Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of ubiquitylation in nerve cell development

Key Points

  • Ubiquitylation is emerging as a general regulatory mechanism in nerve cell development, on a par with phosphorylation or cyclic nucleotide signalling with regard to complexity and functional consequences.

  • The currently available evidence is still restricted to a limited set of example pathways, but these examples provide an exciting view of how ubiquitylation-dependent regulatory processes in neurons intercalate with other, more extensively studied regulatory principles to control all phases of nerve cell development: the generation of neurons from precursor cells, their migration to the appropriate target sites, their extensive arborization and their integration into functional networks through synapse formation. Currently, we see only the tip of the iceberg.

  • Notch-mediated regulation of neurogenesis and gliogenesis is controlled directly and indirectly by multiple ubiquitylation pathways.

  • Polyubiquitylation and degradation of disabled homologue 1 (DAB1) — an adaptor protein for reelin receptors, very low-density lipoprotein receptor (VLDLR) and apolipoprotein E receptor type 2 (APOER2) — is crucial for neuronal migration in the cortex by throttling reelin signalling.

  • Signalling pathways controlling neurite development and axon acquisition are controlled by specific monoubiquitylation, diubiquitylation or polyubiquitylation of small GTPases. Typically, these types of ubiquitylation negatively regulate GTPase function or expression.

  • The RING finger E3 ligases RPM1 (also known as highwire) and the SCF complex function in synaptogenesis and synapse elimination by polyubiquitylating target proteins at synaptic or extrasynaptic locations in axons. Spatial restriction of ubiquitylation is essential for synapse elimination.

Abstract

Nerve cell development in the brain is a tightly regulated process. The generation of neurons from precursor cells, their migration to the appropriate target sites, their extensive arborization and their integration into functional networks through synapse formation and refinement are governed by multiple interdependent signalling cascades. The function and turnover of proteins involved in these signalling cascades, in turn, are spatially and temporally controlled by ubiquitylation. Recent advances have provided first insights into the highly complex and intricate molecular pathways that regulate ubiquitylation during all stages of neural development and that operate in parallel with other regulatory processes such as phosphorylation or cyclic nucleotide signalling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Key steps of neuronal differentiation in the mammalian brain.
Figure 2: The protein ubiquitylation pathway.
Figure 3: Regulation of neurogenesis by ubiquitylation.
Figure 4: Molecular pathways in reelin signalling.
Figure 5: Regulation of neuritogenesis by ubiquitylation.
Figure 6: Regulation of synaptogenesis by PHR family ligases.

Similar content being viewed by others

References

  1. Lange, W. Cell number and cell density in the cerebellar cortex of man and some other mammals. Cell Tissue Res. 157, 115–124 (1975).

    Article  CAS  PubMed  Google Scholar 

  2. Shariff, G. A. Cell counts in the primate cerebral cortex. J. Comp. Neurol. 98, 381–400 (1953).

    Article  CAS  PubMed  Google Scholar 

  3. Barnes, A. P. & Polleux, F. Establishment of axon-dendrite polarity in developing neurons. Annu. Rev. Neurosci. 32, 347–381 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Parrish, J. Z., Emoto, K., Kim, M. D. & Jan, Y. N. Mechanisms that regulate establishment, maintenance, and remodeling of dendritic fields. Annu. Rev. Neurosci. 30, 399–423 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Spruston, N. Pyramidal neurons: dendritic structure and synaptic integration. Nature Rev. Neurosci. 9, 206–221 (2008).

    Article  CAS  Google Scholar 

  6. O'Donnell, M., Chance, R. K. & Bashaw, G. J. Axon growth and guidance: receptor regulation and signal transduction. Annu. Rev. Neurosci. 32, 383–412 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sanes, J. R. & Yamagata, M. Many paths to synaptic specificity. Annu. Rev. Cell Dev. Biol. 25, 161–195 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Marin, O., Valiente, M., Ge, X. & Tsai, L. H. Guiding neuronal cell migrations. Cold Spring Harb. Perspect. Biol. 2, a001834 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Li, W. et al. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling. PLoS ONE 3, e1487 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Xu, P. et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137, 133–145 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim, H. C. & Huibregtse, J. M. Polyubiquitination by HECT E3s and the determinants of chain type specificity. Mol. Cell. Biol. 29, 3307–3318 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hicke, L. Protein regulation by monoubiquitin. Nature Rev. Mol. Cell Biol. 2, 195–201 (2001).

    Article  CAS  Google Scholar 

  13. Xu, L., Lubkov, V., Taylor, L. J. & Bar-Sagi, D. Feedback regulation of Ras signaling by Rabex-5-mediated ubiquitination. Curr. Biol. 20, 1372–1377 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wilkinson, K. D. et al. The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science 246, 670–673 (1989).

    Article  CAS  PubMed  Google Scholar 

  15. Kent, C. & Clarke, P. J. The immunolocalisation of the neuroendocrine specific protein PGP9.5 during neurogenesis in the rat. Brain Res. Dev. Brain Res. 58, 147–150 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Lowe, J. et al. A filamentous inclusion body within anterior horn neurones in motor neurone disease defined by immunocytochemical localisation of ubiquitin. Neurosci. Lett. 94, 203–210 (1988).

    Article  CAS  PubMed  Google Scholar 

  17. Lennox, G., Lowe, J., Morrell, K., Landon, M. & Mayer, R. J. Ubiquitin is a component of neurofibrillary tangles in a variety of neurodegenerative diseases. Neurosci. Lett. 94, 211–217 (1988).

    Article  CAS  PubMed  Google Scholar 

  18. Tai, H. C. & Schuman, E. M. Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction. Nature Rev. Neurosci. 9, 826–838 (2008).

    Article  CAS  Google Scholar 

  19. Qian, X. et al. Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells. Neuron 28, 69–80 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Gerhart, J. 1998 Warkany lecture: signaling pathways in development. Teratology 60, 226–239 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Yun, S. J. et al. Transcriptional regulatory networks associated with self-renewal and differentiation of neural stem cells. J. Cell. Physiol. 225, 337–347 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Inestrosa, N. C. & Arenas, E. Emerging roles of Wnts in the adult nervous system. Nature Rev. Neurosci. 11, 77–86 (2010).

    Article  CAS  Google Scholar 

  23. Kikuchi, A. Regulation of β-catenin signaling in the Wnt pathway. Biochem. Biophys. Res. Commun. 268, 243–248 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Yoon, K. & Gaiano, N. Notch signaling in the mammalian central nervous system: insights from mouse mutants. Nature Neurosci. 8, 709–715 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Schier, A. F. et al. Mutations affecting the development of the embryonic zebrafish brain. Development 123, 165–178 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Jiang, Y. J. et al. Mutations affecting neurogenesis and brain morphology in the zebrafish, Danio rerio. Development 123, 205–216 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Itoh, M. et al. Mind bomb is a ubiquitin ligase that is essential for efficient activation of Notch signaling by Delta. Dev. Cell 4, 67–82 (2003). This study shows that the E3 ubiquitin ligase mind bomb ubiquitylates Delta and thereby regulates Notch signalling.

    Article  CAS  PubMed  Google Scholar 

  28. Yoon, K. J. et al. Mind bomb 1-expressing intermediate progenitors generate notch signaling to maintain radial glial cells. Neuron 58, 519–531 (2008). Using conditional MIB1 knockout mice, the authors of this study provide important evidence for the regulation of Delta by MIB1 during neurogenesis.

    Article  CAS  PubMed  Google Scholar 

  29. Koo, B. K. et al. Mind bomb 1 is essential for generating functional Notch ligands to activate Notch. Development 132, 3459–3470 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, W. & Struhl, G. Distinct roles for Mind bomb, Neuralized and Epsin in mediating DSL endocytosis and signaling in Drosophila. Development 132, 2883–2894 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Yamamoto, M. et al. Mib–Jag1–Notch signalling regulates patterning and structural roles of the notochord by controlling cell-fate decisions. Development 137, 2527–2537 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Konno, D. et al. Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. Nature Cell Biol. 10, 93–101 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Ossipova, O., Ezan, J. & Sokol, S. Y. PAR-1 phosphorylates Mind bomb to promote vertebrate neurogenesis. Dev. Cell 17, 222–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Knoepfler, P. S., Cheng, P. F. & Eisenman, R. N. N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes Dev. 16, 2699–2712 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhao, X. et al. The HECT-domain ubiquitin ligase Huwe1 controls neural differentiation and proliferation by destabilizing the N-Myc oncoprotein. Nature Cell Biol. 10, 643–653 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Zhao, X. et al. The N.-Myc-DLL3 cascade is suppressed by the ubiquitin ligase Huwe1 to inhibit proliferation and promote neurogenesis in the developing brain. Dev. Cell 17, 210–221 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Marthiens, V. & ffrench-Constant, C. Adherens junction domains are split by asymmetric division of embryonic neural stem cells. EMBO Rep. 10, 515–520 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Marquardt, T. et al. Pax6 is required for the multipotent state of retinal progenitor cells. Cell 105, 43–55 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Hebert, J. M. & Fishell, G. The genetics of early telencephalon patterning: some assembly required. Nature Rev. Neurosci. 9, 678–685 (2008).

    Article  CAS  Google Scholar 

  40. St-Onge, L., Sosa-Pineda, B., Chowdhury, K., Mansouri, A. & Gruss, P. Pax6 is required for differentiation of glucagon-producing α-cells in mouse pancreas. Nature 387, 406–409 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Englund, C. et al. Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J. Neurosci. 25, 247–251 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Scardigli, R., Baumer, N., Gruss, P., Guillemot, F. & Le Roux, I. Direct and concentration-dependent regulation of the proneural gene Neurogenin2 by Pax6. Development 130, 3269–3281 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Tuoc, T. C. & Stoykova, A. Trim11 modulates the function of neurogenic transcription factor Pax6 through ubiquitin-proteosome system. Genes Dev. 22, 1972–1986 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Berger, J. et al. Conditional activation of Pax6 in the developing cortex of transgenic mice causes progenitor apoptosis. Development 134, 1311–1322 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Sobieszczuk, D. F., Poliakov, A., Xu, Q. & Wilkinson, D. G. A feedback loop mediated by degradation of an inhibitor is required to initiate neuronal differentiation. Genes Dev. 24, 206–218 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kageyama, R., Ohtsuka, T., Shimojo, H. & Imayoshi, I. Dynamic regulation of Notch signaling in neural progenitor cells. Curr. Opin. Cell Biol. 21, 733–740 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Shimojo, H., Ohtsuka, T. & Kageyama, R. Oscillations in notch signaling regulate maintenance of neural progenitors. Neuron 58, 52–64 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Hirata, H. et al. Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop. Science 298, 840–843 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Hirabayashi, Y. et al. Polycomb limits the neurogenic competence of neural precursor cells to promote astrogenic fate transition. Neuron 63, 600–613 (2009). This study describes the role of the PcG components PRC1 and PRC2 in fate decision of neural progenitor cells, and shows that the function of the ubiquitin ligase RING1B in the PRC2 complex is essential for this process.

    Article  CAS  PubMed  Google Scholar 

  50. Fan, G. et al. DNA methylation controls the timing of astrogliogenesis through regulation of JAK-STAT signaling. Development 132, 3345–3356 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Wu, H. et al. Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes. Science 329, 444–448 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hatada, I. et al. Astrocyte-specific genes are generally demethylated in neural precursor cells prior to astrocytic differentiation. PLoS ONE 3, e3189 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Namihira, M., Nakashima, K. & Taga, T. Developmental stage dependent regulation of DNA methylation and chromatin modification in a immature astrocyte specific gene promoter. FEBS Lett. 572, 184–188 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Takizawa, T. et al. DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain. Dev. Cell 1, 749–758 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Cao, R. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039–1043 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Wang, H. et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature 431, 873–878 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Cao, R., Tsukada, Y. & Zhang, Y. Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol. Cell 20, 845–854 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Mohd-Sarip, A., Venturini, F., Chalkley, G. E. & Verrijzer, C. P. Pleiohomeotic can link polycomb to DNA and mediate transcriptional repression. Mol. Cell. Biol. 22, 7473–7483 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mohd-Sarip, A., Cleard, F., Mishra, R. K., Karch, F. & Verrijzer, C. P. Synergistic recognition of an epigenetic DNA element by Pleiohomeotic and a Polycomb core complex. Genes Dev. 19, 1755–1760 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mohd-Sarip, A. et al. Architecture of a polycomb nucleoprotein complex. Mol. Cell 24, 91–100 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Chong, J. A. et al. REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell 80, 949–957 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. Schoenherr, C. J. & Anderson, D. J. The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science 267, 1360–1363 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Lee, M. G., Wynder, C., Cooch, N. & Shiekhattar, R. An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 437, 432–435 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Roopra, A., Qazi, R., Schoenike, B., Daley, T. J. & Morrison, J. F. Localized domains of G9a-mediated histone methylation are required for silencing of neuronal genes. Mol. Cell 14, 727–738 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Lunyak, V. V. et al. Corepressor-dependent silencing of chromosomal regions encoding neuronal genes. Science 298, 1747–1752 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Ballas, N., Grunseich, C., Lu, D. D., Speh, J. C. & Mandel, G. REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell 121, 645–657 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Westbrook, T. F. et al. SCFβ-TRCP controls oncogenic transformation and neural differentiation through REST degradation. Nature 452, 370–374 (2008). In this paper, the authors show that the ubiquitylation and degradation of REST by SCF–bTRCP is required for the differentiation of neural progenitor cells to neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kohyama, J. et al. BMP-induced REST regulates the establishment and maintenance of astrocytic identity. J. Cell Biol. 189, 159–170 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hamburgh, M. Analysis of the postnatal developmental effects of “Reeler, ” a neurological mutation in mice. A study in developmental genetics. Dev. Biol. 19, 165–185 (1963).

    Article  Google Scholar 

  70. Senzaki, K., Ogawa, M. & Yagi, T. Proteins of the CNR family are multiple receptors for Reelin. Cell 99, 635–647 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Hiesberger, T. et al. Direct binding of Reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron 24, 481–489 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. D'Arcangelo, G. et al. Reelin is a ligand for lipoprotein receptors. Neuron 24, 471–479 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Trommsdorff, M. et al. Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97, 689–701 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Keshvara, L., Benhayon, D., Magdaleno, S. & Curran, T. Identification of reelin-induced sites of tyrosyl phosphorylation on disabled 1. J. Biol. Chem. 276, 16008–16014 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Sheldon, M. et al. Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature 389, 730–733 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Ware, M. L. et al. Aberrant splicing of a mouse disabled homolog, mdab1, in the scrambler mouse. Neuron 19, 239–249 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Arnaud, L., Ballif, B. A. & Cooper, J. A. Regulation of protein tyrosine kinase signaling by substrate degradation during brain development. Mol. Cell. Biol. 23, 9293–9302 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Feng, L., Allen, N. S., Simo, S. & Cooper, J. A. Cullin 5 regulates Dab1 protein levels and neuron positioning during cortical development. Genes Dev. 21, 2717–2730 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Simo, S., Jossin, Y. & Cooper, J. A. Cullin 5 regulates cortical layering by modulating the speed and duration of Dab1-dependent neuronal migration. J. Neurosci. 30, 5668–5676 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tissir, F. & Goffinet, A. M. Reelin and brain development. Nature Rev. Neurosci. 4, 496–505 (2003).

    Article  CAS  Google Scholar 

  81. Campbell, D. S. & Holt, C. E. Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron 32, 1013–1026 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Kim, T. H. et al. Netrin induces down-regulation of its receptor, Deleted in Colorectal Cancer, through the ubiquitin-proteasome pathway in the embryonic cortical neuron. J. Neurochem. 95, 1–8 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hu, G. et al. Mammalian homologs of seven in absentia regulate DCC via the ubiquitin-proteasome pathway. Genes Dev. 11, 2701–2714 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yuasa-Kawada, J., Kinoshita-Kawada, M., Wu, G., Rao, Y. & Wu, J. Y. Midline crossing and Slit responsiveness of commissural axons require USP33. Nature Neurosci. 12, 1087–1089 (2009). This study identifies the deubiquitylating enzyme USP33 as a binding partner of ROBO1, and shows that USP33 is crucial for midline crossing of axons.

    Article  CAS  PubMed  Google Scholar 

  85. Piper, M. et al. Signaling mechanisms underlying Slit2-induced collapse of Xenopus retinal growth cones. Neuron 49, 215–228 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tojima, T., Hines, J. H., Henley, J. R. & Kamiguchi, H. Second messengers and membrane trafficking direct and organize growth cone steering. Nature Rev. Neurosci. 12, 191–203 (2011).

    Article  CAS  Google Scholar 

  87. Takai, Y., Sasaki, T. & Matozaki, T. Small GTP-binding proteins. Physiol. Rev. 81, 153–208 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Arimura, N. & Kaibuchi, K. Neuronal polarity: from extracellular signals to intracellular mechanisms. Nature Rev. Neurosci. 8, 194–205 (2007).

    Article  CAS  Google Scholar 

  89. da Silva, J. S. & Dotti, C. G. Breaking the neuronal sphere: regulation of the actin cytoskeleton in neuritogenesis. Nature Rev. Neurosci. 3, 694–704 (2002).

    Article  CAS  Google Scholar 

  90. Garvalov, B. K. et al. Cdc42 regulates cofilin during the establishment of neuronal polarity. J. Neurosci. 27, 13117–13129 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Schwamborn, J. C. & Puschel, A. W. The sequential activity of the GTPases Rap1B and Cdc42 determines neuronal polarity. Nature Neurosci. 7, 923–929 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Fu, Z. et al. Differential roles of Rap1 and Rap2 small GTPases in neurite retraction and synapse elimination in hippocampal spiny neurons. J. Neurochem. 100, 118–131 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Bryan, B. et al. Ubiquitination of RhoA by Smurf1 promotes neurite outgrowth. FEBS Lett. 579, 1015–1019 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Wang, H. R. et al. Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science 302, 1775–1779 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Schwamborn, J. C., Muller, M., Becker, A. H. & Puschel, A. W. Ubiquitination of the GTPase Rap1B by the ubiquitin ligase Smurf2 is required for the establishment of neuronal polarity. EMBO J. 26, 1410–1422 (2007). This paper provides the first evidence that the expression level of a small GTPase is regulated by polyubiquitylation and plays a key part in neuronal development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Jura, N., Scotto-Lavino, E., Sobczyk, A. & Bar-Sagi, D. Differential modification of Ras proteins by ubiquitination. Mol. Cell 21, 679–687 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Kawabe, H. et al. Regulation of Rap2A by the ubiquitin ligase Nedd4–1 controls neurite development. Neuron 65, 358–372 (2010). This study shows that the HECT-type E3 ligase NEDD4 controls dendrite growth by monoubiquitylation and inhibition of RAP2 and consequent inhibition of the kinase TNIK.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Drinjakovic, J. et al. E3 ligase Nedd4 promotes axon branching by downregulating PTEN. Neuron 65, 341–357 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Trotman, L. C. et al. Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell 128, 141–156 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang, X. et al. NEDD4–1 is a proto-oncogenic ubiquitin ligase for PTEN. Cell 128, 129–139 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fouladkou, F. et al. The ubiquitin ligase Nedd4–1 is dispensable for the regulation of PTEN stability and localization. Proc. Natl Acad. Sci. USA 105, 8585–8590 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rotin, D. & Kumar, S. Physiological functions of the HECT family of ubiquitin ligases. Nature Rev. Mol. Cell Biol. 10, 398–409 (2009).

    Article  CAS  Google Scholar 

  103. Cheng, P. L., Lu, H., Shelly, M., Gao, H. & Poo, M. M. Phosphorylation of E3 ligase Smurf1 switches its substrate preference in support of axon development. Neuron 69, 231–243 (2011). This paper shows that phosphorylation of SMURF1 switches its substrate preference from PAR6 to RHOA in axons.

    Article  CAS  PubMed  Google Scholar 

  104. Thornton, B. R. & Toczyski, D. P. Precise destruction: an emerging picture of the APC. Genes Dev. 20, 3069–3078 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Konishi, Y., Stegmuller, J., Matsuda, T., Bonni, S. & Bonni, A. Cdh1-APC controls axonal growth and patterning in the mammalian brain. Science 303, 1026–1030 (2004). This is the first paper to demonstrate a key function of APC in postmitotic neurons.

    Article  CAS  PubMed  Google Scholar 

  106. Stegmuller, J. et al. Cell-intrinsic regulation of axonal morphogenesis by the Cdh1-APC target SnoN. Neuron 50, 389–400 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Kim, A. H. et al. A centrosomal Cdc20-APC pathway controls dendrite morphogenesis in postmitotic neurons. Cell 136, 322–336 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Huynh, M. A., Stegmuller, J., Litterman, N. & Bonni, A. Regulation of Cdh1-APC function in axon growth by Cdh1 phosphorylation. J. Neurosci. 29, 4322–4327 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhou, Y., Ching, Y. P., Chun, A. C. & Jin, D. Y. Nuclear localization of the cell cycle regulator CDH1 and its regulation by phosphorylation. J. Biol. Chem. 278, 12530–12536 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Yang, Y. et al. A Cdc20-APC ubiquitin signaling pathway regulates presynaptic differentiation. Science 326, 575–578 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Margeta, M. A. & Shen, K. Molecular mechanisms of synaptic specificity. Mol. Cell. Neurosci. 43, 261–267 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Huttenlocher, P. R., de Courten, C., Garey, L. J. & Van der Loos, H. Synaptogenesis in human visual cortex-evidence for synapse elimination during normal development. Neurosci. Lett. 33, 247–252 (1982).

    Article  CAS  PubMed  Google Scholar 

  113. Zecevic, N. & Rakic, P. Synaptogenesis in monkey somatosensory cortex. Cereb. Cortex 1, 510–523 (1991).

    Article  CAS  PubMed  Google Scholar 

  114. DiAntonio, A. et al. Ubiquitination-dependent mechanisms regulate synaptic growth and function. Nature 412, 449–452 (2001). This paper is of particular importance as it demonstrates that protein ubiquitylation is crucial for synaptogenesis.

    Article  CAS  PubMed  Google Scholar 

  115. Wan, H. I. et al. Highwire regulates synaptic growth in Drosophila. Neuron 26, 313–329 (2000).

    Article  CAS  PubMed  Google Scholar 

  116. Zhen, M., Huang, X., Bamber, B. & Jin, Y. Regulation of presynaptic terminal organization by C. elegans RPM-1, a putative guanine nucleotide exchanger with a RING-H2 finger domain. Neuron 26, 331–343 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Schaefer, A. M., Hadwiger, G. D. & Nonet, M. L. rpm-1, a conserved neuronal gene that regulates targeting and synaptogenesis in C. elegans. Neuron 26, 345–356 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. McCabe, B. D. et al. Highwire regulates presynaptic BMP signaling essential for synaptic growth. Neuron 41, 891–905 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Nakata, K. et al. Regulation of a DLK-1 and p38 MAP kinase pathway by the ubiquitin ligase RPM-1 is required for presynaptic development. Cell 120, 407–420 (2005). This study extends the characterization of the PHR ligase and identifies the DLK-1–MKK-4–PMK-3 cascade as a downstream effector pathway of PHR.

    Article  CAS  PubMed  Google Scholar 

  120. Li, H., Kulkarni, G. & Wadsworth, W. G. RPM-1, a Caenorhabditis elegans protein that functions in presynaptic differentiation, negatively regulates axon outgrowth by controlling SAX-3/robo and UNC-5/UNC5 activity. J. Neurosci. 28, 3595–3603 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Grill, B. et al. C. elegans RPM-1 regulates axon termination and synaptogenesis through the Rab GEF GLO-4 and the Rab GTPase GLO-1. Neuron 55, 587–601 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Collins, C. A., Wairkar, Y. P., Johnson, S. L. & DiAntonio, A. Highwire restrains synaptic growth by attenuating a MAP kinase signal. Neuron 51, 57–69 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Yan, D., Wu, Z., Chisholm, A. D. & Jin, Y. The DLK-1 kinase promotes mRNA stability and local translation in C. elegans synapses and axon regeneration. Cell 138, 1005–1018 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Liao, E. H., Hung., W., Abrams, B. & Zhen, M. An SCF-like ubiquitin ligase complex that controls presynaptic differentiation. Nature 430, 345–350 (2004).

    Article  CAS  PubMed  Google Scholar 

  125. Wu, C., Daniels, R. W. & DiAntonio, A. DFsn collaborates with Highwire to down-regulate the Wallenda/DLK kinase and restrain synaptic terminal growth. Neural Dev. 2, 16 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Burgess, R. W. et al. Evidence for a conserved function in synapse formation reveals Phr1 as a candidate gene for respiratory failure in newborn mice. Mol. Cell. Biol. 24, 1096–1105 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Tada, H. et al. Fbxo45, a novel ubiquitin ligase, regulates synaptic activity. J. Biol. Chem. 285, 3840–3849 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Bloom, A. J., Miller, B. R., Sanes, J. R. & DiAntonio, A. The requirement for Phr1 in CNS axon tract formation reveals the corticostriatal boundary as a choice point for cortical axons. Genes Dev. 21, 2593–2606 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ding, M., Chao, D., Wang, G. & Shen, K. Spatial regulation of an E3 ubiquitin ligase directs selective synapse elimination. Science 317, 947–951 (2007). This study describes the mechanism by which the regulation of a specific SCF complex controls synapse elimination.

    Article  CAS  PubMed  Google Scholar 

  130. Yao, I. et al. SCRAPPER-dependent ubiquitination of active zone protein RIM1 regulates synaptic vesicle release. Cell 130, 943–957 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Greer, P. L. et al. The Angelman Syndrome protein Ube3A regulates synapse development by ubiquitinating arc. Cell 140, 704–16 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wiesner, S. et al. Autoinhibition of the HECT-type ubiquitin ligase Smurf2 through its C2 domain. Cell 130, 651–662 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Wang, J. et al. Calcium activates Nedd4 E3 ubiquitin ligases by releasing the C2 domain-mediated auto-inhibition. J. Biol. Chem. 285, 12279–12288 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Plant, P. J., Yeger, H., Staub, O., Howard, P. & Rotin, D. The C2 domain of the ubiquitin protein ligase Nedd4 mediates Ca2+-dependent plasma membrane localization. J. Biol. Chem. 272, 32329–32336 (1997).

    Article  CAS  PubMed  Google Scholar 

  135. Saha, A. & Deshaies, R. J. Multimodal activation of the ubiquitin ligase SCF by Nedd8 conjugation. Mol. Cell 32, 21–31 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Reyes-Turcu, F. E., Ventii, K. H. & Wilkinson, K. D. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu. Rev. Biochem. 78, 363–397 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Zeng, W. et al. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 141, 315–330 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Stegmüller for helpful discussions and comments on this manuscript. Work in the authors' laboratories was supported by grants from the Max Planck Society (to N.B.), the German Research Foundation (SFB271/B11 to N.B.), the European Commission (EUSynapse, EUROSPIN and SynSys to N.B) and the Fritz Thyssen Foundation (to H.K.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hiroshi Kawabe or Nils Brose.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Nils Brose's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawabe, H., Brose, N. The role of ubiquitylation in nerve cell development. Nat Rev Neurosci 12, 251–268 (2011). https://doi.org/10.1038/nrn3009

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3009

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing