Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Manipulation of host membranes by bacterial effectors

Key Points

  • On infection, bacterial pathogens interact with host membranes to trigger various cellular processes through different mechanisms. These processes include alterations to the dynamics between the plasma membrane and the actin cytoskeleton, and subversion of the membrane-associated pathways that are involved in vesicle trafficking.

  • Many bacterial effectors manipulate phosphoinositide (PI) homeostasis at the plasma membrane to destabilize actin dynamics and alter the morphology of the membrane. This facilitates the entry of pathogens or, in other cases, damages the cells by disrupting membrane integrity and eventually leading to rapid cell lysis in the later stage of infection.

  • Some pathogens use bacterial phosphatases or PI adaptor proteins to form intracellular vacuoles that are derived from host membranes in order to establish a replicative niche. Altered PI levels at the surfaces of these vacuoles as a result of the activity of bacterial phosphatases can block phagosomal maturation to avoid lysosomal fusion.

  • The GTPase signalling pathway is often targeted by bacterial pathogens to manipulate the actin cytoskeleton and endosomal trafficking. RAB GTPases, which have an important role in vesicular trafficking pathways, are recruited to bacterium-containing vacuoles, where their active state can be differentially regulated by effectors.

  • Bacterial effectors mimic GTPase-activating protein (GAP) or guanine nucleotide exchange factor (GEF) activity to target RHO-family GTPases that are key regulators of actin dynamics. This results in loss of cell shape, motility and ability to phagocytose pathogens.

  • Autophagy is one of the cellular defence mechanisms against the invasion of pathogenic bacteria. However, some pathogens have evolved strategies to subvert autophagy to their own advantage by establishing autophagic vesicles as their replicative niche. This allows them to survive inside host cells and avoid lysosomal degradation.

  • Some bacterial effectors are speculated to induce autophagy during infection. This may not only protect the bacteria from degradative enzymes and immune responses, but also provide nutrients from cellular debris. For extracellular pathogens, inducing autophagy helps prevent phagocytosis.

Abstract

Bacterial pathogens interact with host membranes to trigger a wide range of cellular processes during the course of infection. These processes include alterations to the dynamics between the plasma membrane and the actin cytoskeleton, and subversion of the membrane-associated pathways involved in vesicle trafficking. Such changes facilitate the entry and replication of the pathogen, and prevent its phagocytosis and degradation. In this Review, we describe the manipulation of host membranes by numerous bacterial effectors that target phosphoinositide metabolism, GTPase signalling and autophagy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lifestyles for pathogenic bacteria.
Figure 2: Bacterial effectors that modulate host phosphoinositide metabolism.
Figure 3: Bacterial effectors that target GTPase signalling pathways.
Figure 4: Bacterial pathogens that subvert the autophagic pathway.

Similar content being viewed by others

References

  1. Anderson, D. M. & Schneewind, O. Type III machines of Gram-negative pathogens: injecting virulence factors into host cells and more. Curr. Opin. Microbiol. 2, 18–24 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Cascales, E. & Christie, P. J. The versatile bacterial type IV secretion systems. Nature Rev. Microbiol. 1, 137–149 (2003).

    Article  CAS  Google Scholar 

  3. Backert, S. & Meyer, T. F. Type IV secretion systems and their effectors in bacterial pathogenesis. Curr. Opin. Microbiol. 9, 207–217 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Cossart, P. & Sansonetti, P. J. Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 304, 242–248 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Garcia-del Portillo, F., Zwick, M. B., Leung, K. Y. & Finlay, B. B. Salmonella induces the formation of filamentous structures containing lysosomal membrane glycoproteins in epithelial cells. Proc. Natl Acad. Sci. USA 90, 10544–10548 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stein, M. A., Leung, K. Y., Zwick, M., Garcia-del Portillo, F. & Finlay, B. B. Identification of a Salmonella virulence gene required for formation of filamentous structures containing lysosomal membrane glycoproteins within epithelial cells. Mol. Microbiol. 20, 151–164 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Brumell, J. H., Goosney, D. L. & Finlay, B. B. SifA, a type III secreted effector of Salmonella typhimurium, directs Salmonella-induced filament (Sif) formation along microtubules. Traffic 3, 407–415 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Drecktrah, D. et al. Dynamic behavior of Salmonella-induced membrane tubules in epithelial cells. Traffic 9, 2117–2129 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Di Paolo, G. & De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651–657 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Payrastre, B. et al. Phosphoinositides: key players in cell signalling, in time and space. Cell Signal. 13, 377–387 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Saarikangas, J., Zhao, H. & Lappalainen, P. Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides. Physiol. Rev. 90, 259–289 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Pizarro-Cerda, J. & Cossart, P. Subversion of phosphoinositide metabolism by intracellular bacterial pathogens. Nature Cell Biol. 6, 1026–1033 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Hilbi, H. Modulation of phosphoinositide metabolism by pathogenic bacteria. Cell. Microbiol. 8, 1697–1706 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Weber, S. S., Ragaz, C. & Hilbi, H. Pathogen trafficking pathways and host phosphoinositide metabolism. Mol. Microbiol. 71, 1341–1352 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Niebuhr, K. et al. IpgD, a protein secreted by the type III secretion machinery of Shigella flexneri, is chaperoned by IpgE and implicated in entry focus formation. Mol. Microbiol. 38, 8–19 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Niebuhr, K. et al. Conversion of PtdIns(4,5)P2 into PtdIns(5)P by the S. flexneri effector IpgD reorganizes host cell morphology. EMBO J. 21, 5069–5078 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Raucher, D. et al. Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton–plasma membrane adhesion. Cell 100, 221–228 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Charras, G. T., Coughlin, M., Mitchison, T. J. & Mahadevan, L. Life and times of a cellular bleb. Biophys. J. 94, 1836–1853 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Charras, G. & Paluch, E. Blebs lead the way: how to migrate without lamellipodia. Nature Rev. Mol. Cell Biol. 9, 730–736 (2008).

    Article  CAS  Google Scholar 

  20. Charras, G. T. A short history of blebbing. J. Microsc. 231, 466–478 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Broberg, C. A., Zhang, L., Gonzalez, H., Laskowski-Arce, M. A. & Orth, K. A Vibrio effector protein is an inositol phosphatase and disrupts host cell membrane integrity. Science 329, 1660–1662 (2010). Demonstrates a mechanism of action for an effector from V. parahaemolyticus that manipulates plasma membrane integrity via PI phosphatase activity.

    Article  CAS  PubMed  Google Scholar 

  22. Burdette, D. L., Seemann, J. & Orth, K. Vibrio VopQ induces PI3-kinase-independent autophagy and antagonizes phagocytosis. Mol. Microbiol. 73, 639–649 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yarbrough, M. L. et al. AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling. Science 323, 269–272 (2009).Describes a bacterial effector that catalyses a novel post-translational modification, AMPylation, to modify RHO-family GTPases and disrupt the actin cytoskeleton.

    Article  CAS  PubMed  Google Scholar 

  24. Burdette, D. L., Yarbrough, M. L. & Orth, K. Not without cause: Vibrio parahaemolyticus induces acute autophagy and cell death. Autophagy 5, 100–102 (2009).

    Article  PubMed  Google Scholar 

  25. Burdette, D. L., Yarbrough, M. L., Orvedahl, A., Gilpin, C. J. & Orth, K. Vibrio parahaemolyticus orchestrates a multifaceted host cell infection by induction of autophagy, cell rounding, and then cell lysis. Proc. Natl Acad. Sci. USA 105, 12497–12502 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hayward, R. D., Leong, J. M., Koronakis, V. & Campellone, K. G. Exploiting pathogenic Escherichia coli to model transmembrane receptor signalling. Nature Rev. Microbiol. 4, 358–370 (2006).

    Article  CAS  Google Scholar 

  27. Smith, K., Humphreys, D., Hume, P. J. & Koronakis, V. Enteropathogenic Escherichia coli recruits the cellular inositol phosphatase SHIP2 to regulate actin-pedestal formation. Cell Host Microbe 7, 13–24 (2010).Identifies the critical residues of the EPEC protein Tir that are essential for recruitment of host SHIP2, which (through scaffolding and phosphatase activity) regulates actin pedestal formation.

    Article  CAS  PubMed  Google Scholar 

  28. Vieira, O. V., Botelho, R. J. & Grinstein, S. Phagosome maturation: aging gracefully. Biochem. J. 366, 689–704 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vergne, I. et al. Mechanism of phagolysosome biogenesis block by viable Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 102, 4033–4038 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Beresford, N. et al. MptpB, a virulence factor from Mycobacterium tuberculosis, exhibits triple-specificity phosphatase activity. Biochem. J. 406, 13–18 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hubber, A. & Roy, C. R. Modulation of host cell function by Legionella pneumophila type IV effectors. Annu. Rev. Cell Dev. Biol. 26, 261–283 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Ragaz, C. et al. The Legionella pneumophila phosphatidylinositol-4 phosphate-binding type IV substrate SidC recruits endoplasmic reticulum vesicles to a replication-permissive vacuole. Cell. Microbiol. 10, 2416–2433 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Weber, S. S., Ragaz, C., Reus, K., Nyfeler, Y. & Hilbi, H. Legionella pneumophila exploits PI(4)P to anchor secreted effector proteins to the replicative vacuole. PLoS Pathog. 2, e46 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Kagan, J. C. & Roy, C. R. Legionella phagosomes intercept vesicular traffic from endoplasmic reticulum exit sites. Nature Cell Biol. 4, 945–954 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Li, Z., Solomon, J. M. & Isberg, R. R. Dictyostelium discoideum strains lacking the RtoA protein are defective for maturation of the Legionella pneumophila replication vacuole. Cell. Microbiol. 7, 431–442 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Brombacher, E. et al. Rab1 guanine nucleotide exchange factor SidM is a major phosphatidylinositol 4-phosphate-binding effector protein of Legionella pneumophila. J. Biol. Chem. 284, 4846–4856 (2009).Identifies the RAB1GEF from L. pneumophila , SidM, as a predominant PtdIns4P-binding protein, and maps the specific binding domain that is essential for anchoring SidM to PtdIns4P on LCVs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Buchmeier, N. A. & Heffron, F. Inhibition of macrophage phagosome-lysosome fusion by Salmonella typhimurium. Infect. Immun. 59, 2232–2238 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Garvis, S. G., Beuzon, C. R. & Holden, D. W. A role for the PhoP/Q regulon in inhibition of fusion between lysosomes and Salmonella-containing vacuoles in macrophages. Cell. Microbiol. 3, 731–744 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Brumell, J. H., Tang, P., Mills, S. D. & Finlay, B. B. Characterization of Salmonella-induced filaments (Sifs) reveals a delayed interaction between Salmonella-containing vacuoles and late endocytic compartments. Traffic 2, 643–653 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Hernandez, L. D., Hueffer, K., Wenk, M. R. & Galan, J. E. Salmonella modulates vesicular traffic by altering phosphoinositide metabolism. Science 304, 1805–1807 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Terebiznik, M. R. et al. Elimination of host cell PtdIns(4,5)P2 by bacterial SigD promotes membrane fission during invasion by Salmonella. Nature Cell Biol. 4, 766–773 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Mallo, G. V. et al. SopB promotes phosphatidylinositol 3-phosphate formation on Salmonella vacuoles by recruiting Rab5 and Vps34. J. Cell Biol. 182, 741–752 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bakowski, M. A. et al. The phosphoinositide phosphatase SopB manipulates membrane surface charge and trafficking of the Salmonella-containing vacuole. Cell Host Microbe 7, 453–462 (2010).Demonstrates how the S. Typhimurium effector SopB exerts a global effect of recruiting host proteins by altering the surface charges of SCVs via its phosphatase activity.

    Article  CAS  PubMed  Google Scholar 

  44. Mason, D. et al. Alteration of epithelial structure and function associated with PtdIns(4,5)P2 degradation by a bacterial phosphatase. J. Gen. Physiol. 129, 267–283 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wennerberg, K., Rossman, K. L. & Der, C. J. The Ras superfamily at a glance. J. Cell Sci. 118, 843–846 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Stenmark, H. & Olkkonen, V. M. The Rab GTPase family. Genome Biol. 2, REVIEWS3007 (2001).

  47. Scheffzek, K. & Ahmadian, M. R. GTPase activating proteins: structural and functional insights 18 years after discovery. Cell. Mol. Life Sci. 62, 3014–3038 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Pfeffer, S. & Aivazian, D. Targeting Rab GTPases to distinct membrane compartments. Nature Rev. Mol. Cell Biol. 5, 886–896 (2004).

    Article  CAS  Google Scholar 

  49. Vetter, I. R. & Wittinghofer, A. The guanine nucleotide-binding switch in three dimensions. Science 294, 1299–1304 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Brumell, J. H. & Scidmore, M. A. Manipulation of Rab GTPase function by intracellular bacterial pathogens. Microbiol. Mol. Biol. Rev. 71, 636–652 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mukherjee, K., Parashuraman, S., Raje, M. & Mukhopadhyay, A. SopE acts as an Rab5-specific nucleotide exchange factor and recruits non-prenylated Rab5 on Salmonella-containing phagosomes to promote fusion with early endosomes. J. Biol. Chem. 276, 23607–23615 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Bulgin, R. et al. Bacterial guanine nucleotide exchange factors SopE-like and WxxxE effectors. Infect. Immun. 78, 1417–1425 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Murata, T. et al. The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nature Cell Biol. 8, 971–977 (2006).Introduces the L. pneumophila Dot/Icm effector SidM, a RABGEF that is important for RAB1 recruitment to the LCV. This unique bacterial protein alters vesicle trafficking by targeting host RAB GTPases.

    Article  CAS  PubMed  Google Scholar 

  54. Muller, M. P. et al. The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b. Science 329, 946–949 (2010).

    Article  PubMed  Google Scholar 

  55. Schoebel, S., Oesterlin, L. K., Blankenfeldt, W., Goody, R. S. & Itzen, A. RabGDI displacement by DrrA from Legionella is a consequence of its guanine nucleotide exchange activity. Mol. Cell 36, 1060–1072 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Ingmundson, A., Delprato, A., Lambright, D. G. & Roy, C. R. Legionella pneumophila proteins that regulate Rab1 membrane cycling. Nature 450, 365–369 (2007).Describes two L. pneumophila effectors, SidM and LepB, that act in recycling RAB1 on the LCV membrane. SidM has GEF activity, thereby aiding in RAB1 recruitment to the membrane; by contrast, LepB aids in the removal of RAB1 from the membrane by acting as a GAP.

    Article  CAS  PubMed  Google Scholar 

  57. Sturgill-Koszycki, S. & Swanson, M. S. Legionella pneumophila replication vacuoles mature into acidic, endocytic organelles. J. Exp. Med. 192, 1261–1272 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fu, Y. & Galan, J. E. A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 401, 293–297 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Hardt, W. D., Chen, L. M., Schuebel, K. E., Bustelo, X. R. & Galan, J. E. S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93, 815–826 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Schlumberger, M. C. & Hardt, W. D. Triggered phagocytosis by Salmonella: bacterial molecular mimicry of RhoGTPase activation/deactivation. Curr. Top. Microbiol. Immunol. 291, 29–42 (2005).

    CAS  PubMed  Google Scholar 

  61. Kaniga, K., Uralil, J., Bliska, J. B. & Galan, J. E. A secreted protein tyrosine phosphatase with modular effector domains in the bacterial pathogen Salmonella typhimurium. Mol. Microbiol. 21, 633–641 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Fu, Y. & Galan, J. E. The Salmonella typhimurium tyrosine phosphatase SptP is translocated into host cells and disrupts the actin cytoskeleton. Mol. Microbiol. 27, 359–368 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Kubori, T. & Galan, J. E. Temporal regulation of salmonella virulence effector function by proteasome-dependent protein degradation. Cell 115, 333–342 (2003).Discusses the regulatory mechanism by which SopE and SptP exert their function in the host cell via a proteasome-dependent protein degradation pathway.

    Article  CAS  PubMed  Google Scholar 

  64. Riese, M. J. et al. Auto-ADP-ribosylation of Pseudomonas aeruginosa ExoS. J. Biol. Chem. 277, 12082–12088 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Goehring, U. M., Schmidt, G., Pederson, K. J., Aktories, K. & Barbieri, J. T. The N-terminal domain of Pseudomonas aeruginosa exoenzyme S is a GTPase-activating protein for Rho GTPases. J. Biol. Chem. 274, 36369–36372 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Von Pawel-Rammingen, U. et al. GAP activity of the Yersinia YopE cytotoxin specifically targets the Rho pathway: a mechanism for disruption of actin microfilament structure. Mol. Microbiol. 36, 737–748 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Black, D. S. & Bliska, J. B. The RhoGAP activity of the Yersinia pseudotuberculosis cytotoxin YopE is required for antiphagocytic function and virulence. Mol. Microbiol. 37, 515–527 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Casselli, T., Lynch, T., Southward, C. M., Jones, B. W. & DeVinney, R. Vibrio parahaemolyticus inhibition of Rho family GTPase activation requires a functional chromosome I type III secretion system. Infect. Immun. 76, 2202–2211 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ogawa, M., Handa, Y., Ashida, H., Suzuki, M. & Sasakawa, C. The versatility of Shigella effectors. Nature Rev. Microbiol. 6, 11–16 (2008).

    Article  CAS  Google Scholar 

  70. Alto, N. M. et al. Identification of a bacterial type III effector family with G protein mimicry functions. Cell 124, 133–145 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Handa, Y. et al. Shigella IpgB1 promotes bacterial entry through the ELMO–Dock180 machinery. Nature Cell Biol. 9, 121–128 (2007).Shows that IpgB1 activates RAC1 by directly activating the ELMO–DOCK180 machinery, thereby inducing membrane ruffles and promoting bacterial entry.

    Article  CAS  PubMed  Google Scholar 

  72. Ohya, K., Handa, Y., Ogawa, M., Suzuki, M. & Sasakawa, C. IpgB1 is a novel Shigella effector protein involved in bacterial invasion of host cells. Its activity to promote membrane ruffling via Rac1 and Cdc42 activation. J. Biol. Chem. 280, 24022–24034 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Huang, Z. et al. Structural insights into host GTPase isoform selection by a family of bacterial GEF mimics. Nature Struct. Mol. Biol. 16, 853–860 (2009).

    Article  CAS  Google Scholar 

  74. Klink, B. U. et al. Structure of Shigella IpgB2 in complex with human RhoA: implications for the mechanism of bacterial guanine nucleotide exchange factor mimicry. J. Biol. Chem. 285, 17197–17208 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tu, X., Nisan, I., Yona, C., Hanski, E. & Rosenshine, I. EspH, a new cytoskeleton-modulating effector of enterohaemorrhagic and enteropathogenic Escherichia coli. Mol. Microbiol 47, 595–606 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Dong, N., Liu, L. & Shao, F. A bacterial effector targets host DH-PH domain RhoGEFs and antagonizes macrophage phagocytosis. EMBO J. 29, 1363–1376 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Selyunin, A. S. et al. The assembly of a GTPase-kinase signalling complex by a bacterial catalytic scaffold. Nature 469, 107–111 (2010).Describes EspG, a unique bacterial effector that disrupts membrane trafficking and acts as a catalytic scaffold by inhibiting ARF-family GTPases and activating PAK proteins at membrane organelles.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Bruggemann, H. et al. Virulence strategies for infecting phagocytes deduced from the in vivo transcriptional program of Legionella pneumophila. Cell. Microbiol. 8, 1228–1240 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27–42 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gutierrez, M. G. et al. Autophagy is a defence mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119, 753–766 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Rich, K. A., Burkett, C. & Webster, P. Cytoplasmic bacteria can be targets for autophagy. Cell. Microbiol. 5, 455–468 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Dorn, B. R., Dunn, W. A., Jr & Progulske-Fox, A. Bacterial interactions with the autophagic pathway. Cell. Microbiol. 4, 1–10 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Kirkegaard, K., Taylor, M. P. & Jackson, W. T. Cellular autophagy: surrender, avoidance and subversion by microorganisms. Nature Rev. Microbiol. 2, 301–314 (2004).Reviews the mechanism of autophagy, methods of monitoring the autophagic pathway, and the subversion of autophagy by bacteria and viruses.

    Article  CAS  Google Scholar 

  84. Colombo, M. I. Pathogens and autophagy: subverting to survive. Cell Death Differ. 12 (Suppl. 2), 1481–1483 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Colombo, M. I. Autophagy: a pathogen driven process. IUBMB Life 59, 238–242 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Dorn, B. R., Dunn, W. A. Jr & Progulske-Fox, A. Porphyromonas gingivalis traffics to autophagosomes in human coronary artery endothelial cells. Infect. Immun. 69, 5698–5708 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pizarro-Cerda, J. et al. Brucella abortus transits through the autophagic pathway and replicates in the endoplasmic reticulum of nonprofessional phagocytes. Infect. Immun. 66, 5711–5724 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Pizarro-Cerda, J., Moreno, E., Sanguedolce, V., Mege, J. L. & Gorvel, J. P. Virulent Brucella abortus prevents lysosome fusion and is distributed within autophagosome-like compartments. Infect. Immun. 66, 2387–2392 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Comerci, D. J., Martinez-Lorenzo, M. J., Sieira, R., Gorvel, J. P. & Ugalde, R. A. Essential role of the VirB machinery in the maturation of the Brucella abortus-containing vacuole. Cell. Microbiol. 3, 159–168 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Swanson, M. S. & Isberg, R. R. Association of Legionella pneumophila with the macrophage endoplasmic reticulum. Infect. Immun. 63, 3609–3620 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Amer, A. O. & Swanson, M. S. Autophagy is an immediate macrophage response to Legionella pneumophila. Cell. Microbiol. 7, 765–778 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Otto, G. P. et al. Macroautophagy is dispensable for intracellular replication of Legionella pneumophila in Dictyostelium discoideum. Mol. Microbiol. 51, 63–72 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Tung, S. M. et al. Loss of Dictyostelium ATG9 results in a pleiotropic phenotype affecting growth, development, phagocytosis and clearance and replication of Legionella pneumophila. Cell. Microbiol. 12, 765–780 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Beron, W., Gutierrez, M. G., Rabinovitch, M. & Colombo, M. I. Coxiella burnetii localizes in a Rab7-labeled compartment with autophagic characteristics. Infect. Immun. 70, 5816–5821 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gutierrez, M. G. et al. Autophagy induction favours the generation and maturation of the Coxiella-replicative vacuoles. Cell. Microbiol. 7, 981–993 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Hernandez, L. D., Pypaert, M., Flavell, R. A. & Galan, J. E. A Salmonella protein causes macrophage cell death by inducing autophagy. J. Cell Biol. 163, 1123–1131 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Beuzon, C. R. et al. Salmonella maintains the integrity of its intracellular vacuole through the action of SifA. EMBO J. 19, 3235–3249 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Brawn, L. C., Hayward, R. D. & Koronakis, V. Salmonella SPI1 effector SipA persists after entry and cooperates with a SPI2 effector to regulate phagosome maturation and intracellular replication. Cell Host Microbe 1, 63–75 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Schroeder, N. et al. The virulence protein SopD2 regulates membrane dynamics of Salmonella-containing vacuoles. PLoS Pathog. 6, e1001002 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Murata-Kamiya, N., Kikuchi, K., Hayashi, T., Higashi, H. & Hatakeyama, M. Helicobacter pylori exploits host membrane phosphatidylserine for delivery, localization, and pathophysiological action of the CagA oncoprotein. Cell Host Microbe 7, 399–411 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Hutagalung, A. H. & Novick, P. J. Role of Rab GTPases in membrane traffic and cell physiology. Physiol. Rev. 91, 119–149 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Alto and members of the Orth laboratory for their advice and discussion. K.O., H.H. and A.S. are supported by grants from the National Institute of Allergy and Infectious Diseases, US National Institutes of Health (R01-AI056404 and R01-AI087808) and the Welch Foundation (I-1561). A.S. is supported by the Howard Hughes Medical Institute Med to Grad Initiative. K.O. is a Burroughs Wellcome Investigator in Pathogenesis of Infectious Disease and a W. W. Caruth, Jr. Biomedical Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim Orth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

Kim Orth's homepage

Glossary

Type III secretion system

(T3SS). A multisubunit, needle-like apparatus that is found in various Gram-negative bacterial pathogens of plants and animals, and penetrates the host cell membrane to translocate effectors into the host cytoplasm during infection.

Type IV secretion system

(T4SS). A multisubunit transporter complex that is found in various Gram-negative bacterial pathogens and delivers substrate molecules, including effector proteins and DNA, into the host cell.

Bacterial effectors

Proteins that are secreted by bacterial pathogens and used as virulence factors during infection.

Pilus

A hair-like projection that attaches one bacterium to another.

GTPase

A protein that cycles between the active, GTP-bound state and the inactive, GDP-bound state to regulate various cellular processes such as vesicle trafficking and actin dynamics. These enzymes are tightly regulated by GTPase-activating proteins and guanine nucleotide exchange factors.

Phosphatidylinositol

A small, negatively charged phospholipid molecule that is a key component of cell membranes and serves various roles in mediating signalling transduction.

Filopodia

Actin-rich cellular projections that aid in motility and environment sensing in eukaryotic cells.

F-actin

The filamentous form of actin; a polymer of globular monomeric actin.

Phagosome

A vacuole that is derived from the outer cell membrane of a host cell and that has engulfed a foreign particle.

Endoplasmic reticulum exit sites

Periphery regions of the endoplasmic reticulum where cargo proteins are exported in vesicles.

RAB GTPase

A member of the RAB family of small monomeric GTPases that are involved in the regulation of vesicle trafficking.

GTPase-activating proteins

(GAPs). A family of proteins that accelerate GTPase-mediated hydrolysis of GTP to GDP.

Guanine nucleotide exchange factors

(GEFs). A family of proteins that induce GTPases to exchange GTP for GDP, resulting in activation of the GTPases.

RHO

A family of small monomeric GTPases (including the RHO proteins, RAC proteins and CDC42) that are involved in the regulation of actin dynamics.

Guanine nucleotide dissociation inhibitor

(GDI). A protein that binds to a GDP-bound GTPase and holds it in an inactive, soluble state in the cytoplasm.

AMPylation

A post-translational modification that involves the covalent attachment of AMP to a threonine or tyrosine residue on a protein substrate, resulting in an altered activity of the modified protein.

Stress fibres

Bundles of actin filaments.

Lamellipodia

Dynamic actin-rich regions on the edge of a cell that aid in cell motility.

Autophagosome

A double-membraned compartment that contains host cytoplasm and organelles and is formed in cells undergoing autophagy.

LC3

(Microtubule-associated protein light chain 3). The cytosolic form of this protein, LC3-I, is lipidated and conjugated to phosphatidylethanolamine to form LC3-II, which then localizes to autophagosomal membranes. The increase in the conversion of LC3-I to LC3-II can be monitored as a marker for the induction of autophagy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ham, H., Sreelatha, A. & Orth, K. Manipulation of host membranes by bacterial effectors. Nat Rev Microbiol 9, 635–646 (2011). https://doi.org/10.1038/nrmicro2602

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2602

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology