal, K. Influence of lifestyle modification in renal transplant recipients with postprandial hyperglycemia. Transplantation 85, 353–358 (2008).

    Article  PubMed  Google Scholar 

  59. Zelle, D. M. et al. Low physical activity and risk of cardiovascular and all-cause mortality in renal transplant recipients. Clin. J. Am. Soc. Nephrol. 6, 898–905 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kim, Y. et al. Patients with persistent new-onset diabetes after transplantation have greater weight gain after kidney transplantation. J. Korean Med. Sci. 28, 1431–1434 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tokodai, K. et al. Posttransplant increase of body mass index is associated with new-onset diabetes mellitus after kidney transplantation. Tohoku J. Exp. Med. 229, 227–232 (2013).

    Article  PubMed  Google Scholar 

  62. Jardine, A. G., Gaston, R. S., Fellstrom, B. C. & Holdaas, H. Prevention of cardiovascular disease in adult recipients of kidney transplants. Lancet 378, 1419–1427 (2011).

    Article  PubMed  Google Scholar 

  63. Schacke, H., Docke, W. D. & Asadullah, K. Mechanisms involved in the side effects of glucocorticoids. Pharmacol. Ther. 96, 23–43 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Woodle, E. S. et al. A prospective, randomized, double-blind, placebo-controlled multicenter trial comparing early (7 day) corticosteroid cessation versus long-term, low-dose corticosteroid therapy. Ann. Surg. 248, 564–577 (2008).

    PubMed  Google Scholar 

  65. Rostaing, L. et al. Corticosteroid-free immunosuppression with tacrolimus, mycophenolate mofetil, and daclizumab induction in renal transplantation. Transplantation 79, 807–814 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Midtvedt, K. et al. Insulin resistance after renal transplantation: the effect of steroid dose reduction and withdrawal. J. Am. Soc. Nephrol. 15, 3233–3239 (2004).

    Article  PubMed  Google Scholar 

  67. Yates, C. J., Fourlanos, S., Colman, P. G. & Cohney, S. J. Divided dosing reduces prednisolone-induced hyperglycaemia and glycaemic variability: a randomized trial after kidney transplantation. Nephrol. Dial. Transplant. 29, 698–705 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Ekberg, H. et al. Reduced exposure to calcineurin inhibitors in renal transplantation. N. Engl. J. Med. 357, 2562–2575 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Webster, A. C., Woodroffe, R. C., Taylor, R. S., Chapman, J. R. & Craig, J. C. Tacrolimus versus ciclosporin as primary immunosuppression for kidney transplant recipients: meta-analysis and meta-regression of randomised trial data. BMJ 331, 810 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Johnston, O., Rose, C. L., Webster, A. C. & Gill, J. S. Sirolimus is associated with new-onset diabetes in kidney transplant recipients. J. Am. Soc. Nephrol. 19, 1411–1418 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Flechner, S. M. et al. The ORION study: comparison of two sirolimus-based regimens versus tacrolimus and mycophenolate mofetil in renal allograft recipients. Am. J. Transplant. 11, 1633–1644 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Suszynski, T. M. et al. Prospective randomized trial of maintenance immunosuppression with rapid discontinuation of prednisone in adult kidney transplantation. Am. J. Transplant. 13, 961–970 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Vanrenterghem, Y. et al. Belatacept-based regimens are associated with improved cardiovascular and metabolic risk factors compared with cyclosporine in kidney transplant recipients (BENEFIT and BENEFIT-EXT studies). Transplantation 91, 976–983 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Cusi, K., Consoli, A. & DeFronzo, R. A. Metabolic effects of metformin on glucose and lactate metabolism in noninsulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab 81, 4059–4067 (1996).

    CAS  PubMed  Google Scholar 

  75. Kahn, C. R., Chen, L. & Cohen, S. E. Unraveling the mechanism of action of thiazolidinediones. J. Clin. Invest 106, 1305–1307 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hasan, F. M., Alsahli, M. & Gerich, J. E. SGLT2 inhibitors in the treatment of type 2 diabetes. Diabetes Res. Clin. Pract. 104, 297–322 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Inzucchi, S. E. Oral antihyperglycemic therapy for type 2 diabetes: scientific review. JAMA 287, 360–372 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Thule, P. M. & Umpierrez, G. Sulfonylureas: a new look at old therapy. Curr. Diab. Rep. 14, 473 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352, 837–853 (1998).

  80. Roumie, C. L. et al. Comparative effectiveness of sulfonylurea and metformin monotherapy on cardiovascular events in type 2 diabetes mellitus: a cohort study. Ann. Intern. Med. 157, 601–610 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Mocanu, M. M. et al. Glimepiride, a novel sulfonylurea, does not abolish myocardial protection afforded by either ischemic preconditioning or diazoxide. Circulation 103, 3111–3116 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Turk, T. et al. Repaglinide in the management of new-onset diabetes mellitus after renal transplantation. Am. J. Transplant. 6, 842–846 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Voytovich, M. H. et al. Nateglinide improves postprandial hyperglycemia and insulin secretion in renal transplant recipients. Clin. Transplant. 21, 246–251 (2007).

    Article  PubMed  Google Scholar 

  84. Califf, R. M. et al. Prevention of diabetes and cardiovascular disease in patients with impaired glucose tolerance: rationale and design of the Nateglinide And Valsartan in Impaired Glucose Tolerance Outcomes Research (NAVIGATOR) Trial. Am. Heart J. 156, 623–632 (2008).

    Article  PubMed  Google Scholar 

  85. Holman, R. R. et al. Effect of nateglinide on the incidence of diabetes and cardiovascular events. N. Engl. J. Med. 362, 1463–1476 (2010).

    Article  PubMed  Google Scholar 

  86. McMurray, J. J. et al. Effect of valsartan on the incidence of diabetes and cardiovascular events. N. Engl. J. Med. 362, 1477–1490 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Kolata, G. B. The phenformin ban: is the drug an imminent hazard? Science 203, 1094–1096 (1979).

    Article  CAS  PubMed  Google Scholar 

  88. Shaw, J. S., Wilmot, R. L. & Kilpatrick, E. S. Establishing pragmatic estimated GFR thresholds to guide metformin prescribing. Diabet. Med. 24, 1160–1163 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Shivaswamy, V., Bennett, R. G., Clure, C. C., Larsen, J. L. & Hamel, F. G. Metformin improves immunosuppressant induced hyperglycemia and exocrine apoptosis in rats. Transplantation 95, 280–284 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. McCarty, M. F. Metformin may antagonize Lin28 and/or Lin28B activity, thereby boosting let-7 levels and antagonizing cancer progression. Med. Hypotheses 78, 262–269 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Leone, A., Di, G. E., Bruzzese, F., Avallone, A. & Budillon, A. New perspective for an old antidiabetic drug: metformin as anticancer agent. Cancer Treat. Res. 159, 355–376 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. [No authors listed] Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet 352, 854–865 (1998).

  93. Boussageon, R. et al. Are concomitant treatments confounding factors in randomized controlled trials on intensive blood-glucose control in type 2 diabetes? a systematic review. BMC Med. Res. Methodol. 13, 107 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Hemmingsen, B. et al. Comparison of metformin and insulin versus insulin alone for type 2 diabetes: systematic review of randomised clinical trials with meta-analyses and trial sequential analyses. BMJ 344, e1771 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Kurian, B., Joshi, R. & Helmuth, A. Effectiveness and long-term safety of thiazolidinediones and metformin in renal transplant recipients. Endocr. Pract. 14, 979–984 (2008).

    Article  PubMed  Google Scholar 

  96. Hecking, M. et al. Novel views on new-onset diabetes after transplantation: development, prevention and treatment. Nephrol. Dial. Transplant. 28, 550–566 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Sharif, A. Should metformin be our antiglycemic agent of choice post-transplantation? Am. J. Transplant. 11, 1376–1381 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Bajaj, M. et al. Pioglitazone reduces hepatic fat content and augments splanchnic glucose uptake in patients with type 2 diabetes. Diabetes 52, 1364–1370 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Watkins, P. B. Idiosyncratic liver injury: challenges and approaches. Toxicol. Pathol. 33, 1–5 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Nissen, S. E. & Wolski, K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N. Engl. J. Med. 356, 2457–2471 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Luther, P. & Baldwin, D., Jr Pioglitazone in the management of diabetes mellitus after transplantation. Am. J. Transplant. 4, 2135–2138 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Dormandy, J. A. et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 366, 1279–1289 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Tan, M. H. et al. Comparison of pioglitazone and gliclazide in sustaining glycemic control over 2 years in patients with type 2 diabetes. Diabetes Care 28, 544–550 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Howard, R. J. et al. The changing causes of graft loss and death after kidney transplantation. Transplantation 73, 1923–1928 (2002).

    Article  PubMed  Google Scholar 

  105. Ojo, A. O. et al. Chronic renal failure after transplantation of a nonrenal organ. N. Engl. J. Med. 349, 931–940 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Holst, J. J., Orskov, C., Nielsen, O. V. & Schwartz, T. W. Truncated glucagon-like peptide I, an insulin-releasing hormone from the distal gut. FEBS Lett. 211, 169–174 (1987).

    Article  CAS  PubMed  Google Scholar 

  107. Pederson, R. A., Schubert, H. E. & Brown, J. C. The insulinotropic action of gastric inhibitory polypeptide. Can. J. Physiol. Pharmacol. 53, 217–223 (1975).

    Article  CAS  PubMed  Google Scholar 

  108. Plamboeck, A. et al. The effect of exogenous GLP-1 on food intake is lost in male truncally vagotomized subjects with pyloroplasty. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G1117–G1127 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Toft-Nielsen, M. B. et al. Determinants of the impaired secretion of glucagon-like peptide-1 in type 2 diabetic patients. J. Clin. Endocrinol. Metab. 86, 3717–3723 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Nauck, M. A. et al. Preserved incretin activity of glucagon-like peptide 1 [7–36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J. Clin. Invest. 91, 301–307 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Idorn, T. et al. Postprandial responses of incretin and pancreatic hormones in non-diabetic patients with end-stage renal disease. Nephrol. Dial. Transplant. 29, 119–127 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Orskov, C., Wettergren, A. & Holst, J. J. Biological effects and metabolic rates of glucagonlike peptide-1 7–36 amide and glucagonlike peptide-1 7–37 in healthy subjects are indistinguishable. Diabetes 42, 658–661 (1993).

    Article  CAS  PubMed  Google Scholar 

  113. Haidinger, M. et al. Efficacy and safety of vildagliptin in new-onset diabetes after kidney transplantation--a randomized, double-blind, placebo-controlled trial. Am. J. Transplant. 14, 115–123 (2014).

    Article  CAS  PubMed  Google Scholar 

  114. Lane, J. T. et al. Sitagliptin therapy in kidney transplant recipients with new-onset diabetes after transplantation. Transplantation 92, e56–e57 (2011).

    Article  PubMed  Google Scholar 

  115. Gueler, I. et al. Effects of vildagliptin (Galvus(R)) therapy in patients with type 2 diabetes mellitus after heart transplantation. Drug Des. Devel. Ther. 7, 297–303 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Sanyal, D., Gupta, S. & Das, P. A retrospective study evaluating efficacy and safety of linagliptin in treatment of NODAT (in renal transplant recipients) in a real world setting. Indian J. Endocrinol. Metab. 17 (Suppl. 1), S203–S205 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wang, X. M., Yang, Y. J. & Wu, Y. J. The emerging role of dipeptidyl peptidase-4 inhibitors in cardiovascular protection: current position and perspectives. Cardiovasc. Drugs Ther. 27, 297–307 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Scirica, B. M. et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N. Engl. J. Med. 369, 1317–1326 (2013).

    Article  CAS  PubMed  Google Scholar 

  119. White, W. B. et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N. Engl. J. Med. 369, 1327–1335 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. Nielsen, L. L., Young, A. A. & Parkes, D. G. Pharmacology of exenatide (synthetic exendin-4): a potential therapeutic for improved glycemic control of type 2 diabetes. Regul. Pept. 117, 77–88 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Kim, D. et al. Effects of once-weekly dosing of a long-acting release formulation of exenatide on glucose control and body weight in subjects with type 2 diabetes. Diabetes Care 30, 1487–1493 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Kaakeh, Y., Kanjee, S., Boone, K. & Sutton, J. Liraglutide-induced acute kidney injury. Pharmacotherapy 32, e7–e11 (2012).

    Article  PubMed  Google Scholar 

  123. Weise, W. J., Sivanandy, M. S., Block, C. A. & Comi, R. J. Exenatide-associated ischemic renal failure. Diabetes Care 32, e22–e23 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Rahmoune, H. et al. Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes. Diabetes 54, 3427–3434 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Mogensen, C. E. Maximum tubular reabsorption capacity for glucose and renal hemodynamcis during rapid hypertonic glucose infusion in normal and diabetic subjects. Scand. J. Clin. Lab. Invest. 28, 101–109 (1971).

    Article  CAS  PubMed  Google Scholar 

  126. Nauck, M. A. et al. Durability of glycaemic efficacy over 2 years with dapagliflozin versus glipizide as add-on therapies in patients whose type 2 diabetes mellitus is inadequately controlled with metformin. Diabetes Obes. Metab. 16, 1111–1120 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Yale, J. F. et al. Efficacy and safety of canagliflozin over 52 weeks in patients with type 2 diabetes mellitus and chronic kidney disease. Diabetes Obes. Metab. 16, 1016–1027 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Gilbert, R. E. Sodium-glucose linked transporter-2 inhibitors: potential for renoprotection beyond blood glucose lowering? Kidney Int. 86, 693–700 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Kohan, D. E., Fioretto, P., Tang, W. & List, J. F. Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney Int. 85, 962–971 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Hornum, M., Lindahl, J. P., von Zur-Muhlen, B., Jenssen, T. & Feldt-Rasmussen, B. Diagnosis, management and treatment of glucometabolic disorders emerging after kidney transplantation: a position statement from the Nordic Transplantation Societies. Transpl. Int. 26, 1049–1060 (2013).

    Article  PubMed  Google Scholar 

  131. Hecking, M. et al. Early basal insulin therapy decreases new-onset diabetes after renal transplantation. J. Am. Soc. Nephrol. 23, 739–749 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

  133. Weng, J. et al. Effect of intensive insulin therapy on beta-cell function and glycaemic control in patients with newly diagnosed type 2 diabetes: a multicentre randomised parallel-group trial. Lancet 371, 1753–1760 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Gerstein, H. C. et al. Basal insulin and cardiovascular and other outcomes in dysglycemia. N. Engl. J. Med. 367, 319–328 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Schmitz, O., Brock, B. & Rungby, J. Amylin agonists: a novel approach in the treatment of diabetes. Diabetes 53 (Suppl. 3), S233–S238 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Ryan, G., Briscoe, T. A. & Jobe, L. Review of pramlintide as adjunctive therapy in treatment of type 1 and type 2 diabetes. Drug Des. Devel. Ther. 2, 203–214 (2009).

    PubMed  PubMed Central  Google Scholar 

  137. Matschinsky, F. M. Assessing the potential of glucokinase activators in diabetes therapy. Nat. Rev. Drug Discov. 8, 399–416 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Bagger, J. I., Knop, F. K., Holst, J. J. & Vilsboll, T. Glucagon antagonism as a potential therapeutic target in type 2 diabetes. Diabetes Obes. Metab. 13, 965–971 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  140. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  141. Hansen, M., Sonne, D. P. & Knop, F. K. Bile acid sequestrants: glucose-lowering mechanisms and efficacy in type 2 diabetes. Curr. Diab. Rep. 14, 482 (2014).

    Article  CAS  PubMed  Google Scholar 

  142. Bronden, A. et al. Sevelamer in a diabetologist's perspective: a phosphate-binding resin with glucose-lowering potential. Diabetes Obes. Metab. 17, 116–120 (2014).

    Article  CAS  PubMed  Google Scholar 

  143. Yates, C. J., Fourlanos, S., Hjelmesaeth, J., Colman, P. G. & Cohney, S. J. New-onset diabetes after kidney transplantation-changes and challenges. Am. J. Transplant. 12, 820–828 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

T.J. wrote the article. Both authors researched the data for the article, provided substantial contributions to discussions of its content, and undertook review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Trond Jenssen.

Ethics declarations

Competing interests

T.J. has received lecture honoraria from AstraZeneca, Novartis, Sanofi, and Merck Sharp & Dohme. A.H. declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jenssen, T., Hartmann, A. Emerging treatments for post-transplantation diabetes mellitus. Nat Rev Nephrol 11, 465–477 (2015). https://doi.org/10.1038/nrneph.2015.59

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2015.59

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing