Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Second messengers and membrane trafficking direct and organize growth cone steering

Key Points

  • During neural development, graded distribution of extracellular cues in the microenvironment causes asymmetric generation of second messengers across the growth cone in order to guide the axon along its correct path. Asymmetrically generated Ca2+ signals are sufficient to initiate growth cone turning toward (attraction) or away from (repulsion) the side with higher Ca2+ concentrations.

  • Gating of differential sets of Ca2+ channels, which are regulated counteractively by cyclic AMP and cyclic GMP, can be responsible for switching between growth cone attraction and repulsion. We propose that high-amplitude Ca2+ elevation involving Ca2+ release from the endoplasmic reticulum mediates attractive guidance, whereas low-amplitude Ca2+ influx that does not trigger substantial Ca2+ release from the endoplasmic reticulum mediates repulsive guidance.

  • Shallow concentration gradients of guidance cues can shape growth cone Ca2+ signals for precise navigational responses. This process may depend on second messenger networks including positive-feedback augmentation between Ca2+ and cyclic AMP.

  • Repulsive Ca2+ signals cause asymmetric clathrin-mediated endocytosis across the growth cone with more endocytosis on the side with elevated Ca2+. Attractive Ca2+ signals promote centrifugal transport of membrane vesicles and their subsequent exocytosis mediated by vesicle-associated membrane protein 2 on the side with elevated Ca2+.

  • We propose that asymmetric membrane trafficking is an early and instructive step in the initiation of growth cone turning. Localized imbalance between endocytosis and exocytosis may trigger redistribution of adhesion molecules, cytoskeletal components and bulk membrane, which would potentiate asymmetric traction and protrusion forces essential for turning.

  • The growth cone in complex environmental terrain in vivo must integrate multiple guidance signals simultaneously to navigate with high fidelity. Spatiotemporally regulated interactions among Ca2+ and cyclic nucleotides potentially have crucial roles in this integration process, which will need to be scrutinized by quantitative imaging of multiple second messengers in navigating growth cones.

Abstract

Graded distributions of extracellular cues guide developing axons toward their targets. A network of second messengers — Ca2+ and cyclic nucleotides — shapes cue-derived information into either attractive or repulsive signals that steer growth cones bidirectionally. Emerging evidence suggests that such guidance signals create a localized imbalance between exocytosis and endocytosis, which in turn redirects membrane, adhesion and cytoskeletal components asymmetrically across the growth cone to bias the direction of axon extension. These recent advances allow us to propose a unifying model of how the growth cone translates shallow gradients of environmental information into polarized activity of the steering machinery for axon guidance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of signalling and mechanical events during bidirectional growth cone guidance.
Figure 2: Second messenger systems for growth cone guidance.
Figure 3: Second messenger network shapes attractive and repulsive Ca2+ signals.
Figure 4: Asymmetric membrane trafficking drives bidirectional growth cone turning.
Figure 5: Working model of the growth cone steering machinery: membrane trafficking as a master organizer.
Figure 6: Hypothetical model for growth cone guidance by multiple cues.

Similar content being viewed by others

References

  1. Sanes, J. R. & Yamagata, M. Many paths to synaptic specificity. Annu. Rev. Cell Dev. Biol. 25, 161–195 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Pecho-Vrieseling, E., Sigrist, M., Yoshida, Y., Jessell, T. M. & Arber, S. Specificity of sensory-motor connections encoded by Sema3e-Plxnd1 recognition. Nature 459, 842–846 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sakano, H. Neural map formation in the mouse olfactory system. Neuron 67, 530–542 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Kennedy, T. E., Wang, H., Marshall, W. & Tessier-Lavigne, M. Axon guidance by diffusible chemoattractants: a gradient of netrin protein in the developing spinal cord. J. Neurosci. 26, 8866–8874 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Flanagan, J. G. Neural map specification by gradients. Curr. Opin. Neurobiol. 16, 59–66 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Hong, K., Nishiyama, M., Henley, J., Tessier-Lavigne, M. & Poo, M. Calcium signalling in the guidance of nerve growth by netrin-1. Nature 403, 93–98 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Henley, J. R., Huang, K. H., Wang, D. & Poo, M. M. Calcium mediates bidirectional growth cone turning induced by myelin-associated glycoprotein. Neuron 44, 909–916 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li, Y. et al. Essential role of TRPC channels in the guidance of nerve growth cones by brain-derived neurotrophic factor. Nature 434, 894–898 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Wang, G. X. & Poo, M. M. Requirement of TRPC channels in netrin-1-induced chemotropic turning of nerve growth cones. Nature 434, 898–904 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Togashi, K. et al. Cyclic GMP-gated CNG channels function in Sema3A-induced growth cone repulsion. Neuron 58, 694–707 (2008). The first report providing direct evidence of asymmetric cyclic nucleotide signalling across the growth cone during chemotactic guidance.

    Article  CAS  PubMed  Google Scholar 

  11. Akiyama, H., Matsu-ura, T., Mikoshiba, K. & Kamiguchi, H. Control of neuronal growth cone navigation by asymmetric inositol 1,4,5-trisphosphate signals. Sci. Signal. 2, ra34 (2009).

    Article  PubMed  Google Scholar 

  12. Song, H. & Poo, M. The cell biology of neuronal navigation. Nature Cell Biol. 3, E81–E88 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Jin, M. et al. Ca2+-dependent regulation of Rho GTPases triggers turning of nerve growth cones. J. Neurosci. 25, 2338–2347 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chao, D. L., Ma, L. & Shen, K. Transient cell–cell interactions in neural circuit formation. Nature Rev. Neurosci. 10, 262–271 (2009).

    Article  CAS  Google Scholar 

  15. Hopker, V. H., Shewan, D., Tessier-Lavigne, M., Poo, M. & Holt, C. Growth-cone attraction to netrin-1 is converted to repulsion by laminin-1. Nature 401, 69–73 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Shewan, D., Dwivedy, A., Anderson, R. & Holt, C. E. Age-related changes underlie switch in netrin-1 responsiveness as growth cones advance along visual pathway. Nature Neurosci. 5, 955–962 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Maness, P. F. & Schachner, M. Neural recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration. Nature Neurosci. 10, 19–26 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Lin, A. C. & Holt, C. E. Function and regulation of local axonal translation. Curr. Opin. Neurobiol. 18, 60–68 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lowery, L. A. & Van Vactor, D. The trip of the tip: understanding the growth cone machinery. Nature Rev. Mol. Cell Biol. 10, 332–343 (2009).

    Article  CAS  Google Scholar 

  20. O'Donnell, M., Chance, R. K. & Bashaw, G. J. Axon growth and guidance: receptor regulation and signal transduction. Annu. Rev. Neurosci. 32, 383–412 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dent, E. W., Gupton, S. L. & Gertler, F. B. The growth cone cytoskeleton in axon outgrowth and guidance. Cold Spring Harb. Perspect. Biol. 24 Nov 2010 (doi:10.1101/cshperspect.a001800).

    Google Scholar 

  22. Zheng, J. Q. Turning of nerve growth cones induced by localized increases in intracellular calcium ions. Nature 403, 89–93 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Gomez, T. M. & Zheng, J. Q. The molecular basis for calcium-dependent axon pathfinding. Nature Rev. Neurosci. 7, 115–125 (2006).

    Article  CAS  Google Scholar 

  24. Berridge, M. J., Bootman, M. D. & Roderick, H. L. Calcium signalling: dynamics, homeostasis and remodelling. Nature Rev. Mol. Cell Biol. 4, 517–529 (2003).

    Article  CAS  Google Scholar 

  25. Gabso, M., Neher, E. & Spira, M. E. Low mobility of the Ca2+ buffers in axons of cultured Aplysia neurons. Neuron 18, 473–481 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Augustine, G. J., Santamaria, F. & Tanaka, K. Local calcium signaling in neurons. Neuron 40, 331–346 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Ooashi, N., Futatsugi, A., Yoshihara, F., Mikoshiba, K. & Kamiguchi, H. Cell adhesion molecules regulate Ca2+-mediated steering of growth cones via cyclic AMP and ryanodine receptor type 3. J. Cell Biol. 170, 1159–1167 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wen, Z., Guirland, C., Ming, G. L. & Zheng, J. Q. A CaMKII/calcineurin switch controls the direction of Ca2+-dependent growth cone guidance. Neuron 43, 835–846 (2004). The first demonstration of molecular mechanisms that mediate bidirectional growth cone turning downstream of Ca2+ signals.

    Article  CAS  PubMed  Google Scholar 

  29. Rusnak, F. & Mertz, P. Calcineurin: form and function. Physiol. Rev. 80, 1483–1521 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Hudmon, A. & Schulman, H. Neuronal Ca2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu. Rev. Biochem. 71, 473–510 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Hudmon, A. et al. CaMKII tethers to L-type Ca2+ channels, establishing a local and dedicated integrator of Ca2+ signals for facilitation. J. Cell Biol. 171, 537–547 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zalk, R., Lehnart, S. E. & Marks, A. R. Modulation of the ryanodine receptor and intracellular calcium. Annu. Rev. Biochem. 76, 367–385 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Foskett, J. K., White, C., Cheung, K. H. & Mak, D. O. Inositol trisphosphate receptor Ca2+ release channels. Physiol. Rev. 87, 593–658 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Shim, S. et al. XTRPC1-dependent chemotropic guidance of neuronal growth cones. Nature Neurosci. 8, 730–735 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Guirland, C., Buck, K. B., Gibney, J. A., DiCicco-Bloom, E. & Zheng, J. Q. Direct cAMP signaling through G-protein-coupled receptors mediates growth cone attraction induced by pituitary adenylate cyclase-activating polypeptide. J. Neurosci. 23, 2274–2283 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Murray, A. J., Tucker, S. J. & Shewan, D. A. cAMP-dependent axon guidance is distinctly regulated by Epac and protein kinase A. J. Neurosci. 29, 15434–15444 (2009). An influential study showing that two cAMP effectors, Rap guanine nucleotide exchange factor (also known as EPAC) and PKA, have antagonistic roles in growth cone turning.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nishiyama, M. et al. Cyclic AMP/GMP-dependent modulation of Ca2+ channels sets the polarity of nerve growth-cone turning. Nature 423, 990–995 (2003). An influential study showing the fundamental rule for cyclic nucleotide-mediated conversion of growth cone turning direction.

    Article  CAS  PubMed  Google Scholar 

  38. Tojima, T., Itofusa, R. & Kamiguchi, H. The nitric oxide-cGMP pathway controls the directional polarity of growth cone guidance via modulating cytosolic Ca2+ signals. J. Neurosci. 29, 7886–7897 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Murray, A. J. Pharmacological PKA inhibition: all may not be what it seems. Sci. Signal. 1, re4 (2008).

    Article  PubMed  Google Scholar 

  40. Poppe, H. et al. Cyclic nucleotide analogs as probes of signaling pathways. Nature Methods 5, 277–278 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Willoughby, D. & Cooper, D. M. Organization and Ca2+ regulation of adenylyl cyclases in cAMP microdomains. Physiol. Rev. 87, 965–1010 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Xu, H., Leinwand, S. G., Dell, A. L., Fried-Cassorla, E. & Raper, J. A. The calmodulin-stimulated adenylate cyclase ADCY8 sets the sensitivity of zebrafish retinal axons to midline repellents and is required for normal midline crossing. J. Neurosci. 30, 7423–7433 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lefkimmiatis, K. et al. Store-operated cyclic AMP signalling mediated by STIM1. Nature Cell Biol. 11, 433–442 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Gorbunova, Y. V. & Spitzer, N. C. Dynamic interactions of cyclic AMP transients and spontaneous Ca2+ spikes. Nature 418, 93–96 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Bezprozvanny, I., Watras, J. & Ehrlich, B. E. Bell-shaped calcium-response curves of Ins(1,4,5)P3 - and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351, 751–754 (1991).

    Article  CAS  PubMed  Google Scholar 

  46. Zaccolo, M. & Movsesian, M. A. cAMP and cGMP signaling cross-talk: role of phosphodiesterases and implications for cardiac pathophysiology. Circ. Res. 100, 1569–1578 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Shelly, M. et al. Local and long-range reciprocal regulation of cAMP and cGMP in axon/dendrite formation. Science 327, 547–552 (2010). An important crosstalk of cyclic nucleotides demonstrated by imaging of their spatiotemporal dynamics in neurons.

    Article  CAS  PubMed  Google Scholar 

  48. Meinhardt, H. Orientation of chemotactic cells and growth cones: models and mechanisms. J. Cell Sci. 112, 2867–2874 (1999).

    CAS  PubMed  Google Scholar 

  49. Shim, S. et al. Peptidyl-prolyl isomerase FKBP52 controls chemotropic guidance of neuronal growth cones via regulation of TRPC1 channel opening. Neuron 64, 471–483 (2009). An important finding implicating proline isomerization of the transient receptor potential family of cation channels as an initial signalling event in growth cone guidance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu, K. Y. et al. Soluble adenylyl cyclase is required for netrin-1 signaling in nerve growth cones. Nature Neurosci. 9, 1257–1264 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Moore, S. W. et al. Soluble adenylyl cyclase is not required for axon guidance to netrin-1. J. Neurosci. 28, 3920–3924 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cai, D., Shen, Y., De Bellard, M., Tang, S. & Filbin, M. T. Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism. Neuron 22, 89–101 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Ming, G. et al. Phospholipase C-γ and phosphoinositide 3-kinase mediate cytoplasmic signaling in nerve growth cone guidance. Neuron 23, 139–148 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Stessin, A. M. et al. Soluble adenylyl cyclase mediates nerve growth factor-induced activation of Rap1. J. Biol. Chem. 281, 17253–17258 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Gao, Y., Nikulina, E., Mellado, W. & Filbin, M. T. Neurotrophins elevate cAMP to reach a threshold required to overcome inhibition by MAG through extracellular signal-regulated kinase-dependent inhibition of phosphodiesterase. J. Neurosci. 23, 11770–11777 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nishiyama, M., von Schimmelmann, M. J., Togashi, K., Findley, W. M. & Hong, K. Membrane potential shifts caused by diffusible guidance signals direct growth-cone turning. Nature Neurosci. 11, 762–771 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Parsons, J. T., Horwitz, A. R. & Schwartz, M. A. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nature Rev. Mol. Cell Biol. 11, 633–643 (2010).

    Article  CAS  Google Scholar 

  58. Hu, H., Marton, T. F. & Goodman, C. S. Plexin B mediates axon guidance in Drosophila by simultaneously inhibiting active Rac and enhancing RhoA signaling. Neuron 32, 39–51 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Yuan, X. B. et al. Signalling and crosstalk of Rho GTPases in mediating axon guidance. Nature Cell Biol. 5, 38–45 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Iwasato, T. et al. Rac-GAP α-chimerin regulates motor-circuit formation as a key mediator of EphrinB3/EphA4 forward signaling. Cell 130, 742–753 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Briancon-Marjollet, A. et al. Trio mediates netrin-1-induced Rac1 activation in axon outgrowth and guidance. Mol. Cell. Biol. 28, 2314–2323 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li, X. et al. Netrin signal transduction and the guanine nucleotide exchange factor DOCK180 in attractive signaling. Nature Neurosci. 11, 28–35 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Wen, Z. et al. BMP gradients steer nerve growth cones by a balancing act of LIM kinase and Slingshot phosphatase on ADF/cofilin. J. Cell Biol. 178, 107–119 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Marsick, B. M., Flynn, K. C., Santiago-Medina, M., Bamburg, J. R. & Letourneau, P. C. Activation of ADF/cofilin mediates attractive growth cone turning toward nerve growth factor and netrin-1. Dev. Neurobiol. 70, 565–588 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lebrand, C. et al. Critical role of Ena/VASP proteins for filopodia formation in neurons and in function downstream of netrin-1. Neuron 42, 37–49 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Terman, J. R., Mao, T., Pasterkamp, R. J., Yu, H. H. & Kolodkin, A. L. MICALs, a family of conserved flavoprotein oxidoreductases, function in plexin-mediated axonal repulsion. Cell 109, 887–900 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Hung, R. J. et al. Mical links semaphorins to F-actin disassembly. Nature 463, 823–827 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Koester, M. P., Muller, O. & Pollerberg, G. E. Adenomatous polyposis coli is differentially distributed in growth cones and modulates their steering. J. Neurosci. 27, 12590–12600 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Robles, E., Huttenlocher, A. & Gomez, T. M. Filopodial calcium transients regulate growth cone motility and guidance through local activation of calpain. Neuron 38, 597–609 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Li, W. et al. Activation of FAK and Src are receptor-proximal events required for netrin signaling. Nature Neurosci. 7, 1213–1221 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Liu, G. et al. Netrin requires focal adhesion kinase and Src family kinases for axon outgrowth and attraction. Nature Neurosci. 7, 1222–1232 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Ren, X. R. et al. Focal adhesion kinase in netrin-1 signaling. Nature Neurosci. 7, 1204–1212 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Conklin, M. W., Lin, M. S. & Spitzer, N. C. Local calcium transients contribute to disappearance of pFAK, focal complex removal and deadhesion of neuronal growth cones and fibroblasts. Dev. Biol. 287, 201–212 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Robles, E. & Gomez, T. M. Focal adhesion kinase signaling at sites of integrin-mediated adhesion controls axon pathfinding. Nature Neurosci. 9, 1274–1283 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Bechara, A. et al. FAK-MAPK-dependent adhesion disassembly downstream of L1 contributes to semaphorin3A-induced collapse. EMBO J. 27, 1549–1562 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Goh, E. L. et al. β1-integrin mediates myelin-associated glycoprotein signaling in neuronal growth cones. Mol. Brain 1, 10 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Woo, S., Rowan, D. J. & Gomez, T. M. Retinotopic mapping requires focal adhesion kinase-mediated regulation of growth cone adhesion. J. Neurosci. 29, 13981–13991 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yam, P. T., Langlois, S. D., Morin, S. & Charron, F. Sonic hedgehog guides axons through a noncanonical, Src-family-kinase-dependent signaling pathway. Neuron 62, 349–362 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Wu, K. Y. et al. Local translation of RhoA regulates growth cone collapse. Nature 436, 1020–1024 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Leung, K. M. et al. Asymmetrical β-actin mRNA translation in growth cones mediates attractive turning to netrin-1. Nature Neurosci. 9, 1247–1256 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Yao, J., Sasaki, Y., Wen, Z., Bassell, G. J. & Zheng, J. Q. An essential role for β-actin mRNA localization and translation in Ca2+-dependent growth cone guidance. Nature Neurosci. 9, 1265–1273 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Hengst, U., Deglincerti, A., Kim, H. J., Jeon, N. L. & Jaffrey, S. R. Axonal elongation triggered by stimulus-induced local translation of a polarity complex protein. Nature Cell Biol. 11, 1024–1030 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Drinjakovic, J. et al. E3 ligase Nedd4 promotes axon branching by downregulating PTEN. Neuron 65, 341–357 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sasaki, Y. et al. Phosphorylation of zipcode binding protein 1 is required for brain-derived neurotrophic factor signaling of local β-actin synthesis and growth cone turning. J. Neurosci. 30, 9349–9358 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tcherkezian, J., Brittis, P. A., Thomas, F., Roux., P. P. & Flanagan, J. G. Transmembrane receptor DCC associates with protein synthesis machinery and regulates translation. Cell 141, 632–644 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tojima, T. et al. Attractive axon guidance involves asymmetric membrane transport and exocytosis in the growth cone. Nature Neurosci. 10, 58–66 (2007). The first demonstration that polarized vesicle trafficking mediates chemotactic guidance of growth cones.

    Article  CAS  PubMed  Google Scholar 

  87. Kolpak, A. L. et al. Negative guidance factor-induced macropinocytosis in the growth cone plays a critical role in repulsive axon turning. J. Neurosci. 29, 10488–10498 (2009). This study suggests that asymmetric membrane retrieval through macropinocytosis, a type of fluid-phase endocytosis, mediates repulsive growth cone guidance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hines, J. H., Abu-Rub, M. & Henley, J. R. Asymmetric endocytosis and remodeling of β1-integrin adhesions during growth cone chemorepulsion by MAG. Nature Neurosci. 13, 829–837 (2010). The first demonstration that a growth cone redistributes adhesion machinery across its axis for initiating chemotactic turning.

    Article  CAS  PubMed  Google Scholar 

  89. Tojima, T., Itofusa, R. & Kamiguchi, H. Asymmetric clathrin-mediated endocytosis drives repulsive growth cone guidance. Neuron 66, 370–377 (2010). This paper demonstrates that asymmetric removal of growth cone plasma membrane through clathrin-coated pits is required for, and sufficient for, repulsive turning.

    Article  CAS  PubMed  Google Scholar 

  90. Pfenninger, K. H. Plasma membrane expansion: a neuron's Herculean task. Nature Rev. Neurosci. 10, 251–261 (2009).

    Article  CAS  Google Scholar 

  91. Sann, S., Wang, Z., Brown, H. & Jin, Y. Roles of endosomal trafficking in neurite outgrowth and guidance. Trends Cell Biol. 19, 317–324 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Craig, A. M., Wyborski, R. J. & Banker, G. Preferential addition of newly synthesized membrane protein at axonal growth cones. Nature 375, 592–594 (1995).

    Article  CAS  PubMed  Google Scholar 

  93. Fournier, A. E. et al. Semaphorin3A enhances endocytosis at sites of receptor-F-actin colocalization during growth cone collapse. J. Cell Biol. 149, 411–422 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jurney, W. M., Gallo, G., Letourneau, P. C. & McLoon, S. C. Rac1-mediated endocytosis during ephrin-A2- and semaphorin 3A-induced growth cone collapse. J. Neurosci. 22, 6019–6028 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gupton, S. L. & Gertler, F. B. Integrin signaling switches the cytoskeletal and exocytic machinery that drives neuritogenesis. Dev. Cell 18, 725–736 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Alberts, P. et al. Cdc42 and actin control polarized expression of TI-VAMP vesicles to neuronal growth cones and their fusion with the plasma membrane. Mol. Biol. Cell 17, 1194–1203 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sabo, S. L. & McAllister, A. K. Mobility and cycling of synaptic protein-containing vesicles in axonal growth cone filopodia. Nature Neurosci. 6, 1264–1269 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Henley, J. & Poo, M. M. Guiding neuronal growth cones using Ca2+ signals. Trends Cell Biol. 14, 320–330 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. van Horck, F. P., Weinl, C. & Holt, C. E. Retinal axon guidance: novel mechanisms for steering. Curr. Opin. Neurobiol. 14, 61–66 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bouchard, J. F. et al. Protein kinase A activation promotes plasma membrane insertion of DCC from an intracellular pool: a novel mechanism regulating commissural axon extension. J. Neurosci. 24, 3040–3050 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bartoe, J. L. et al. Protein interacting with C-kinase 1/protein kinase Cα-mediated endocytosis converts netrin-1-mediated repulsion to attraction. J. Neurosci. 26, 3192–3205 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Piper, M., Salih, S., Weinl, C., Holt, C. E. & Harris, W. A. Endocytosis-dependent desensitization and protein synthesis-dependent resensitization in retinal growth cone adaptation. Nature Neurosci. 8, 179–186 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Ming, G. L. et al. Adaptation in the chemotactic guidance of nerve growth cones. Nature 417, 411–418 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Zweifel, L. S., Kuruvilla, R. & Ginty, D. D. Functions and mechanisms of retrograde neurotrophin signalling. Nature Rev. Neurosci. 6, 615–625 (2005).

    Article  CAS  Google Scholar 

  105. Mann, F., Miranda, E., Weinl, C., Harmer, E. & Holt, C. E. B-type Eph receptors and ephrins induce growth cone collapse through distinct intracellular pathways. J. Neurobiol. 57, 323–336 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Joset, A., Dodd, D. A., Halegoua, S. & Schwab, M. E. Pincher-generated Nogo-A endosomes mediate growth cone collapse and retrograde signaling. J. Cell Biol. 188, 271–285 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Greka, A., Navarro, B., Oancea, E., Duggan, A. & Clapham, D. E. TRPC5 is a regulator of hippocampal neurite length and growth cone morphology. Nature Neurosci. 6, 837–845 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Akiyama, H. & Kamiguchi, H. Phosphatidylinositol 3-kinase facilitates microtubule-dependent membrane transport for neuronal growth cone guidance. J. Biol. Chem. 285, 41740–41748 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Karcher, R. L. et al. Cell cycle regulation of myosin-V by calcium/calmodulin-dependent protein kinase II. Science 293, 1317–1320 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Guillaud, L., Wong, R. & Hirokawa, N. Disruption of KIF17-Mint1 interaction by CaMKII-dependent phosphorylation: a molecular model of kinesin-cargo release. Nature Cell Biol. 10, 19–29 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Pang, Z. P. & Sudhof, T. C. Cell biology of Ca2+-triggered exocytosis. Curr. Opin. Cell Biol. 22, 496–505 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Marks, B. & McMahon, H. T. Calcium triggers calcineurin-dependent synaptic vesicle recycling in mammalian nerve terminals. Curr. Biol. 8, 740–749 (1998).

    Article  CAS  PubMed  Google Scholar 

  113. Cousin, M. A. & Robinson, P. J. The dephosphins: dephosphorylation by calcineurin triggers synaptic vesicle endocytosis. Trends Neurosci. 24, 659–665 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Lee, S. Y. et al. Regulation of the interaction between PIPKIγ and talin by proline-directed protein kinases. J. Cell Biol. 168, 789–799 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ellis, L., Katz, F. & Pfenninger, K. H. Nerve growth cones isolated from fetal rat brain. II. Cyclic adenosine 3′:5′-monophosphate (cAMP)-binding proteins and cAMP-dependent protein phosphorylation. J. Neurosci. 5, 1393–1401 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Menegon, A. et al. Protein kinase A-mediated synapsin I phosphorylation is a central modulator of Ca2+-dependent synaptic activity. J. Neurosci. 26, 11670–11681 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bonanomi, D. et al. Phosphorylation of synapsin I by cAMP-dependent protein kinase controls synaptic vesicle dynamics in developing neurons. J. Neurosci. 25, 7299–7308 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kao, H. T. et al. A protein kinase A-dependent molecular switch in synapsins regulates neurite outgrowth. Nature Neurosci. 5, 431–437 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Micheva, K. D., Buchanan, J., Holz, R. W. & Smith, S. J. Retrograde regulation of synaptic vesicle endocytosis and recycling. Nature Neurosci. 6, 925–932 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Caswell, P. T., Vadrevu, S. & Norman, J. C. Integrins: masters and slaves of endocytic transport. Nature Rev. Mol. Cell. Biol. 10, 843–853 (2009).

    Article  CAS  Google Scholar 

  121. Ezratty, E. J., Bertaux, C., Marcantonio, E. E. & Gundersen, G. G. Clathrin mediates integrin endocytosis for focal adhesion disassembly in migrating cells. J. Cell Biol. 187, 733–747 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hasan, N. & Hu, C. Vesicle-associated membrane protein 2 mediates trafficking of α5β1 integrin to the plasma membrane. Exp. Cell Res. 316, 12–23 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Woo, S. & Gomez, T. M. Rac1 and RhoA promote neurite outgrowth through formation and stabilization of growth cone point contacts. J. Neurosci. 26, 1418–1428 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Eva, R. et al. Rab11 and its effector Rab coupling protein contribute to the trafficking of β1 integrins during axon growth in adult dorsal root ganglion neurons and PC12 cells. J. Neurosci. 30, 11654–11669 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gatlin, J. C., Estrada-Bernal, A., Sanford, S. D. & Pfenninger, K. H. Myristoylated, alanine-rich C-kinase substrate phosphorylation regulates growth cone adhesion and pathfinding. Mol. Biol. Cell 17, 5115–5130 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chan, K. T., Bennin, D. A. & Huttenlocher, A. Regulation of adhesion dynamics by calpain-mediated proteolysis of focal adhesion kinase (FAK). J. Biol. Chem. 285, 11418–11426 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Oda, A., Druker, B. J., Ariyoshi, H., Smith, M. & Salzman, E. W. pp60src is an endogenous substrate for calpain in human blood platelets. J. Biol. Chem. 268, 12603–12608 (1993).

    CAS  PubMed  Google Scholar 

  128. Franco, S. J. et al. Calpain-mediated proteolysis of talin regulates adhesion dynamics. Nature Cell Biol. 6, 977–983 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Palamidessi, A. et al. Endocytic trafficking of Rac is required for the spatial restriction of signaling in cell migration. Cell 134, 135–147 (2008). This paper demonstrates that delivery of Rac-containing vesicles to specific subcellular locations controls local actin remodelling.

    Article  CAS  PubMed  Google Scholar 

  130. Osmani, N., Peglion, F., Chavrier, P. & Etienne-Manneville, S. Cdc42 localization and cell polarity depend on membrane traffic. J. Cell Biol. 191, 1261–1269 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Blondeau, F. et al. Tandem MS analysis of brain clathrin-coated vesicles reveals their critical involvement in synaptic vesicle recycling. Proc. Natl Acad. Sci. USA 101, 3833–3838 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Takamori, S. et al. Molecular anatomy of a trafficking organelle. Cell 127, 831–846 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Horiguchi, K., Hanada, T., Fukui, Y. & Chishti, A. H. Transport of PIP3 by GAKIN, a kinesin-3 family protein, regulates neuronal cell polarity. J. Cell Biol. 174, 425–436 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Arimura, N. & Kaibuchi, K. Neuronal polarity: from extracellular signals to intracellular mechanisms. Nature Rev. Neurosci. 8, 194–205 (2007).

    Article  CAS  Google Scholar 

  135. Peskin, C. S., Odell, G. M. & Oster, G. F. Cellular motions and thermal fluctuations: the Brownian ratchet. Biophys. J. 65, 316–324 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Raucher, D. & Sheetz, M. P. Cell spreading and lamellipodial extension rate is regulated by membrane tension. J. Cell Biol. 148, 127–136 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Serafini, T. et al. Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell 87, 1001–1014 (1996).

    Article  CAS  PubMed  Google Scholar 

  138. Charron, F., Stein, E., Jeong, J., McMahon, A. P. & Tessier-Lavigne, M. The morphogen sonic hedgehog is an axonal chemoattractant that collaborates with netrin-1 in midline axon guidance. Cell 113, 11–23 (2003).

    Article  CAS  PubMed  Google Scholar 

  139. Butler, S. J. & Dodd, J. A role for BMP heterodimers in roof plate-mediated repulsion of commissural axons. Neuron 38, 389–401 (2003).

    Article  CAS  PubMed  Google Scholar 

  140. Islam, S. M. et al. Draxin, a repulsive guidance protein for spinal cord and forebrain commissures. Science 323, 388–393 (2009).

    Article  CAS  PubMed  Google Scholar 

  141. Bourikas, D. et al. Sonic hedgehog guides commissural axons along the longitudinal axis of the spinal cord. Nature Neurosci. 8, 297–304 (2005).

    Article  CAS  PubMed  Google Scholar 

  142. Lyuksyutova, A. I. et al. Anterior-posterior guidance of commissural axons by Wnt–frizzled signaling. Science 302, 1984–1988 (2003).

    Article  CAS  PubMed  Google Scholar 

  143. Domanitskaya, E. et al. Sonic hedgehog guides post-crossing commissural axons both directly and indirectly by regulating Wnt activity. J. Neurosci. 30, 11167–11176 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Dufour, A. et al. Area specificity and topography of thalamocortical projections are controlled by ephrin/Eph genes. Neuron 39, 453–465 (2003).

    Article  CAS  PubMed  Google Scholar 

  145. Powell, A. W., Sassa, T., Wu, Y., Tessier-Lavigne, M. & Polleux, F. Topography of thalamic projections requires attractive and repulsive functions of Netrin-1 in the ventral telencephalon. PLoS Biol. 6, e116 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Stein, E. & Tessier-Lavigne, M. Hierarchical organization of guidance receptors: silencing of netrin attraction by slit through a Robo/DCC receptor complex. Science 291, 1928–1938 (2001).

    Article  CAS  PubMed  Google Scholar 

  147. Parra, L. M. & Zou, Y. Sonic hedgehog induces response of commissural axons to Semaphorin repulsion during midline crossing. Nature Neurosci. 13, 29–35 (2010).

    Article  CAS  PubMed  Google Scholar 

  148. Dudanova, I., Gatto, G. & Klein, R. GDNF acts as a chemoattractant to support ephrinA-induced repulsion of limb motor axons. Curr. Biol. 20, 2150–2156 (2010). This study suggests that two opposing cues presented as counter gradients push and pull the growth cone to ensure its correct navigation.

    Article  CAS  PubMed  Google Scholar 

  149. Schmitt, A. M. et al. Wnt–Ryk signalling mediates medial–lateral retinotectal topographic mapping. Nature 439, 31–37 (2006).

    Article  CAS  PubMed  Google Scholar 

  150. Engle, E. C. Human genetic disorders of axon guidance. Cold Spring Harb. Perspect. Biol. 2, a001784 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Tischfield, M. A. et al. Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance. Cell 140, 74–87 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Alto, L. T. et al. Chemotropic guidance facilitates axonal regeneration and synapse formation after spinal cord injury. Nature Neurosci. 12, 1106–1113 (2009).

    Article  CAS  PubMed  Google Scholar 

  153. Li, L., Hutchins, B. I. & Kalil, K. Wnt5a induces simultaneous cortical axon outgrowth and repulsive axon guidance through distinct signaling mechanisms. J. Neurosci. 29, 5873–5883 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Vaudry, D. et al. Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol. Rev. 61, 283–357 (2009).

    Article  CAS  PubMed  Google Scholar 

  155. Zheng, J. Q., Felder, M., Connor, J. A. & Poo, M. M. Turning of nerve growth cones induced by neurotransmitters. Nature 368, 140–144 (1994).

    Article  CAS  PubMed  Google Scholar 

  156. Bouzigues, C., Morel, M., Triller, A. & Dahan, M. Asymmetric redistribution of GABA receptors during GABA gradient sensing by nerve growth cones analyzed by single quantum dot imaging. Proc. Natl Acad. Sci. USA 104, 11251–11256 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to investigators whose work could not be cited owing to space limitations. The authors' work is supported by the RIKEN Brain Science Institute (H.K.), grants-in-aid from the Ministry of Education, Culture, Sports, Science and Technology (H.K. and T.T.), the Japan Science and Technology Agency PRESTO program (T.T.), funding from the US National Institutes of Health (J.R.H.), and a John M. Nasseff, Sr. Career Development Award in Neurologic Surgery Research from the Mayo Clinic, USA (J.R.H).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Kamiguchi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Hiroyuki Kamiguchi's homepage

John R. Henley's homepage

Glossary

Local augmentation

A theoretical reaction of chemotactic cells for gradient sensing, in which signals are augmented locally in the cellular area containing higher receptor occupancy.

Global inhibition

Another theoretical reaction for gradient sensing. The locally augmented signals can be further isolated by spreading antagonistic signals over the whole cell.

Adaptation

The ability of a growth cone to readjust its sensitivity over a wide range of guidance cue concentrations during long-distance chemotaxis.

Early endosome

An intracellular membrane compartment where endocytosed molecules are sorted and directed to the plasma membrane for recycling or to lysosomes for degradation. Early endosomes can also serve as platforms where internalized receptors generate signals.

CDC42 and RAC1

Rho-family GTPases that link extracellular signals to cytoskeletal rearrangements. RAC1 and CDC42 can, for example, promote actin assembly through their major effector actin-related protein 2 (ARP2)–ARP3 complex.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tojima, T., Hines, J., Henley, J. et al. Second messengers and membrane trafficking direct and organize growth cone steering. Nat Rev Neurosci 12, 191–203 (2011). https://doi.org/10.1038/nrn2996

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2996

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing