Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Combination therapy for kidney disease in people with diabetes mellitus

Abstract

Diabetic kidney disease (DKD), defined as co-existing diabetes and chronic kidney disease in the absence of other clear causes of kidney injury, occurs in approximately 20–40% of patients with diabetes mellitus. As the global prevalence of diabetes has increased, DKD has become highly prevalent and a leading cause of kidney failure, accelerated cardiovascular disease, premature mortality and global health care expenditure. Multiple pathophysiological mechanisms contribute to DKD, and single lifestyle or pharmacological interventions have shown limited efficacy at preserving kidney function. For nearly two decades, renin–angiotensin system inhibitors were the only available kidney-protective drugs. However, several new drug classes, including sodium glucose cotransporter-2 inhibitors, a non-steroidal mineralocorticoid antagonist and a selective endothelin receptor antagonist, have now been demonstrated to improve kidney outcomes in people with type 2 diabetes mellitus. In addition, emerging preclinical and clinical evidence of the kidney-protective effects of glucagon-like-peptide-1 receptor agonists has led to the prospective testing of these agents for DKD. Research and clinical efforts are geared towards using therapies with potentially complementary efficacy in combination to safely halt kidney disease progression. As more kidney-protective drugs become available, the outlook for people living with DKD should improve in the next few decades.

Key points

  • Diabetic kidney disease (DKD) is associated with substantial morbidity and cardiovascular mortality, and for nearly two decades, the only kidney-protective treatment for DKD was renin–angiotensin system blockade.

  • Positive kidney outcome data have now been reported for SGLT2 inhibitors, the mineralocorticoid antagonist finerenone and endothelin receptor antagonists.

  • GLP1 receptor agonists have been shown to have beneficial effects on surrogate kidney end points, and a kidney outcomes trial is underway.

  • The advent of novel kidney-protective drugs provides new therapeutic options for people living with diabetes and kidney disease but increases the complexity of treatment decisions for caregivers.

  • Combining drugs may enhance their kidney protective efficacy and could potentially reduce the risk of adverse effects that are associated with specific drug classes.

  • An important goal for the future pharmacological management of DKD is to individualize treatment with optimal drug combinations based on the underlying pathophysiology and guided by tissue or serum biomarkers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The pathophysiology of diabetic kidney disease.

Similar content being viewed by others

References

  1. de Boer, I. H. et al. Temporal trends in the prevalence of diabetic kidney disease in the United States. JAMA 305, 2532–2539 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  2. de Boer, I. H., Group DER. Kidney disease and related findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diabetes Care 37, 24–30 (2014).

    Article  PubMed  Google Scholar 

  3. Afkarian, M. et al. Clinical manifestations of kidney disease among US adults with diabetes, 1988-2014. JAMA 316, 602–610 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Koye, D. N., Magliano, D. J., Nelson, R. G. & Pavkov, M. E. The global epidemiology of diabetes and kidney disease. Adv. Chronic Kidney Dis. 25, 121–132 (2018).

    Article  PubMed  Google Scholar 

  5. Agrawal, L. et al. Intensive glycemic control improves long-term renal outcomes in type 2 diabetes in the Veterans Affairs Diabetes Trial (VADT). Diabetes Care 42, e181–e182 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Agrawal, L. et al. Observation on renal outcomes in the Veterans Affairs Diabetes Trial. Diabetes Care 34, 2090–2094 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lewis, E. J., Hunsicker, L. G., Bain, R. P. & Rohde, R. D. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N. Engl. J. Med. 329, 1456–1462 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Lewis, E. J. et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N. Engl. J. Med. 345, 851–860 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Brenner, B. M. et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 345, 861–869 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Fried, L. F. et al. Combined angiotensin inhibition for the treatment of diabetic nephropathy. N. Engl. J. Med. 369, 1892–1903 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Parving, H. H. et al. Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N. Engl. J. Med. 367, 2204–2213 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Mann, J. F. et al. Avosentan for overt diabetic nephropathy. J. Am. Soc. Nephrol. 21, 527–535 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. de Zeeuw, D. et al. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N. Engl. J. Med. 369, 2492–2503 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Packham, D. K. et al. Sulodexide fails to demonstrate renoprotection in overt type 2 diabetic nephropathy. J. Am. Soc. Nephrol. 23, 123–130 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. The E-KCG. et al. Empagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 388, 117–127 (2023).

    Article  Google Scholar 

  16. Perkovic, V. et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N. Engl. J. Med. 380, 2295–2306 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Heerspink, H. J. L. et al. Dapagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 383, 1436–1446 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Bakris, G. L. et al. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N. Engl. J. Med. 383, 2219–2229 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Heerspink, H. J. L. et al. Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial. Lancet 393, 1937–1947 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. International Diabetes Federation. IDF Diabetes Atlas, 10th edn. https://www.diabetesatlas.org (2021).

  21. Menke, A., Casagrande, S., Geiss, L. & Cowie, C. C. Prevalence of and trends in diabetes among adults in the United States, 1988–2012. JAMA 314, 1021–1029 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Jager, K. J. et al. A single number for advocacy and communication-worldwide more than 850 million individuals have kidney diseases. Kidney Int. 96, 1048–1050 (2019).

    Article  PubMed  Google Scholar 

  23. Toppe, C. et al. Decreasing cumulative incidence of end-stage renal disease in young patients with type 1 diabetes in Sweden: a 38-year prospective nationwide study. Diabetes Care 42, 27–31 (2019).

    Article  PubMed  Google Scholar 

  24. Gregg, E. W., Hora, I. & Benoit, S. R. Resurgence in diabetes-related complications. JAMA 321, 1867–1868 (2019).

    Article  PubMed  Google Scholar 

  25. Narres, M. et al. Incidence and relative risk of renal replacement therapy in people with and without diabetes between 2002 and 2016 in a German region. Diabetologia 63, 648–658 (2020).

    Article  PubMed  Google Scholar 

  26. Koye, D. N. et al. Trends in incidence of ESKD in people with type 1 and type 2 diabetes in Australia, 2002–2013. Am. J. Kidney Dis. 73, 300–308 (2019).

    Article  PubMed  Google Scholar 

  27. Wu, H. et al. Trends in kidney failure and kidney replacement therapy in people with diabetes in Hong Kong, 2002–2015: a retrospective cohort study. Lancet Reg. Health West Pac. 11, 100165 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Harding, J. L., Pavkov, M. E., Magliano, D. J., Shaw, J. E. & Gregg, E. W. Global trends in diabetes complications: a review of current evidence. Diabetologia 62, 3–16 (2019).

    Article  PubMed  Google Scholar 

  29. Afkarian, M. et al. Kidney disease and increased mortality risk in type 2 diabetes. J. Am. Soc. Nephrol. 24, 302–308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fox, C. S. et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis. Lancet 380, 1662–1673 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wen, C. P. et al. Diabetes with early kidney involvement may shorten life expectancy by 16 years. Kidney Int. 92, 388–396 (2017).

    Article  PubMed  Google Scholar 

  32. Fioretto, P. & Mauer, M. Histopathology of diabetic nephropathy. Semin. Nephrol. 27, 195–207 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fiorentino, M. et al. Renal biopsy in patients with diabetes: a pooled meta-analysis of 48 studies. Nephrol. Dial. Transpl. 32, 97–110 (2017).

    CAS  Google Scholar 

  34. Fioretto, P. et al. Patterns of renal injury in NIDDM patients with microalbuminuria. Diabetologia 39, 1569–1576 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Jin, Q. et al. Nonalbuminuric diabetic kidney disease and risk of all-cause mortality and cardiovascular and kidney outcomes in type 2 diabetes: findings from the Hong Kong Diabetes Biobank. Am. J. Kidney Dis. 80, 196–206 e1 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. Nosadini, R. et al. Course of renal function in type 2 diabetic patients with abnormalities of albumin excretion rate. Diabetes 49, 476–484 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Fioretto, P., Steffes, M. W., Sutherland, D. E., Goetz, F. C. & Mauer, M. Reversal of lesions of diabetic nephropathy after pancreas transplantation. N. Engl. J. Med. 339, 69–75 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Scholtes, R. A. et al. Renal haemodynamic and protective effects of renoactive drugs in type 2 diabetes: Interaction with SGLT2 inhibitors. Nephrology 26, 377–390 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Scholtes, R. A. et al. Kidney hemodynamic effects of angiotensin receptor blockade, sodium-glucose cotransporter-2 inhibition alone, and their combination: a crossover randomized trial in people with type 2 diabetes. Circulation 146, 1895–1897 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Romero, C. A., Orias, M. & Weir, M. R. Novel RAAS agonists and antagonists: clinical applications and controversies. Nat. Rev. Endocrinol. 11, 242–252 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rayego-Mateos, S. et al. Targeting inflammation to treat diabetic kidney disease: the road to 2030. Kidney Int. 103, 282–296 (2023).

    Article  CAS  PubMed  Google Scholar 

  42. Ma, T. K., Kam, K. K., Yan, B. P. & Lam, Y. Y. Renin-angiotensin-aldosterone system blockade for cardiovascular diseases: current status. Br. J. Pharmacol. 160, 1273–1292 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. van Bommel, E. J. et al. SGLT2 inhibition in the diabetic kidney-from mechanisms to clinical outcome. Clin. J. Am. Soc. Nephrol. 12, 700–710 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Persson, F. et al. Efficacy and safety of dapagliflozin by baseline glycemic status: a prespecified analysis from the DAPA-CKD trial. Diabetes Care 44, 1894–1897 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. van Bommel, E. J. M. et al. The renal hemodynamic effects of the SGLT2 inhibitor dapagliflozin are caused by post-glomerular vasodilatation rather than pre-glomerular vasoconstriction in metformin-treated patients with type 2 diabetes in the randomized, double-blind RED trial. Kidney Int. 97, 202–212 (2020).

    Article  PubMed  Google Scholar 

  46. Cherney, D. Z. et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation 129, 587–597 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Heerspink, H. J., Perkins, B. A., Fitchett, D. H., Husain, M. & Cherney, D. Z. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation 134, 752–772 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Nuffield Department of Population Health Renal Studies G, Consortium SiM-AC-RT. Impact of diabetes on the effects of sodium glucose co-transporter-2 inhibitors on kidney outcomes: collaborative meta-analysis of large placebo-controlled trials. Lancet 400, 1788–1801 (2022).

    Article  Google Scholar 

  49. Neuen, B. L. et al. Sodium-glucose cotransporter 2 inhibitors and risk of hyperkalemia in people with type 2 diabetes: a meta-analysis of individual participant data from randomized, controlled trials. Circulation 145, 1460–1470 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Bolignano, D., Palmer, S. C., Navaneethan, S. D. & Strippoli, G. F. Aldosterone antagonists for preventing the progression of chronic kidney disease. Cochrane Database Syst. Rev. 10, CD007004 (2014).

    Google Scholar 

  51. Alexandrou, M. E. et al. Effects of mineralocorticoid receptor antagonists in proteinuric kidney disease: a systematic review and meta-analysis of randomized controlled trials. J. Hypertens. 37, 2307–2324 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Kolkhof, P. et al. Finerenone, a novel selective nonsteroidal mineralocorticoid receptor antagonist protects from rat cardiorenal injury. J. Cardiovasc. Pharmacol. 64, 69–78 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Gerisch, M. et al. Biotransformation of finerenone, a novel nonsteroidal mineralocorticoid receptor antagonist, in dogs, rats, and humans, in vivo and in vitro. Drug Metab. Dispos. 46, 1546–1555 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Agarwal, R. et al. Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: the FIDELITY pooled analysis. Eur. Heart J. 43, 474–484 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Agarwal, R. et al. Hyperkalemia risk with finerenone: results from the FIDELIO-DKD trial. J. Am. Soc. Nephrol. 33, 225–237 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ito, S. et al. Esaxerenone (CS-3150) in patients with type 2 diabetes and microalbuminuria (ESAX-DN): phase 3 randomized controlled clinical trial. Clin. J. Am. Soc. Nephrol. 15, 1715–1727 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Barton, M. & Yanagisawa, M. Endothelin: 30 years from discovery to therapy. Hypertension 74, 1232–1265 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Chung, E. Y. M., Badve, S. V., Heerspink, H. J. L. & Wong, M. G. Endothelin receptor antagonists in kidney protection for diabetic kidney disease and beyond? Nephrology 28, 97–108 (2023).

    Article  CAS  PubMed  Google Scholar 

  59. Weber, M. A. et al. A selective endothelin-receptor antagonist to reduce blood pressure in patients with treatment-resistant hypertension: a randomised, double-blind, placebo-controlled trial. Lancet 374, 1423–1431 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Muskiet, M. H. A. et al. GLP-1 and the kidney: from physiology to pharmacology and outcomes in diabetes. Nat. Rev. Nephrol. 13, 605–628 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Drucker, D. J. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab. 27, 740–756 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Sattar, N. et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials. Lancet Diabetes Endocrinol. 9, 653–662 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Shaman, A. M. et al. Effect of the glucagon-like peptide-1 receptor agonists semaglutide and liraglutide on kidney outcomes in patients with type 2 diabetes: pooled analysis of SUSTAIN 6 and LEADER. Circulation 145, 575–585 (2022).

    Article  CAS  PubMed  Google Scholar 

  64. Tuttle, K. R. et al. Post hoc analysis of SUSTAIN 6 and PIONEER 6 trials suggests that people with type 2 diabetes at high cardiovascular risk treated with semaglutide experience more stable kidney function compared with placebo. Kidney Int. 103, 772–781 (2023).

    Article  PubMed  Google Scholar 

  65. Mann, J. F. E. et al. Liraglutide and renal outcomes in type 2 diabetes. N. Engl. J. Med. 377, 839–848 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Mann, J. F. E. et al. Potential kidney protection with liraglutide and semaglutide: exploratory mediation analysis. Diabetes Obes. Metab. 23, 2058–2066 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Muskiet, M. H. A. et al. Lixisenatide and renal outcomes in patients with type 2 diabetes and acute coronary syndrome: an exploratory analysis of the ELIXA randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 6, 859–869 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Alicic, R. Z., Cox, E. J., Neumiller, J. J. & Tuttle, K. R. Incretin drugs in diabetic kidney disease: biological mechanisms and clinical evidence. Nat. Rev. Nephrol. 17, 227–244 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. Pichler, R., Afkarian, M., Dieter, B. P. & Tuttle, K. R. Immunity and inflammation in diabetic kidney disease: translating mechanisms to biomarkers and treatment targets. Am. J. Physiol. Renal Physiol. 312, F716–F731 (2017).

    Article  CAS  PubMed  Google Scholar 

  70. Ronn, J., Jensen, E. P., Wewer Albrechtsen, N. J., Holst, J. J. & Sorensen, C. M. Glucagon-like peptide-1 acutely affects renal blood flow and urinary flow rate in spontaneously hypertensive rats despite significantly reduced renal expression of GLP-1 receptors. Physiol. Rep. 5, e13503 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Gutzwiller, J. P. et al. Glucagon-like peptide 1 induces natriuresis in healthy subjects and in insulin-resistant obese men. J. Clin. Endocrinol. Metab. 89, 3055–3061 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Muskiet, M. H. et al. Acute renal haemodynamic effects of glucagon-like peptide-1 receptor agonist exenatide in healthy overweight men. Diabetes Obes. Metab. 18, 178–185 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Tonneijck, L. et al. Renal tubular effects of prolonged therapy with the GLP-1 receptor agonist lixisenatide in patients with type 2 diabetes mellitus. Am. J. Physiol. Renal Physiol. 316, F231–F240 (2019).

    Article  PubMed  Google Scholar 

  74. Rossing, P. et al. The rationale, design and baseline data of FLOW, a kidney outcomes trial with once-weekly semaglutide in people with type 2 diabetes and chronic kidney disease. Nephrol. Dial. Transpl. 38, 2041–2051 (2023).

    Article  Google Scholar 

  75. A research study to find out how semaglutide works in the kidneys compared to placebo, in people with type 2 diabetes and chronic kidney disease (the REMODEL trial) (REMODEL). ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04865770 (2024).

  76. Kalantar-Zadeh, K. & Fouque, D. Nutritional management of chronic kidney disease. N. Engl. J. Med. 377, 1765–1776 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. Suckling R. J., He F. J., Macgregor G. A. Altered dietary salt intake for preventing and treating diabetic kidney disease. Cochrane Database Syst. Rev. 2010:CD006763.

  78. de Boer, I. H. et al. Executive summary of the 2020 KDIGO diabetes management in CKD guideline: evidence-based advances in monitoring and treatment. Kidney Int. 98, 839–848 (2020).

    Article  PubMed  Google Scholar 

  79. Kwakernaak, A. J. et al. Effects of sodium restriction and hydrochlorothiazide on RAAS blockade efficacy in diabetic nephropathy: a randomised clinical trial. Lancet Diabetes Endocrinol. 2, 385–395 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Dietary sodium intake effects on ertugliflozin-induced changes in GFR, renal oxygenation and systemic hemodynamics: the DESIGN study (DESIGN). ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05727579 (2023).

  81. Yan, B., Su, X., Xu, B., Qiao, X. & Wang, L. Effect of diet protein restriction on progression of chronic kidney disease: a systematic review and meta-analysis. PLoS One 13, e0206134 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Bosch, J. P. et al. Renal functional reserve in humans. Effect of protein intake on glomerular filtration rate. Am. J. Med. 75, 943–950 (1983).

    Article  CAS  PubMed  Google Scholar 

  83. Look ARG. Effect of a long-term behavioural weight loss intervention on nephropathy in overweight or obese adults with type 2 diabetes: a secondary analysis of the Look AHEAD randomised clinical trial. Lancet Diabetes Endocrinol. 2, 801–809 (2014).

    Article  Google Scholar 

  84. Shulman, A. et al. Incidence of end-stage renal disease following bariatric surgery in the Swedish Obese Subjects Study. Int. J. Obes. 42, 964–973 (2018).

    Article  CAS  Google Scholar 

  85. O’Hare, A. M., Tawney, K., Bacchetti, P. & Johansen, K. L. Decreased survival among sedentary patients undergoing dialysis: results from the dialysis morbidity and mortality study wave 2. Am. J. Kidney Dis. 41, 447–454 (2003).

    Article  PubMed  Google Scholar 

  86. Wilkinson, T. J., McAdams-DeMarco, M., Bennett, P. N. & Wilund, K., Global Renal Exercise N. Advances in exercise therapy in predialysis chronic kidney disease, hemodialysis, peritoneal dialysis, and kidney transplantation. Curr. Opin. Nephrol. Hypertens. 29, 471–479 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Zelle, D. M. et al. Physical inactivity: a risk factor and target for intervention in renal care. Nat. Rev. Nephrol. 13, 318 (2017).

    Article  PubMed  Google Scholar 

  88. Efficacy of a high-intensity physical activity program on renal function in high risk patients with type 2 diabetes (ACTIDIANE). ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03184662 (2021).

  89. Liu, J. et al. Multi-scalar data integration links glomerular angiopoietin-tie signaling pathway activation with progression of diabetic kidney disease. Diabetes 71, 2664–2676 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Stefansson, V. T. N. et al. Molecular programs associated with glomerular hyperfiltration in early diabetic kidney disease. Kidney Int. 102, 1345–1358 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nair, V. et al. A molecular morphometric approach to diabetic kidney disease can link structure to function and outcome. Kidney Int. 93, 439–449 (2018).

    Article  CAS  PubMed  Google Scholar 

  92. Sas, K. M. et al. Tissue-specific metabolic reprogramming drives nutrient flux in diabetic complications. JCI Insight 1, e86976 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Wilson, P. C. et al. The single-cell transcriptomic landscape of early human diabetic nephropathy. Proc. Natl Acad. Sci. USA 116, 19619–19625 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wu, H. et al. Mapping the single-cell transcriptomic response of murine diabetic kidney disease to therapies. Cell Metab. 34, 1064–78 e6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hodgin, J. B. et al. Identification of cross-species shared transcriptional networks of diabetic nephropathy in human and mouse glomeruli. Diabetes 62, 299–308 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Brosius, F. C. III et al. Mouse models of diabetic nephropathy. J. Am. Soc. Nephrol. 20, 2503–2512 (2009).

    Article  PubMed  Google Scholar 

  97. Kolkhof, P. et al. Effects of finerenone combined with empagliflozin in a model of hypertension-induced end-organ damage. Am. J. Nephrol. 52, 642–652 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Vergara, A. et al. Enhanced cardiorenal protective effects of combining SGLT2 inhibition, endothelin receptor antagonism and RAS blockade in type 2 diabetic mice. Int. J. Mol. Sci. 23, 12823 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Seidu, S., Kunutsor, S. K., Topsever, P. & Khunti, K. Benefits and harms of sodium-glucose co-transporter-2 inhibitors (SGLT2-I) and renin-angiotensin-aldosterone system inhibitors (RAAS-I) versus SGLT2-Is alone in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Endocrinol. Diabetes Metab. 5, e00303 (2022).

    Article  CAS  PubMed  Google Scholar 

  100. Lytvyn, Y. et al. Renal and vascular effects of combined SGLT2 and angiotensin-converting enzyme inhibition. Circulation 146, 450–462 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Phadke, G. et al. Osmotic nephrosis and acute kidney injury associated with SGLT2 inhibitor use: a case report. Am. J. Kidney Dis. 76, 144–147 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Promoting effective renoprotection in cardiac surgery patients by inhibition of SGLT-2 (MERCURI-2). ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05590143 (2023).

  103. Hesp, A. C. et al. The role of renal hypoxia in the pathogenesis of diabetic kidney disease: a promising target for newer renoprotective agents including SGLT2 inhibitors? Kidney Int. 98, 579–589 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Puglisi, S. et al. Effects of SGLT2 inhibitors and GLP-1 receptor agonists on renin-angiotensin-aldosterone system. Front. Endocrinol. 12, 738848 (2021).

    Article  Google Scholar 

  105. Jabbour, S. A. et al. Efficacy and safety over 2 years of exenatide plus dapagliflozin in the DURATION-8 study: a multicenter, double-blind, phase 3, randomized controlled trial. Diabetes Care 43, 2528–2536 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gerstein, H. C. et al. Cardiovascular and renal outcomes with efpeglenatide in type 2 diabetes. N. Engl. J. Med. 385, 896–907 (2021).

    Article  CAS  PubMed  Google Scholar 

  107. Lam, C. S. P. et al. Efpeglenatide and clinical outcomes with and without concomitant sodium-glucose cotransporter-2 inhibition use in type 2 diabetes: exploratory analysis of the AMPLITUDE-O trial. Circulation 145, 565–574 (2022).

    Article  CAS  PubMed  Google Scholar 

  108. van der Aart-van der Beek, A. B. et al. Albuminuria-lowering effect of dapagliflozin, exenatide, and their combination in patients with type 2 diabetes: a randomized cross-over clinical study. Diabetes Obes. Metab. 25, 1758–1768 (2023).

    Article  PubMed  Google Scholar 

  109. van Ruiten, C. C. et al. Effect of exenatide twice daily and dapagliflozin, alone and in combination, on markers of kidney function in obese patients with type 2 diabetes: a prespecified secondary analysis of a randomized controlled clinical trial. Diabetes Obes. Metab. 23, 1851–1858 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Gullaksen, S. et al. Separate and combined effects of semaglutide and empagliflozin on kidney oxygenation and perfusion in people with type 2 diabetes: a randomised trial. Diabetologia 66, 813–825 (2023).

    Article  CAS  PubMed  Google Scholar 

  111. Wright, A. K. et al. Primary prevention of cardiovascular and heart failure events with SGLT2 inhibitors, GLP-1 receptor agonists, and their combination in type 2 diabetes. Diabetes Care 45, 909–918 (2022).

    Article  CAS  PubMed  Google Scholar 

  112. Pitt, B. et al. Cardiovascular events with finerenone in kidney disease and type 2 diabetes. N. Engl. J. Med. 385, 2252–2263 (2021).

    Article  CAS  PubMed  Google Scholar 

  113. Rossing, P. et al. Finerenone in patients with chronic kidney disease and type 2 diabetes by sodium-glucose cotransporter 2 inhibitor treatment: the FIDELITY analysis. Diabetes Care 45, 2991–2998 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Rossing, P. et al. Finerenone in patients across the spectrum of chronic kidney disease and type 2 diabetes by glucagon-like peptide-1 receptor agonist use. Diabetes Obes. Metab. 25, 407–416 (2023).

    Article  CAS  PubMed  Google Scholar 

  115. Provenzano, M. et al. Albuminuria-lowering effect of dapagliflozin, eplerenone, and their combination in patients with chronic kidney disease: a randomized crossover clinical trial. J. Am. Soc. Nephrol. 33, 1569–1580 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. A study to learn how well the treatment combination of finerenone and empagliflozin works and how safe it is compared to each treatment alone in adult participants with long-term kidney disease (chronic kidney disease) and type 2 diabetes (CONFIDENCE). ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05254002 (2024).

  117. Heerspink, H. J. L., Kohan DE & de Zeeuw, D. New insights from SONAR indicate adding sodium glucose co-transporter 2 inhibitors to an endothelin receptor antagonist mitigates fluid retention and enhances albuminuria reduction. Kidney Int. 99, 346–349 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Zibotentan and dapagliflozin for the treatment of CKD (ZENITH-CKD Trial) (ZENITH-CKD). ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04724837 (2023).

  119. Zibotentan and dapagliflozin in patients with type 2 diabetes and elevated albuminuria (ZODIAC). ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05570305 (2023).

  120. Rosenstock, J. et al. Empagliflozin as adjunctive to insulin therapy in type 1 diabetes: the EASE trials. Diabetes Care 41, 2560–2569 (2018).

    Article  CAS  PubMed  Google Scholar 

  121. Phillip, M. et al. Long-term efficacy and safety of dapagliflozin in patients with inadequately controlled type 1 diabetes: pooled 52-week outcomes from the DEPICT-1 and -2 studies. Diabetes Obes. Metab. 23, 549–560 (2021).

    Article  CAS  PubMed  Google Scholar 

  122. Sands, A. T. et al. Sotagliflozin, a dual SGLT1 and SGLT2 inhibitor, as adjunct therapy to insulin in type 1 diabetes. Diabetes Care 38, 1181–1188 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Garg, S. K. et al. Effects of sotagliflozin added to insulin in patients with type 1 diabetes. N. Engl. J. Med. 377, 2337–2348 (2017).

    Article  CAS  PubMed  Google Scholar 

  124. Buse, J. B. et al. Sotagliflozin in combination with optimized insulin therapy in adults with type 1 diabetes: the North American inTandem1 study. Diabetes Care 41, 1970–1980 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. van Raalte, D. H. et al. The impact of sotagliflozin on renal function, albuminuria, blood pressure, and hematocrit in adults with type 1 diabetes. Diabetes Care 42, 1921–1929 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Cherney, D. Z. I. et al. Kidney effects of empagliflozin in people with type 1 diabetes. Clin. J. Am. Soc. Nephrol. 16, 1715–1719 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Stougaard, E. B., Rossing, P., Cherney, D., Vistisen, D. & Persson, F. Sodium-glucose cotransporter 2 inhibitors as adjunct therapy for type 1 diabetes and the benefit on cardiovascular and renal disease evaluated by Steno risk engines. J. Diabetes Complications 36, 108257 (2022).

    Article  CAS  PubMed  Google Scholar 

  128. Wheeler, D. C. et al. Effects of dapagliflozin on major adverse kidney and cardiovascular events in patients with diabetic and non-diabetic chronic kidney disease: a prespecified analysis from the DAPA-CKD trial. Lancet Diabetes Endocrinol. 9, 22–31 (2021).

    Article  CAS  PubMed  Google Scholar 

  129. Semaglutide effects on heart disease and stroke in patients with overweight or obesity (SELECT). ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03574597 (2024).

  130. Semaglutide and albuminuria reduction trial in obese individuals without diabetes (SMART). ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04889183 (2023).

  131. A trial to learn how well finerenone works and how safe it is in adult participants with non-diabetic chronic kidney disease (FIND-CKD). ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05047263 (2024).

  132. Davies, M. J. et al. Management of hyperglycemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 45, 2753–2786 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kidney Disease: Improving Global Outcomes Diabetes Work G. KDIGO 2022 clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int. 102, S1–S127 (2022).

    Article  Google Scholar 

  134. Joseph, J. J. et al. Comprehensive management of cardiovascular risk factors for adults with type 2 diabetes: a scientific statement from the American Heart Association. Circulation 145, e722–e759 (2022).

    Article  PubMed  Google Scholar 

  135. Blonde, L. et al. American Association of Clinical Endocrinology clinical practice guideline: developing a diabetes mellitus comprehensive care plan — 2022 update. Endocr. Pract. 28, 923–1049 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  136. American Diabetes Association Professional Practice C. 11. Chronic kidney disease and risk management: standards of medical care in diabetes — 2022. Diabetes Care 45, S175–S184 (2022).

    Article  Google Scholar 

  137. de Boer, I. H. et al. Diabetes management in chronic kidney disease: a consensus report by the American Diabetes Association (ADA) and Kidney Disease: Improving Global Outcomes (KDIGO). Diabetes Care 45, 3075–3090 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  138. van der Sande, N. G. et al. Individualized prediction of the effect of angiotensin receptor blockade on renal and cardiovascular outcomes in patients with diabetic nephropathy. Diabetes Obes. Metab. 18, 1120–1127 (2016).

    Article  PubMed  Google Scholar 

  139. Tye, S. C. et al. Initiation of the SGLT2 inhibitor canagliflozin to prevent kidney and heart failure outcomes guided by HbA1c, albuminuria, and predicted risk of kidney failure. Cardiovasc. Diabetol. 21, 194 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Chertow, G. M. et al. Effects of dapagliflozin in chronic kidney disease, with and without other cardiovascular medications: DAPA-CKD trial. J. Am. Heart Assoc. 12, e028739 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Curovic, V. R. et al. Optimization of albuminuria-lowering treatment in diabetes by crossover rotation to four different drug classes: a randomized crossover trial. Diabetes Care 46, 593–601 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. A research study to see how semaglutide works compared to placebo in people with type 2 diabetes and chronic kidney disease (FLOW). ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03819153 (2024).

  143. Heerspink, H. J. L. et al. Design of FLAIR: a phase 2b study of the 5-lipoxygenase activating protein inhibitor AZD5718 in patients with proteinuric CKD. Kidney Int. Rep. 6, 2803–2810 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  144. A phase 2b diabetic kidney disease study. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04170543 (2023).

  145. Frimodt-Moller, M., Persson, F. & Rossing, P. Mitigating risk of aldosterone in diabetic kidney disease. Curr. Opin. Nephrol. Hypertens. 29, 145–151 (2020).

    Article  CAS  PubMed  Google Scholar 

  146. Stasch, J. P., Schlossmann, J. & Hocher, B. Renal effects of soluble guanylate cyclase stimulators and activators: a review of the preclinical evidence. Curr. Opin. Pharmacol. 21, 95–104 (2015).

    Article  CAS  PubMed  Google Scholar 

  147. Fantus, D., Rogers, N. M., Grahammer, F., Huber, T. B. & Thomson, A. W. Roles of mTOR complexes in the kidney: implications for renal disease and transplantation. Nat. Rev. Nephrol. 12, 587–609 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Heerspink, H. J. L. et al. Effects of tirzepatide versus insulin glargine on kidney outcomes in type 2 diabetes in the SURPASS-4 trial: post-hoc analysis of an open-label, randomised, phase 3 trial. Lancet Diabetes Endocrinol. 10, 774–785 (2022).

    Article  CAS  PubMed  Google Scholar 

  149. Hammoud, R. & Drucker, D. J. Beyond the pancreas: contrasting cardiometabolic actions of GIP and GLP1. Nat. Rev. Endocrinol. 19, 201–216 (2023).

    Article  CAS  PubMed  Google Scholar 

  150. A study of tirzepatide (LY3298176) in participants with overweight or obesity and chronic kidney disease with or without type 2 diabetes (TREASURE-CKD). ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05536804 (2024).

  151. Ruiz-Andres, O. et al. Downregulation of kidney protective factors by inflammation: role of transcription factors and epigenetic mechanisms. Am. J. Physiol. Renal Physiol. 311, F1329–F1340 (2016).

    Article  PubMed  Google Scholar 

  152. Mora-Fernandez, C. et al. Sodium-glucose co-transporter-2 inhibitors increase Klotho in patients with diabetic kidney disease: a clinical and experimental study. Biomed. Pharmacother. 154, 113677 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

D.H.V.R. is supported by a senior fellowship of the Dutch Diabetes Foundation and by a PIONEER + grant of the Dutch Kidney Foundation. P.B. receives salary and research support from the NIDDK (R01 DK129211, R01 DK132399, RO1 HL165433, R21 DK129720 and UC2 DK114886), JDRF (3-SRA-2022-1097-M-B, 3-SRA-2022-1243-M-B, and 3-SRA-2022-1230-M-B), the Boettcher Foundation, the American Heart Association (20IPA35260142), the Ludeman Family Center for Women’s Health Research at the University of Colorado, the Department of Paediatrics, Section of Endocrinology, and the Barbara Davis Center for Diabetes at University of Colorado School of Medicine. I.H.D.B. is supported by NIH grants R01DK125084, R01DK132399, R01DK126373, and grant funding from JDRF. D.G. is supported by Wilhelm and Else Stockmann Foundation, Liv och Hälsa Society, Medical Society of Finland (Finska Läkaresällskapet), Sigrid Juselius Foundation, Helsinki University Hospital, University of Helsinki, Minerva Foundation Institute for Medical Research Clinician Scientist, and Academy of Finland (UAK1021MRI). S.E.R. reports research support from AstraZeneca, Bayer and NIH/NIDDK [U01DK133092 and U01DK116102] to Joslin Diabetes Center. She also benefited from participation in the Joslin Diabetes research enrichment program funded by P30 DK03836. J.A.S. received salary support provided by K08DK124449. K.T. is supported by NIH research grants R01MD014712, U2CDK114886, UL1TR002319, U54DK083912, U01DK100846, OT2HL161847, UM1AI109568, OT2OD032581 and CDC project number 75D301-21-P-12254. S.S.W. is supported by research grants R01DK108803, U01DK130060, U01DK133092, U01AG076789 and R25DK128858.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed substantially to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Daniël H. van Raalte.

Ethics declarations

Competing interests

D.H.V.R. has consulting relationships with Bayer, Boehringer Ingelheim, Eli Lilly, Merck and Sanofi, and receives research operating funding from AstraZeneca, Boehringer Ingelheim-Eli Lilly Diabetes Alliance and MSD. Honoraria are transferred to employer Amsterdam UMC. P.B. reports serving or having served as a consultant for AstraZeneca, Bayer, Bristol-Myers Squibb, Boehringer Ingelheim, Eli Lilly, LG Chemistry, Sanofi, Novo Nordisk and Horizon Pharma. P.B. also serves or has served on the advisory boards and/or steering committees of AstraZeneca, Bayer, Boehringer Ingelheim, Novo Nordisk and XORTX. P.B. receives grant support from Eli Lilly, Novo Nordisk, AstraZeneca, Merck, and Horizon Pharma. D.Z.I.C. reports serving or having served as a consultant for Boehringer Ingelheim-Lilly, Merck, AstraZeneca, Sanofi, Mitsubishi-Tanabe, AbbVie, Janssen, Bayer, Prometic, BMS, Maze, Gilead, CSL-Behring, Otsuka, Novartis, Youngene, Lexicon, Inversago, GSK and Novo-Nordisk. He has received operational funding from Boehringer Ingelheim-Lilly, Merck, Janssen, Sanofi, AstraZeneca, CSL-Behring and Novo-Nordisk. I.H.D.B. has received consulting fees from AstraZeneca, Bayer, Boehringer-Ingelheim, Cyclerion Therapeutics, George Clinical, Gilead, Goldfinch Bio, Ironwood, Medscape and Otsuka. P.F. has received fees as consultant and speaker for AstraZeneca, Bayer, Boehringer Ingelheim, Eli Lilly company and Novo Nordisk. D.G. has received lecture or Advisory Board Honoraria from AstraZeneca, Bayer, Boehringer Ingelheim, Delta Medical Communications, EASD eLearning, Finnish Association for Vascular Surgery, Finnish Nephrology Association, Kidney and Liver Foundation in Finland. F.P. has served as a consultant, on advisory boards or as educator for AstraZeneca, Novo Nordisk, Boehringer Ingelheim, Sanofi, Mundipharma, MSD, Novartis and Amgen, and has received research grants to institution from Novo Nordisk, Boehringer Ingelheim, Amgen and AstraZeneca. S.E.R. has participated as a member of scientific advisory boards for AstraZeneca, Bayer, and Travere. P.R. has received research support and personal fees from AstraZeneca, Bayer, and Novo Nordisk and personal fees from Abbott, Astellas, Bayer, Boehringer Ingelheim, Eli Lilly, Gilead and Sanofi. All fees are given to Steno Diabetes Center Copenhagen. K.T. reports consulting relationships with Eli Lilly, Boehringer Ingelheim, AstraZeneca, Pfizer, Bayer and Novo Nordisk, and receives research grants from Travere paid to employer, Providence Inland Northwest Health. S.S.W. is consultant for Wolters Kluwer, Bain, BioMarin, Goldfinch, GSK, Ikena, Strataca, Google, CANbridge, NovoNordisk, PepGen, Sironax and NovoNordisk, and expert witness for Davita, Pfizer, Dechert and Aurinia Pharmaceuticals. S.S.W. receives research funding from Vertex, Pfizer, JNJ and Natera. H.J.L.H. is consultant for AstraZeneca, Bayer, Boehringer Ingelheim, Chinook, CSL Behring, Dimerix, Eli-Lilly, Gilead, Janssen, Merck, Novo Nordisk, ProKidney, Travere Therapeutics and Vifor Fresenius. He has received research support from AstraZeneca, Boehringer Ingelheim, Janssen and Novo Nordisk.

Peer review

Peer-review information

Nature Reviews Nephrology thanks Mark Cooper, Beatriz Fernandez-Fernandez and Pierre-Jean Saulnier for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Diabetes case-finding

A systematic approach to identifying patients with a disease. Active screening for hyperglycaemia has increased the detection of diabetes in the general population.

Mediation analyses

Statistical models that seek to explain a mechanism that underlies a relationship between two variables or conditions by including a mediation variable.

Steno Type 1 Risk Engine

A risk calculator that estimates the 10-year risk of fatal or non-fatal cardiovascular disease in patients with type 1 diabetes mellitus. The calculator incorporates clinical and biochemical risk parameters.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Raalte, D.H., Bjornstad, P., Cherney, D.Z.I. et al. Combination therapy for kidney disease in people with diabetes mellitus. Nat Rev Nephrol (2024). https://doi.org/10.1038/s41581-024-00827-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41581-024-00827-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing