Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Phosphate and FGF-23 homeostasis after kidney transplantation

Key Points

  • Abnormalities in phosphate homeostasis are common in renal transplant recipients, ranging from hypophosphataemia within 3 months after transplantation to hyperphosphataemia, hyperparathyroidism, and high FGF-23 levels in the late post-transplantation stage

  • Persistent high levels of FGF-23 and parathyroid hormone during the first months post-transplantation, and the influence of immunosuppressive drugs, ischaemia–reperfusion injury, and metabolic acidosis, can result in post-transplantation hypophosphataemia

  • Long-term exposure to high levels of phosphate and FGF-23 might have distinct yet associated adverse effects on the cardiovascular system, kidney, and bone in renal transplant recipients

  • Although data are limited, renal transplant recipients might benefit from dietary and pharmacologic interventions to improve phosphate metabolism; future studies should address whether these measures can improve cardiorenal prognosis

Abstract

Dysregulated phosphate metabolism is a common consequence of chronic kidney disease, and is characterized by a high circulating level of fibroblast growth factor (FGF)-23, hyperparathyroidism, and hyperphosphataemia. Kidney transplantation can elicit specific alterations to phosphate metabolism that evolve over time, ranging from severe hypophosphataemia (<0.5 mmol/l) to hyperphosphataemia (>1.50 mmol/l) and high FGF-23 levels. The majority of renal transplant recipients develop hypophosphataemia during the first 3 months after transplantation as a consequence of relatively slow adaptation of FGF-23 and parathyroid hormone levels to restored renal function, and the influence of immunosuppressive drugs. By 3–12 months after transplantation, phosphate homeostasis is at least partially restored in the majority of recipients, which is paralleled by a substantially reduced risk of cardiovascular-associated morbidity and mortality compared with the pre-transplantation setting. Many renal transplant recipients, however, exhibit persistent abnormalities in phosphate homeostasis, which is often due to multifactorial causes, and may contribute to adverse outcomes on the cardiovascular system, kidney, and bone. Dietary and pharmacologic interventions might improve phosphate homeostasis in renal transplant recipients, but additional insight into the pathophysiology of transplantation-associated abnormalities in phosphate homeostasis is needed to further optimize disease management and improve prognosis for renal transplant recipients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Graphical overview of the hypothetical course of serum phosphate, parathyroid hormone (PTH), and FGF-23 levels in patients with CKD undergoing kidney transplantation.
Figure 2: Phosphate transport in enterocytes and renal proximal tubular epithelial cells.
Figure 3: Development of hypophosphataemia and hyperphosphataemia after kidney transplantation.

Similar content being viewed by others

References

  1. Isakova, T. et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 79, 1370–1378 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Silver, J. & Naveh-Many, T. FGF-23 and secondary hyperparathyroidism in chronic kidney disease. Nat. Rev. Nephrol. 9, 641–649 (2013).

    CAS  PubMed  Google Scholar 

  3. Scialla, J. J. & Wolf, M. Roles of phosphate and fibroblast growth factor 23 in cardiovascular disease. Nat. Rev. Nephrol. 10, 268–278 (2014).

    CAS  PubMed  Google Scholar 

  4. Wolf, M. et al. A prospective cohort study of mineral metabolism after kidney transplantation. Transplantation http://dx.doi.org/10.1097/TP.0000000000000823.

  5. Lockitch, G., Halstead, A. C., Albersheim, S., MacCallum, C. & Quigley, G. Age- and sex-specific paediatric reference intervals for biochemistry analytes as measured with the Ektachem-700 analyzer. Clin. Chem. 34, 1622–1625 (1988).

    CAS  PubMed  Google Scholar 

  6. Hilfiker, H. et al. Characterization of a murine type II sodium-phosphate cotransporter expressed in mammalian small intestine. Proc. Natl Acad. Sci. USA 95, 14564–14569 (1998).

    CAS  PubMed  Google Scholar 

  7. Danisi, G., Bonjour, J. P. & Straub, R. W. Regulation of Na-dependent phosphate influx across the mucosal border of duodenum by 1, 25-dihydroxycholecalciferol. Pflugers Arch. 388, 227–232 (1980).

    CAS  PubMed  Google Scholar 

  8. Hattenhauer, O., Traebert, M., Murer, H. & Biber, J. Regulation of small intestinal Na-P(i) type IIb cotransporter by dietary phosphate intake. Am. J. Physiol. 277, G756–G762 (1999).

    CAS  PubMed  Google Scholar 

  9. Alizadeh Naderi, A. S. & Reilly, R. F. Hereditary disorders of renal phosphate wasting. Nat. Rev. Nephrol. 6, 657–665 (2010).

    CAS  PubMed  Google Scholar 

  10. Virkki, L. V., Biber, J., Murer, H. & Forster, I. C. Phosphate transporters: a tale of two solute carrier families. Am. J. Physiol. Renal Physiol. 293, F643–654 (2007).

    CAS  PubMed  Google Scholar 

  11. Segawa, H., Aranami, F., Kaneko, I., Tomoe, Y. & Miyamoto, K. The roles of Na/Pi-II transporters in phosphate metabolism. Bone 45 (Suppl. 1), S2–S7 (2009).

    CAS  PubMed  Google Scholar 

  12. Shimada, T. et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J. Bone Miner. Res. 19, 429–435 (2004).

    CAS  PubMed  Google Scholar 

  13. Tomoe, Y. et al. Phosphaturic action of fibroblast growth factor 23 in Npt2 null mice. Am. J. Physiol. Renal Physiol. 298, F1341–F1350 (2010).

    CAS  PubMed  Google Scholar 

  14. Weinman, E. J., Steplock, D., Shenolikar, S. & Biswas, R. Fibroblast growth factor-23-mediated inhibition of renal phosphate transport in mice requires sodium-hydrogen exchanger regulatory factor-1 (NHERF-1) and synergizes with parathyroid hormone. J. Biol. Chem. 286, 37216–37221 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lotscher, M. et al. Rapid downregulation of rat renal Na/P(i) cotransporter in response to parathyroid hormone involves microtubule rearrangement. J. Clin. Invest. 104, 483–494 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Pfister, M. F. et al. Parathyroid hormone-dependent degradation of type II Na+/Pi cotransporters. J. Biol. Chem. 272, 20125–20130 (1997).

    CAS  PubMed  Google Scholar 

  17. Shimada, T. et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J. Clin. Invest. 113, 561–568 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wolf, M. Update on fibroblast growth factor 23 in chronic kidney disease. Kidney Int. 82, 737–747 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Goldman, R. & Bassett, S. H. Phosphorus excretion in renal failure. J. Clin. Invest. 33, 1623–1628 (1954).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hasegawa, H. et al. Direct evidence for a causative role of FGF23 in the abnormal renal phosphate handling and vitamin D metabolism in rats with early-stage chronic kidney disease. Kidney Int. 78, 975–980 (2010).

    CAS  PubMed  Google Scholar 

  21. Hu, M. C., Shiizaki, K., Kuro-o, M. & Moe, O. W. Fibroblast growth factor 23 and Klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. Annu. Rev. Physiol. 75, 503–533 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Green, J. et al. Evidence for a PTH-independent humoral mechanism in post-transplant hypophosphataemia and phosphaturia. Kidney Int. 60, 1182–1196 (2001).

    CAS  PubMed  Google Scholar 

  23. Evenepoel, P. et al. Recovery of hyperphosphatoninism and renal phosphorus wasting one year after successful renal transplantation. Clin. J. Am. Soc. Nephrol. 3, 1829–1836 (2008).

    PubMed  PubMed Central  Google Scholar 

  24. Trombetti, A. et al. Early post-transplantation hypophosphataemia is associated with elevated FGF-23 levels. Eur. J. Endocrinol. 164, 839–847 (2011).

    CAS  PubMed  Google Scholar 

  25. Han, S. Y., Hwang, E. A., Park, S. B., Kim, H. C. & Kim, H. T. Elevated fibroblast growth factor 23 levels as a cause of early post-renal transplantation hypophosphataemia. Transplant. Proc. 44, 657–660 (2012).

    CAS  PubMed  Google Scholar 

  26. Evenepoel, P., Naesens, M., Claes, K., Kuypers, D. & Vanrenterghem, Y. Tertiary 'hyperphosphatoninism' accentuates hypophosphataemia and suppresses calcitriol levels in renal transplant recipients. Am. J. Transplant. 7, 1193–1200 (2007).

    CAS  PubMed  Google Scholar 

  27. Boudville, N. C. & Hodsman, A. B. Renal function and 25-hydroxyvitamin D concentrations predict parathyroid hormone levels in renal transplant patients. Nephrol. Dial. Transplant. 21, 2621–2624 (2006).

    CAS  PubMed  Google Scholar 

  28. Trombetti, A. et al. Early post-transplantation hypophosphataemia is associated with elevated FGF-23 levels. Eur. J. Endocrinol. 164, 839–847 (2011).

    CAS  PubMed  Google Scholar 

  29. Kawarazaki, H. et al. The relative role of fibroblast growth factor 23 and parathyroid hormone in predicting future hypophosphataemia and hypercalcemia after living donor kidney transplantation: a 1-year prospective observational study. Nephrol. Dial. Transplant. 26, 2691–2695 (2011).

    CAS  PubMed  Google Scholar 

  30. Wesseling-Perry, K. et al. FGF23 and mineral metabolism in the early post-renal transplantation period. Pediatr. Nephrol. 28, 2207–2215 (2013).

    PubMed  PubMed Central  Google Scholar 

  31. Higgins, R. M., Richardson, A. J., Endre, Z. H., Frostick, S. P. & Morris, P. J. Hypophosphataemia after renal transplantation: relationship to immunosuppressive drug therapy and effects on muscle detected by 31P nuclear magnetic resonance spectroscopy. Nephrol. Dial. Transplant. 5, 62–68 (1990).

    CAS  PubMed  Google Scholar 

  32. Loffing, J. et al. Renal Na/H exchanger NHE-3 and Na-PO4 cotransporter NaPi-2 protein expression in glucocorticoid excess and deficient states. J. Am. Soc. Nephrol. 9, 1560–1567 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Levi, M. et al. Dexamethasone modulates rat renal brush border membrane phosphate transporter mRNA and protein abundance and glycosphingolipid composition. J. Clin. Invest. 96, 207–216 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Borowitz, S. M. & Granrud, G. S. Glucocorticoids inhibit intestinal phosphate absorption in developing rabbits. J. Nutr. 122, 1273–1279 (1992).

    CAS  PubMed  Google Scholar 

  35. Kahan, B. D. Cyclosporine. N. Engl. J. Med. 321, 1725–1738 (1989).

    CAS  PubMed  Google Scholar 

  36. Moz, Y. et al. Calcineurin Abeta is central to the expression of the renal type II Na/Pi co-transporter gene and to the regulation of renal phosphate transport. J. Am. Soc. Nephrol. 15, 2972–2980 (2004).

    PubMed  Google Scholar 

  37. Demeule, M. & Beliveau, R. Cyclosporin inhibits phosphate transport and stimulates alkaline phosphatase activity in renal BBMV. Am. J. Physiol. 260, F518–524 (1991).

    CAS  PubMed  Google Scholar 

  38. Palestine, A. G., Austin, H. A. 3rd & Nussenblatt, R. B. Renal tubular function in cyclosporine-treated patients. Am. J. Med. 81, 419–424 (1986).

    CAS  PubMed  Google Scholar 

  39. Kempe, D. S. et al. Rapamycin-induced phosphaturia. Nephrol. Dial. Transplant. 25, 2938–2944 (2010).

    CAS  PubMed  Google Scholar 

  40. Schwarz, C., Bohmig, G. A., Steininger, R., Mayer, G. & Oberbauer, R. Impaired phosphate handling of renal allografts is aggravated under rapamycin-based immunosuppression. Nephrol. Dial. Transplant. 16, 378–382 (2001).

    CAS  PubMed  Google Scholar 

  41. Yao, J. C. et al. Efficacy of RAD001 (everolimus) and octreotide LAR in advanced low- to intermediate-grade neuroendocrine tumors: results of a phase II study. J. Clin. Oncol. 26, 4311–4318 (2008).

    PubMed  PubMed Central  Google Scholar 

  42. Grignani, G. et al. Sorafenib and everolimus for patients with unresectable high-grade osteosarcoma progressing after standard treatment: a non-randomised phase 2 clinical trial. Lancet Oncol. 16, 98–107 (2015).

    CAS  PubMed  Google Scholar 

  43. Tataranni, T. et al. Rapamycin-induced hypophosphataemia and insulin resistance are associated with mTORC2 activation and Klotho expression. Am. J. Transplant. 11, 1656–1664 (2011).

    CAS  PubMed  Google Scholar 

  44. Nowik, M. et al. Renal phosphaturia during metabolic acidosis revisited: molecular mechanisms for decreased renal phosphate reabsorption. Pflugers Arch. 457, 539–549 (2008).

    CAS  PubMed  Google Scholar 

  45. Kwon, T. H., Frokiaer, J., Han, J. S., Knepper, M. A. & Nielsen, S. Decreased abundance of major Na(+) transporters in kidneys of rats with ischemia-induced acute renal failure. Am. J. Physiol. Renal Physiol. 278, F925–939 (2000).

    CAS  PubMed  Google Scholar 

  46. Tanaka, Y. et al. Role of 1, 25-dihydroxyvitamin D3 in maintaining serum phosphorus and curing rickets. Proc. Natl. Acad. Sci. USA 71, 1040–1044 (1974).

    CAS  PubMed  Google Scholar 

  47. Farrington, K. et al. Dissociation of absorptions of calcium and phosphate after successful cadaveric renal transplantation. Br. Med. J. 1, 712–714 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Moorhead, J. F. et al. Hypophosphataemic osteomalacia after cadaveric renal transplantation. Lancet 1, 694–697 (1974).

    CAS  PubMed  Google Scholar 

  49. Rosenbaum, R. W., Hruska, K. A., Korkor, A., Anderson, C. & Slatopolsky, E. Decreased phosphate reabsorption after renal transplantation: Evidence for a mechanism independent of calcium and parathyroid hormone. Kidney Int. 19, 568–578 (1981).

    CAS  PubMed  Google Scholar 

  50. Felsenfeld, A. J., Gutman, R. A., Drezner, M. & Llach, F. Hypophosphataemia in long-term renal transplant recipients: effects on bone histology and 1, 25-dihydroxycholecalciferol. Miner. Electrolyte Metab. 12, 333–341 (1986).

    CAS  PubMed  Google Scholar 

  51. Levi, M. Post-transplant hypophosphataemia. Kidney Int. 59, 2377–2387 (2001).

    CAS  PubMed  Google Scholar 

  52. Wolf, M. Forging forward with 10 burning questions on FGF23 in kidney disease. J. Am. Soc. Nephrol. 21, 1427–1435 (2010).

    CAS  PubMed  Google Scholar 

  53. Wesseling-Perry, K., Tsai, E. W., Ettenger, R. B., Juppner, H. & Salusky, I. B. Mineral abnormalities and long-term graft function in paediatric renal transplant recipients: a role for FGF-23? Nephrol. Dial. Transplant. 26, 3779–3784 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Tomida, K. et al. Dialysis vintage and parathyroid hormone level, not fibroblast growth factor-23, determines chronic-phase phosphate wasting after renal transplantation. Bone 51, 729–736 (2012).

    CAS  PubMed  Google Scholar 

  55. Bacchetta, J. et al. The influence of glomerular filtration rate and age on fibroblast growth factor 23 serum levels in paediatric chronic kidney disease. J. Clin. Endocrinol. Metab. 95, 1741–1748 (2010).

    CAS  PubMed  Google Scholar 

  56. Sanchez Fructuoso, A. I. et al. Serum level of fibroblast growth factor 23 in maintenance renal transplant patients. Nephrol. Dial. Transplant. 27, 4227–4235 (2012).

    CAS  PubMed  Google Scholar 

  57. Olauson, H. & Larsson, T. E. FGF23 and Klotho in chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 22, 397–404 (2013).

    CAS  PubMed  Google Scholar 

  58. Li, X., Yang, H. Y. & Giachelli, C. M. Role of the sodium-dependent phosphate cotransporter, Pit-1, in vascular smooth muscle cell calcification. Circ. Res. 98, 905–912 (2006).

    CAS  PubMed  Google Scholar 

  59. Jono, S. et al. Phosphate regulation of vascular smooth muscle cell calcification. Circ. Res. 87, E10–17 (2000).

    CAS  PubMed  Google Scholar 

  60. Wada, T., McKee, M. D., Steitz, S. & Giachelli, C. M. Calcification of vascular smooth muscle cell cultures: inhibition by osteopontin. Circ. Res. 84, 166–178 (1999).

    CAS  PubMed  Google Scholar 

  61. Scialla, J. J. et al. Fibroblast growth factor 23 is not associated with and does not induce arterial calcification. Kidney Int. 83, 1159–1168 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Scialla, J. J. et al. Fibroblast growth factor-23 and cardiovascular events in CKD. J. Am. Soc. Nephrol. 25, 349–360 (2014).

    CAS  PubMed  Google Scholar 

  63. Humalda, J. K. et al. Fibroblast growth factor 23 and the antiproteinuric response to dietary sodium restriction during renin-angiotensin-aldosterone system blockade. Am. J. Kidney Dis. 65, 259–266 (2015).

    CAS  PubMed  Google Scholar 

  64. Andrukhova, O. et al. FGF23 regulates renal sodium handling and blood pressure. EMBO Mol. Med. 5, 744–759 (2014).

    Google Scholar 

  65. Sarnak, M. J. et al. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation 108, 2154–2169 (2003).

    PubMed  Google Scholar 

  66. Marechal, C. et al. Progression of coronary artery calcification and thoracic aorta calcification in kidney transplant recipients. Am. J. Kidney Dis. 59, 258–269 (2012).

    CAS  PubMed  Google Scholar 

  67. DeLoach, S. S., Joffe, M. M., Mai, X., Goral, S. & Rosas, S. E. Aortic calcification predicts cardiovascular events and all-cause mortality in renal transplantation. Nephrol. Dial. Transplant. 24, 1314–1319 (2009).

    PubMed  PubMed Central  Google Scholar 

  68. Demer, L. L. & Tintut, Y. Inflammatory, metabolic, and genetic mechanisms of vascular calcification. Arterioscler. Thromb. Vasc. Biol. 34, 715–723 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Cianciolo, G. et al. Importance of vascular calcification in kidney transplant recipients. Am. J. Nephrol. 39, 418–426 (2014).

    CAS  PubMed  Google Scholar 

  70. Cianciolo, G., Scolari, M. P., Angelini, M. L. & Stefoni, S. Progression of vascular calcification in kidney transplantation: the need to assess the calcium burden and to understand why some patients have a calcium score of 0. Am. J. Kidney Dis. 62, 644–645 (2013).

    PubMed  Google Scholar 

  71. Pasch, A. et al. Nanoparticle-based test measures overall propensity for calcification in serum. J. Am. Soc. Nephrol. 23, 1744–1752 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Keyzer, C. A. et al. Calcification propensity and survival among renal transplant recipients. J. Am. Soc. Nephrol. http://dx.doi.org/10.1681/ASN.2014070670.

  73. Connolly, G. M., Cunningham, R., McNamee, P. T., Young, I. S. & Maxwell, A. P. Elevated serum phosphate predicts mortality in renal transplant recipients. Transplantation 87, 1040–1044 (2009).

    CAS  PubMed  Google Scholar 

  74. Wolf, M. et al. Elevated fibroblast growth factor 23 is a risk factor for kidney transplant loss and mortality. J. Am. Soc. Nephrol. 22, 956–966 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Baia, L. C. et al. Fibroblast growth factor 23 and cardiovascular mortality after kidney transplantation. Clin. J. Am. Soc. Nephrol. 8, 1968–1978 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Malyszko, J., Koc-Zorawska, E., Matuszkiewicz-Rowinska, J. & Malyszko, J. FGF23 and Klotho in relation to markers of endothelial dysfunction in kidney transplant recipients. Transplant. Proc. 46, 2647–2650 (2014).

    CAS  PubMed  Google Scholar 

  77. Yilmaz, M. I. et al. Longitudinal analysis of vascular function and biomarkers of metabolic bone disorders before and after renal transplantation. Am. J. Nephrol. 37, 126–134 (2013).

    CAS  PubMed  Google Scholar 

  78. Asicioglu, E. et al. Fibroblast growth factor-23 levels are associated with uric acid but not carotid intima media thickness in renal transplant recipients. Transplant. Proc. 46, 180–183 (2014).

    CAS  PubMed  Google Scholar 

  79. Gungor, O. et al. The relationships between serum sTWEAK, FGF-23 levels, and carotid atherosclerosis in renal transplant patients. Ren. Fail. 35, 77–81 (2013).

    CAS  PubMed  Google Scholar 

  80. Mitsnefes, M. M. Cardiovascular disease in children with chronic kidney disease. J. Am. Soc. Nephrol. 23, 578–585 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Haut, L. L., Alfrey, A. C., Guggenheim, S., Buddington, B. & Schrier, N. Renal toxicity of phosphate in rats. Kidney Int. 17, 722–731 (1980).

    CAS  PubMed  Google Scholar 

  82. Mackay, E. M. & Oliver, J. Renal damage following the ingestion of a diet containing an excess of inorganic phosphate. J. Exp. Med. 61, 319–334 (1935).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Fliser, D. et al. Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: the Mild to Moderate Kidney Disease (MMKD) Study. J. Am. Soc. Nephrol. 18, 2600–2608 (2007).

    CAS  PubMed  Google Scholar 

  84. Lundberg, S. et al. FGF23, albuminuria, and disease progression in patients with chronic IgA nephropathy. Clin. J. Am. Soc. Nephrol. 7, 727–734 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Benavente, D. et al. Serum phosphate measured at 6 and 12 months after successful kidney transplant is independently associated with subsequent graft loss. Exp. Clin. Transplant. 10, 119–124 (2012).

    PubMed  Google Scholar 

  86. Bonthuis, M. et al. Mineral metabolism in European children living with a renal transplant: a European Society for Paediatric Nephrology/European Renal Association-European Dialysis and Transplant Association Registry Study. Clin. J. Am. Soc. Nephrol. 10, 767–775 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Egbuna, O. I., Taylor, J. G., Bushinsky, D. A. & Zand, M. S. Elevated calcium phosphate product after renal transplantation is a risk factor for graft failure. Clin. Transplant. 21, 558–566 (2007).

    PubMed  Google Scholar 

  88. Baia, L. C. et al. Fibroblast growth factor 23 and cardiovascular mortality after kidney transplantation. Clin. J. Am. Soc. Nephrol. 8, 1968–1978 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. McGregor, R. et al. Vitamin D in renal transplantation - from biological mechanisms to clinical benefits. Am. J. Transplant. 14, 1259–1270 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Bienaime, F. et al. Vitamin D status and outcomes after renal transplantation. J. Am. Soc. Nephrol. 24, 831–841 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Obi, Y. et al. Vitamin D deficiency predicts decline in kidney allograft function: a prospective cohort study. J. Clin. Endocrinol. Metab. 99, 527–535 (2014).

    CAS  PubMed  Google Scholar 

  92. Keyzer, C. A. et al. Associations of 25(OH) and 1, 25(OH)2 vitamin D with long-term outcomes in stable renal transplant recipients. J. Clin. Endocrinol. Metab. 100, 81–89 (2015).

    CAS  PubMed  Google Scholar 

  93. Weisinger, J. R., Carlini, R. G., Rojas, E. & Bellorin-Font, E. Bone disease after renal transplantation. Clin. J. Am. Soc. Nephrol. 1, 1300–1313 (2006).

    CAS  PubMed  Google Scholar 

  94. Sanchez, C. P. et al. Bone disease in children and adolescents undergoing successful renal transplantation. Kidney Int. 53, 1358–1364 (1998).

    CAS  PubMed  Google Scholar 

  95. Mainra, R. & Elder, G. J. Individualized therapy to prevent bone mineral density loss after kidney and kidney–pancreas transplantation. Clin. J. Am. Soc. Nephrol. 5, 117–124 (2010).

    PubMed  PubMed Central  Google Scholar 

  96. Rojas, E. et al. The pathogenesis of osteodystrophy after renal transplantation as detected by early alterations in bone remodeling. Kidney Int. 63, 1915–1923 (2003).

    PubMed  Google Scholar 

  97. Ghanekar, H., Welch, B. J., Moe, O. W. & Sakhaee, K. Post-renal transplantation hypophosphataemia: a review and novel insights. Curr. Opin. Nephrol. Hypertens. 15, 97–104 (2006).

    CAS  PubMed  Google Scholar 

  98. Kanaan, N. et al. Fibroblast growth factor-23 and parathyroid hormone are associated with post-transplant bone mineral density loss. Clin. J. Am. Soc. Nephrol. 5, 1887–1892 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Monier-Faugere, M. C., Mawad, H., Qi, Q., Friedler, R. M. & Malluche, H. H. High prevalence of low bone turnover and occurrence of osteomalacia after kidney transplantation. J. Am. Soc. Nephrol. 11, 1093–1099 (2000).

    CAS  PubMed  Google Scholar 

  100. Seeherunvong, W. & Wolf, M. Tertiary excess of fibroblast growth factor 23 and hypophosphataemia following kidney transplantation. Pediatr. Transplant. 15, 37–46 (2011).

    PubMed  Google Scholar 

  101. Sitara, D. et al. Genetic evidence of serum phosphate-independent functions of FGF-23 on bone. PLoS Genet. 8, e1000154 (2008).

    Google Scholar 

  102. Wang, H. et al. Overexpression of fibroblast growth factor 23 suppresses osteoblast differentiation and matrix mineralization in vitro. J. Bone Miner. Res. 23, 939–948 (2008).

    CAS  PubMed  Google Scholar 

  103. Grotz, W. H. et al. Bone loss after kidney transplantation: a longitudinal study in 115 graft recipients. Nephrol. Dial. Transplant. 10, 2096–2100 (1995).

    CAS  PubMed  Google Scholar 

  104. Bubenicek, P., Sotornik, I., Vitko, S. & Teplan, V. Early bone mineral density loss after renal transplantation and pre-transplant PTH: a prospective study. Kidney Blood Press. Res. 31, 196–202 (2008).

    CAS  PubMed  Google Scholar 

  105. Casez, J. P., Lippuner, K., Horber, F. F., Montandon, A. & Jaeger, P. Changes in bone mineral density over 18 months following kidney transplantation: the respective roles of prednisone and parathyroid hormone. Nephrol. Dial. Transplant. 17, 1318–1326 (2002).

    CAS  PubMed  Google Scholar 

  106. Evenepoel, P. et al. A randomized study evaluating cinacalcet to treat hypercalcemia in renal transplant recipients with persistent hyperparathyroidism. Am. J. Transplant. 14, 2545–2555 (2014).

    CAS  PubMed  Google Scholar 

  107. Neves, C. L. et al. Persistence of bone and mineral disorders 2 years after successful kidney transplantation. Transplantation 96, 290–296 (2013).

    CAS  PubMed  Google Scholar 

  108. Bover, J. & Cozzolino, M. Mineral and bone disorders in chronic kidney disease and end-stage renal disease patients: new insights into vitamin D receptor activation. Kidney Int. Suppl. 1, 122–129 (2011).

    CAS  Google Scholar 

  109. Chen, T. L. & Feldman, D. Glucocorticoid receptors and actions in subpopulations of cultured rat bone cells. Mechanism of dexamethasone potentiation of parathyroid hormone-stimulated cyclic AMP production. J. Clin. Invest. 63, 750–758 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Velasquez-Forero, F., Mondragon, A., Herrero, B. & Pena, J. C. Adynamic bone lesion in renal transplant recipients with normal renal function. Nephrol. Dial. Transplant. 11, 58–64 (1996).

    PubMed  Google Scholar 

  111. Kidney Disease: Improving Global Outcomes (KDIGO) Transplant Work Group. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am. J. Transplant. 9, S1–155 (2009).

  112. Sakhaee, K. Post-renal transplantation hypophosphataemia. Pediatr. Nephrol. 25, 213–220 (2010).

    PubMed  Google Scholar 

  113. Desmeules, S., Bergeron, M. J. & Isenring, P. Acute phosphate nephropathy and renal failure. N. Engl. J. Med. 349, 1006–1007 (2003).

    CAS  PubMed  Google Scholar 

  114. Singh, N. & Qadir, M. Do no harm: calcium and phosphate supplementation in kidney transplant recipients. Transplantation 96, e81–e82 (2013).

    PubMed  Google Scholar 

  115. Michaut, P., Prie, D., Amiel, C. & Friedlander, G. Dipyridamole for renal phosphate leak? N. Engl. J. Med. 331, 58–59 (1994).

    CAS  PubMed  Google Scholar 

  116. Prie, D., Blanchet, F. B., Essig, M., Jourdain, J. P. & Friedlander, G. Dipyridamole decreases renal phosphate leak and augments serum phosphorus in patients with low renal phosphate threshold. J. Am. Soc. Nephrol. 9, 1264–1269 (1998).

    CAS  PubMed  Google Scholar 

  117. Balal, M., Paydas, S., Seyrek, N., Sertdemir, Y. & Karayaylali, I. Dipyridamole for renal phosphate leak in successfully renal transplanted hypophosphatemic patients. Clin. Nephrol. 63, 87–91 (2005).

    CAS  PubMed  Google Scholar 

  118. Friedlander, G., Couette, S., Coureau, C. & Amiel, C. Mechanisms whereby extracellular adenosine 3′,5′-monophosphate inhibits phosphate transport in cultured opossum kidney cells and in rat kidney. Physiological implication. J. Clin. Invest. 90, 848–858 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int. Suppl. 113, S1–S130 (2009).

  120. Kalantar-Zadeh, K. et al. Understanding sources of dietary phosphorus in the treatment of patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 5, 519–530 (2010).

    CAS  PubMed  Google Scholar 

  121. Ritz, E. et al. Phosphate additives in food—a health risk. Dtsch. Arztebl. Int. 109, 49–55 (2012).

    PubMed  PubMed Central  Google Scholar 

  122. Moore, L. W. et al. Association of dietary phosphate and serum phosphorus concentration by levels of kidney function. Am. J. Clin. Nutr. 102, 444–453 (2015).

    CAS  PubMed  Google Scholar 

  123. Powles, J. et al. Global, regional and national sodium intakes in 1990 and 2010: a systematic analysis of 24 h urinary sodium excretion and dietary surveys worldwide. BMJ Open 3, e003733-2013-003733 (2013).

    Google Scholar 

  124. Burnett, S. M. et al. Regulation of C-terminal and intact FGF-23 by dietary phosphate in men and women. J. Bone Miner. Res. 21, 1187–1196 (2006).

    CAS  PubMed  Google Scholar 

  125. Adema, A. Y., de Borst, M. H., Ter Wee, P. M., Vervloet, M. G. & NIGRAM Consortium. Dietary and Pharmacological Modification of Fibroblast Growth Factor-23 in Chronic Kidney Disease. J. Ren. Nutr. 24, 143–150 (2014).

    CAS  PubMed  Google Scholar 

  126. Sullivan, C. et al. Effect of food additives on hyperphosphataemia among patients with end-stage renal disease: a randomized controlled trial. JAMA 301, 629–635 (2009).

    CAS  PubMed  Google Scholar 

  127. Sandberg, A. S., Andersson, H., Kivisto, B. & Sandstrom, B. Extrusion cooking of a high-fibre cereal product. 1. Effects on digestibility and absorption of protein, fat, starch, dietary fibre and phytate in the small intestine. Br. J. Nutr. 55, 245–254 (1986).

    CAS  PubMed  Google Scholar 

  128. Moe, S. M. et al. Vegetarian compared with meat dietary protein source and phosphorus homeostasis in chronic kidney disease. Clin. J. Am. Soc. Nephrol. 6, 257–264 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Noori, N. et al. Association of dietary phosphorus intake and phosphorus to protein ratio with mortality in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 5, 683–692 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Sherman, R. A. & Mehta, O. Phosphorus and potassium content of enhanced meat and poultry products: implications for patients who receive dialysis. Clin. J. Am. Soc. Nephrol. 4, 1370–1373 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Rho, M. R. et al. Evaluation of nutrient intake in early post kidney transplant recipients. Clin. Nutr. Res. 2, 1–11 (2013).

    PubMed  PubMed Central  Google Scholar 

  132. Oliveira, R. B. et al. Early control of PTH and FGF23 in normophosphatemic CKD patients: a new target in CKD-MBD therapy? Clin. J. Am. Soc. Nephrol. 5, 286–291 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Pieper, A. K. et al. The effect of sevelamer on the pharmacokinetics of cyclosporin A and mycophenolate mofetil after renal transplantation. Nephrol. Dial. Transplant. 19, 2630–2633 (2004).

    CAS  PubMed  Google Scholar 

  134. Ketteler, M. & Biggar, P. H. Use of phosphate binders in chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 22, 413–420 (2013).

    CAS  PubMed  Google Scholar 

  135. Isakova, T. et al. Pilot study of dietary phosphorus restriction and phosphorus binders to target fibroblast growth factor 23 in patients with chronic kidney disease. Nephrol. Dial. Transplant. 26, 584–591 (2011).

    CAS  PubMed  Google Scholar 

  136. Akaberi, S. et al. Impact of parathyroid hormone on bone density in long-term renal transplant patients with good graft function. Transplantation 82, 749–752 (2006).

    CAS  PubMed  Google Scholar 

  137. Bleskestad, I. H. et al. Parathyroid hormone and clinical outcome in kidney transplant patients with optimal transplant function. Clin. Transplant. 28, 479–486 (2014).

    CAS  PubMed  Google Scholar 

  138. Courbebaisse, M. et al. Effects of vitamin D supplementation on the calcium-phosphate balance in renal transplant patients. Kidney Int. 75, 646–651 (2009).

    CAS  PubMed  Google Scholar 

  139. Amer, H. et al. Oral paricalcitol reduces the prevalence of posttransplant hyperparathyroidism: results of an open label randomized trial. Am. J. Transplant. 13, 1576–1585 (2013).

    CAS  PubMed  Google Scholar 

  140. Trillini, M. et al. Paricalcitol for secondary hyperparathyroidism in renal transplantation. J. Am. Soc. Nephrol. 26, 1205–1214 (2014).

    PubMed  PubMed Central  Google Scholar 

  141. Maccubbin, D., Tipping, D., Kuznetsova, O., Hanlon, W. A. & Bostom, A. G. Hypophosphatemic effect of niacin in patients without renal failure: a randomized trial. Clin. J. Am. Soc. Nephrol. 5, 582–589 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Kruse, A. E., Eisenberger, U., Frey, F. J. & Mohaupt, M. G. The calcimimetic cinacalcet normalizes serum calcium in renal transplant patients with persistent hyperparathyroidism. Nephrol. Dial. Transplant. 20, 1311–1314 (2005).

    CAS  PubMed  Google Scholar 

  143. Serra, A. L., Schwarz, A. A., Wick, F. H., Marti, H. P. & Wuthrich, R. P. Successful treatment of hypercalcemia with cinacalcet in renal transplant recipients with persistent hyperparathyroidism. Nephrol. Dial. Transplant. 20, 1315–1319 (2005).

    CAS  PubMed  Google Scholar 

  144. Srinivas, T. R. et al. Improvement in hypercalcemia with cinacalcet after kidney transplantation. Clin. J. Am. Soc. Nephrol. 1, 323–326 (2006).

    CAS  PubMed  Google Scholar 

  145. Szwarc, I. et al. Cinacalcet chloride is efficient and safe in renal transplant recipients with posttransplant hyperparathyroidism. Transplantation 82, 675–680 (2006).

    CAS  PubMed  Google Scholar 

  146. Leca, N. et al. Early and severe hyperparathyroidism associated with hypercalcemia after renal transplant treated with cinacalcet. Am. J. Transplant. 6, 2391–2395 (2006).

    CAS  PubMed  Google Scholar 

  147. Falck, P. et al. Cinacalcet's effect on the pharmacokinetics of tacrolimus, cyclosporine and mycophenolate in renal transplant recipients. Nephrol. Dial. Transplant. 23, 1048–1053 (2008).

    CAS  PubMed  Google Scholar 

  148. Courbebaisse, M. et al. Effects of cinacalcet in renal transplant patients with hyperparathyroidism. Am. J. Nephrol. 35, 341–348 (2012).

    CAS  PubMed  Google Scholar 

  149. Ix, J. H., Ganjoo, P., Tipping, D., Tershakovec, A. M. & Bostom, A. G. Sustained hypophosphatemic effect of once-daily niacin/laropiprant in dyslipidemic CKD stage 3 patients. Am. J. Kidney Dis. 57, 963–965 (2011).

    PubMed  Google Scholar 

  150. Labonte, E. D. et al. Gastrointestinal inhibition of sodium-hydrogen exchanger 3 reduces phosphorus absorption and protects against vascular calcification in CKD. J. Am. Soc. Nephrol. 26, 1138–1149 (2015).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

G.N. and M.H.d.B. participate in the NIGRAM consortium, which is supported by a grant from the Dutch Kidney Foundation (grant number CP10.11). The NIGRAM consortium consists of the following principal investigators: Pietter Wee, Marc Vervloet (VU University Medical Centre, Amsterdam, Netherlands), René Bindels, Joost Hoenderop (Radboud University Medical Centre Nijmegen, the Netherlands), Gerjan Navis, Jan-Luuk Hillebrands and Martin de Borst (University Medical Centre Groningen, the Netherlands). The research of M.H.d.B. is supported by a grant from the Netherlands Organization for Scientific Research (Veni grant).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

All authors researched the data for the article, provided a substantial contribution to discussions of the content, and contributed equally to writing the article and to review and/or editing of the manuscript before submission.

Corresponding authors

Correspondence to Gerjan Navis or Martin H. de Borst.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baia, L., Heilberg, I., Navis, G. et al. Phosphate and FGF-23 homeostasis after kidney transplantation. Nat Rev Nephrol 11, 656–666 (2015). https://doi.org/10.1038/nrneph.2015.153

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2015.153

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing