Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dynamic niches in the origination and differentiation of haematopoietic stem cells

A Corrigendum to this article was published on 07 December 2011

This article has been updated

Key Points

  • Haematopoietic stem cells (HSCs) are maintained in specialized microenvironments known as 'niches', which are composed of complex cellular and acellular components. Recent advances have contributed significantly to our understanding of what the niche is and how it changes during development, ageing and disease.

  • In particular, powerful new imaging techniques permit the direct observation of HSCs in their niches. These techniques provide novel insights concerning the emergence of HSCs from the dorsal aorta in fetal haematopoiesis, as well as the associations between HSCs and niche components in adult haematopoiesis.

  • Previous conceptions of niches as static, anatomically-defined bone marrow microenvironments consisting predominantly of one cell type are being challenged. Increasingly, it is becoming clear that the niche is an anatomically fluid and very dynamic environment, wherein multiple physical and cellular inputs are integrated by HSCs.

  • Physical inputs that are known to be important in haematopoiesis include oxygen tension, calcium concentration, shear force and mechanical support. Identified bone marrow niche cells include osteoblasts, vascular endothelial cells, mesenchymal stem cells, CXCL12-abundant reticular cells, neural cells and adipocytes.

  • Recent work demonstrates that dysfunctional haematopoiesis, such as that seen in patients with myelodysplasia and leukaemia, can result from defects in the microenvironment alone, without genetic perturbation of HSCs. This indicates that strategies for correcting haematopoietic diseases that target only the HSC may be insufficient or incomplete.

  • Many current clinical trials are exploiting our expanding knowledge of niche biology to improve haematopoietic stem cell transplantation. At present, such studies are largely restricted to targeting relevant niche pathways to effect HSC expansion ex vivo before transplantation; however, future clinical trials will be likely to allow more-directed manipulation of haematopoiesis in vivo.

Abstract

Haematopoietic stem cells (HSCs) are multipotent, self-renewing progenitors that generate all mature blood cells. HSC function is tightly controlled to maintain haematopoietic homeostasis, and this regulation relies on specialized cells and factors that constitute the haematopoietic 'niche', or microenvironment. Recent discoveries, aided in part by technological advances in in vivo imaging, have engendered a new appreciation for the dynamic nature of the niche, identifying novel cellular and acellular niche components and uncovering fluctuations in the relative importance of these components over time. These new insights significantly improve our understanding of haematopoiesis and raise fundamental questions about what truly constitutes a stem cell niche.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hierarchical model of haematopoiesis in the adult bone marrow.
Figure 2: Components of a hypothetical HSC 'niche'.
Figure 3: Timeline of haematopoietic development in mice and humans.
Figure 4: Definitive fetal haematopoiesis in the AGM.
Figure 5: Stromal cells in the bone marrow 'niche'.

Similar content being viewed by others

Change history

  • 07 December 2011

    The authors wish to correct two typographical errors in the above article. On page 654, there was an error in the highlighted reference comment. The text "References 74-76 and 103 use groundbreaking imaging technology to visualize HSCs in the niche in mice. The authors of references 74, 75 and 103 image murine bones ex vivo, and the authors of references 75 and 76 image cells in the bone in vivo." should have read "References 74-76 and 103 use groundbreaking imaging technology to visualize HSCs in the niche in mice. The authors of references 74 and 103 image bones ex vivo, and the authors of references 75 and 76 image cells in the bone in vivo." Also, on page 650, 'TPO' should have been 'THPO' in figure 5 and 'TPO, thyroid peroxidase' should have read 'THPO, thrombopoietin' in the legend. The Online version has been corrected, and the authors regret any confusion caused to the readers.

References

  1. Schofield, R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4, 7–25 (1978). This seminal paper was first to apply the concept of the niche to stem cell biology, postulating that loss of HSC association with the niche would result in differentiation.

    CAS  PubMed  Google Scholar 

  2. Eliasson, P. & Jonsson, J. The hematopoietic stem cell niche: low in oxygen but a nice place to be. J. Cell Physiol. 222, 17–22 (2009).

    Article  CAS  Google Scholar 

  3. Eliasson, P. et al. Hypoxia mediates low cell-cycle activity and increases the proportion of long-term- reconstituting hematopoietic stem cells during in vitro culture. Exp. Hematol. 38, 301–310 e2 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Kulkeaw, K., Ishitani, T., Kanemaru, T., Fucharoen, S. & Sugiyama, D. Cold exposure down-regulates zebrafish hematopoiesis. Biochem. Biophys. Res. Commun. 394, 859–864 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Adamo, L. et al. Biomechanical forces promote embryonic haematopoiesis. Nature 459, 1131–1135 (2009). Demonstrates that shear stress increases Runx1 expression and colony-forming potential in embryonic stem cells differentiated in vitro into HSCs, and in haematopoietic precursors in the AGM region of mouse embryos.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Guzmán, A. et al. Formation of micronucleated erythrocytes in mouse bone-marrow under conditions of hypothermia is not associated with stimulation of erythropoiesis. Mutat. Res. 656, 8–13 (2008).

    Article  PubMed  CAS  Google Scholar 

  7. Proulx, C., Dupuis, N., St-Amour, I., Boyer, L. & Lemieux, R. Increased megakaryopoiesis in cultures of CD34-enriched cord blood cells maintained at 39°C. Biotechnol. Bioeng. 88, 675–680 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Xie, T. & Spradling, A. C. decapentaplegic is essential for the maintenance and division of germline stem cells in the Drosophila ovary. Cell 94, 251–260 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Xie, T. & Spradling, A. C. A niche maintaining germ line stem cells in the Drosophila ovary. Science 290, 328–330 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Kimble, J. E. & White, J. G. On the control of germ cell development in Caenorhabditis elegans. Dev. Biol. 81, 208–219 (1981).

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, J. et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425, 836–841 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science 303, 359–363 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Kiel, M. J. et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Calvi, L. M. et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425, 841–846 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Gordon, M. D., Vetto, J., Meshul, C. K. & Schmidt, W. A. FNA of extraskeletal myxoid chondrosarcoma: cytomorphologic, EM, and X-ray microanalysis features. Diagn. Cytopathol. 10, 352–356 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Wright, D. E., Wagers, A. J., Gulati, A. P., Johnson, F. L. & Weissman, I. L. Physiological migration of hematopoietic stem and progenitor cells. Science 294, 1933–1936 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Dzierzak, E. & Speck, N. Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nature Immunol. 9, 129–136 (2008).

    Article  CAS  Google Scholar 

  18. Badillo, A. T. & Flake, A. W. The regulatory role of stromal microenvironments in fetal hematopoietic ontogeny. Stem Cell Rev. 2, 241–246 (2006).

    Article  PubMed  Google Scholar 

  19. Ottersbach, K., Smith, A., Wood, A. & Gottgens, B. Ontogeny of haematopoiesis: recent advances and open questions. Br. J. Haematol. 148, 343–355 (2010).

    Article  PubMed  Google Scholar 

  20. Weissman, I., Papaioannou, V. & Gardner, R. in Differentiation of Normal and Neoplastic Hematopoietic Cells (Cold Spring Harbor Laboratory, New York, 1978).

    Google Scholar 

  21. Samokhvalov, I. M., Samokhvalova, N. I. & Nishikawa, S.-I. Cell tracing shows the contribution of the yolk sac to adult haematopoiesis. Nature 446, 1056–1061 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Boisset, J.-C. et al. In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature 464, 116–120 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Eilken, H. M., Nishikawa, S.-I. & Schroeder, T. Continuous single-cell imaging of blood generation from haemogenic endothelium. Nature 457, 896–900 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Cumano, A., Dieterlen-Lievre, F. & Godin, I. Lymphoid potential, probed before circulation in mouse, is restricted to caudal intraembryonic splanchnopleura. Cell 86, 907–916 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Kalev-Zylinska, M. L. et al. Runx3 is required for hematopoietic development in zebrafish. Dev. Dyn. 228, 323–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Kalev-Zylinska, M. L. et al. Runx1 is required for zebrafish blood and vessel development and expression of a human RUNX1-CBF2T1 transgene advances a model for studies of leukemogenesis. Development 129, 2015–2030 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Burns, C. E. et al. Isolation and characterization of runxa and runxb, zebrafish members of the runt family of transcriptional regulators. Exp. Hematol. 30, 1381–1389 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Kissa, K. & Herbomel, P. Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature 464, 112–115 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Rosselló, C. A. & Torres, M. Gene transfer by electroporation into hemogenic endothelium in the avian embryo. Dev. Dyn. 239, 1748–1754 (2010).

    Article  PubMed  CAS  Google Scholar 

  30. Bigas, A., Robert-Moreno, A. & Espinosa, L. The Notch pathway in the developing hematopoietic system. Int. J. Dev. Biol. 54, 1175–1188 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Wolber, F. M. et al. Roles of spleen and liver in development of the murine hematopoietic system. Exp. Hematol. 30, 1010–1019 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Yin, T. & Li, L. The stem cell niches in bone. J. Clin. Invest. 116, 1195–1201 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Askmyr, M., Sims, N. A., Martin, T. J. & Purton, L. E. What is the true nature of the osteoblastic hematopoietic stem cell niche? Trends Endocrinol. Metab. 20, 303–309 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Kiel, M. J. & Morrison, S. J. Uncertainty in the niches that maintain haematopoietic stem cells. Nature Rev. Immunol. 8, 290–301 (2008).

    Article  CAS  Google Scholar 

  35. Arai, F. et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118, 149–161 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Nagasawa, T. et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382, 635–638 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Sugiyama, T., Kohara, H., Noda, M. & Nagasawa, T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25, 977–988 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Barker, J. E. Sl/Sld hematopoietic progenitors are deficient in situ. Exp. Hematol. 22, 174–177 (1994).

    CAS  PubMed  Google Scholar 

  39. Yoshihara, H. et al. Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell 1, 685–697 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Qian, H. et al. Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells. Cell Stem Cell 1, 671–684 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Weber, J. M. & Calvi, L. M. Notch signaling and the bone marrow hematopoietic stem cell niche. Bone 46, 281–285 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Luis, T. C. & Staal, F. J. WNT proteins: environmental factors regulating HSC fate in the niche. Ann. N. Y. Acad. Sci. 1176, 70–76 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Qian, H. et al. Distinct roles of integrins α6 and α4 in homing of fetal liver hematopoietic stem and progenitor cells. Blood 110, 2399–2407 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Magnon, C. & Frenette, P. S. Hematopoietic stem cell trafficking. StemBook 14 Jul 2008 (doi:10.3824/stembook.1.8.1).

  45. Bertrand, J. Y. et al. Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 464, 108–111 (2010). References 22, 23, 28 and 45 use real-time imaging to demonstrate that HSCs arise from the aortic endothelium in the AGM. References 22 and 23 show this in mice, whereas references 28 and 45 examine zebrafish.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. His, W. Lecithoblast und Angioblast der Wirbelthiere. Histogenetische studien. Abhandl. Math.-Phys. Classe Konigl. Sachs. Ges. Wiss. 26, 171–328 (1900).

    Google Scholar 

  47. Murray, P. D. F. The development in vitro of the blood of the early chick embryo. Proc. R. Soc. Lond. B 111, 497–521 (1932).

    Article  CAS  Google Scholar 

  48. Oostendorp, R. A. J. et al. Stromal cell lines from mouse aorta–gonads–mesonephros subregions are potent supporters of hematopoietic stem cell activity. Blood 99, 1183–1189 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Mascarenhas, M. I., Parker, A., Dzierzak, E. & Ottersbach, K. Identification of novel regulators of hematopoietic stem cell development through refinement of stem cell localization and expression profiling. Blood 114, 4645–4653 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yamazaki, S. et al. Cytokine signals modulated via lipid rafts mimic niche signals and induce hibernation in hematopoietic stem cells. EMBO J. 25, 3515–3523 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Esner, M. et al. Smooth muscle of the dorsal aorta shares a common clonal origin with skeletal muscle of the myotome. Development 133, 737–749 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Gekas, C., Dieterlen-Lièvre, F., Orkin, S. H. & Mikkola, H. K. A. The placenta is a niche for hematopoietic stem cells. Dev. Cell 8, 365–375 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Ottersbach, K. & Dzierzak, E. The murine placenta contains hematopoietic stem cells within the vascular labyrinth region. Dev. Cell 8, 377–387 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Kumaravelu, P. et al. Quantitative developmental anatomy of definitive haematopoietic stem cells/long-term repopulating units (HSC/RUs): role of the aorta-gonad-mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver. Development 129, 4891–4899 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Ma, Q. et al. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc. Natl Acad. Sci. USA 95, 9448–9453 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. McGrath, K. E., Koniski, A. D., Maltby, K. M., McGann, J. K. & Palis, J. Embryonic expression and function of the chemokine SDF-1 and its receptor, CXCR4. Dev. Biol. 213, 442–456 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Christensen, J. L., Wright, D. E., Wagers, A. J. & Weissman, I. L. Circulation and chemotaxis of fetal hematopoietic stem cells. PLoS Biol. 2, e75 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  58. McCulloch, E. A., Siminovitch, L., Till, J. E., Russell, E. S. & Bernstein, S. E. The cellular basis of the genetically determined hemopoietic defect in anemic mice of genotype Sl/Sld. Blood 26, 399–410 (1965).

    Article  CAS  PubMed  Google Scholar 

  59. Broxmeyer, H. E. et al. The kit receptor and its ligand, steel factor, as regulators of hemopoiesis. Cancer Cells 3, 480–487 (1991).

    CAS  PubMed  Google Scholar 

  60. Martin, M. A. & Bhatia, M. Analysis of the human fetal liver hematopoietic microenvironment. Stem Cells Dev. 14, 493–504 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Kieusseian, A. et al. Expression of Pitx2 in stromal cells is required for normal hematopoiesis. Blood 107, 492–500 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Krosl, J. et al. A mutant allele of the Swi/Snf member BAF250a determines the pool size of fetal liver hemopoietic stem cell populations. Blood 116, 1678–1684 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chan, C. et al. Endochondral ossification is required for haematopoietic stem-cell niche formation. Nature 457, 490–494 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Broxmeyer, H. E. et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J. Exp. Med. 201, 1307–1318 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shiojiri, N. Development and differentiation of bile ducts in the mammalian liver. Microsc. Res. Tech. 39, 328–335 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Ehninger, A. & Trumpp, A. The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in. J. Exp. Med. 208, 421–428 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Arai, F. et al. Niche regulation of hematopoietic stem cells in the endosteum. Ann. N. Y. Acad. Sci. 1176, 36–46 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Parmar, K., Mauch, P., Vergilio, J.-A., Sackstein, R. & Down, J. D. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc. Natl Acad. Sci. USA 104, 5431–5436 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Winkler, I. G. et al. Positioning of bone marrow hematopoietic and stromal cells relative to blood flow in vivo: serially reconstituting hematopoietic stem cells reside in distinct nonperfused niches. Blood 116, 375–385 (2010). Makes the case that HSCs reside in a functionally hypoxic niche because HSCs that do not stain with Hoechst dye (and are therefore poorly-perfused) exhibit superior long-term reconstitution compared with HSCs that do take up Hoechst dye.

    Article  CAS  PubMed  Google Scholar 

  70. Bourke, V. et al. Spatial gradients of blood vessels and hematopoietic stem and progenitor cells within the marrow cavities of the human skeleton. Blood 114, 4077–4080 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Boitano, A. E. et al. Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science 329, 1345–1348 (2010). Uses a high-throughput chemical screen to identify a small molecule antagonist of the aryl hydrocarbon receptor pathway that potently expands engraftable UCB HSCs ex vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Takubo, K. et al. Regulation of the HIF-1α level is essential for hematopoietic stem cells. Stem Cell 7, 391–402 (2010).

    CAS  Google Scholar 

  73. Simsek, T. et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Stem Cell 7, 380–390 (2010).

    CAS  Google Scholar 

  74. Takaku, T. et al. Hematopoiesis in 3 dimensions: human and murine bone marrow architecture visualized by confocal microscopy. Blood 116, e41–e55 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kohler, A. et al. Altered cellular dynamics and endosteal location of aged early hematopoietic progenitor cells revealed by time-lapse intravital imaging in long bones. Blood 114, 290–298 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Lo Celso, C. et al. Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 457, 92–97 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Adams, G. B. et al. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature 439, 599–603 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Lam, B. S., Cunningham, C. & Adams, G. B. Pharmacologic modulation of the calcium-sensing receptor enhances hematopoietic stem cell lodgment in the adult bone marrow. Blood 117, 1167–1175 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lymperi, S., Ersek, A., Ferraro, F., Dazzi, F. & Horwood, N. J. Inhibition of osteoclast function reduces hematopoietic stem cell numbers in vivo. Blood 117, 1540–1549 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Kollet, O. et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nature Med. 12, 657–664 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. North, T. E. et al. Runx1 expression marks long-term repopulating hematopoietic stem cells in the midgestation mouse embryo. Immunity 16, 661–672 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Keung, A. J., Healy, K. E., Kumar, S. & Schaffer, D. V. Biophysics and dynamics of natural and engineered stem cell microenvironments. Wiley Interdiscip. Rev. Syst. Biol. Med. 2, 49–64 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Gilbert, P. M. et al. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329, 1078–1081 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Visnjic, D. et al. Conditional ablation of the osteoblast lineage in Col2.3Δtk transgenic mice. J. Bone Miner. Res. 16, 2222–2231 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Visnjic, D. et al. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 103, 3258–3264 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Taichman, R. S., Reilly, M. J. & Emerson, S. G. Human osteoblasts support human hematopoietic progenitor cells in vitro bone marrow cultures. Blood 87, 518–524 (1996).

    Article  CAS  PubMed  Google Scholar 

  88. Nilsson, S. K. et al. Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 106, 1232–1239 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Stier, S. et al. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J. Exp. Med. 201, 1781–1791 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Haug, J. S. et al. N-cadherin expression level distinguishes reserved versus primed states of hematopoietic stem cells. Cell Stem Cell 2, 367–379 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Fleming, H. et al. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell 2, 274–283 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hosokawa, K. et al. Cadherin-based adhesion is a potential target for niche manipulation to protect hematopoietic stem cells in adult bone marrow. Cell Stem Cell 6, 194–198 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Hosokawa, K. et al. Knockdown of N-cadherin suppresses the long-term engraftment of hematopoietic stem cells. Blood 116, 554–563 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Morrison, S. J. & Spradling, A. C. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132, 598–611 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lapidot, T., Dar, A. & Kollet, O. How do stem cells find their way home? Blood 106, 1901–1910 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Raaijmakers, M. H. G. P. et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 464, 852–857 (2010). Demonstrates that ablation of miRNA processing machinery in osteoblasts can give rise to myelodysplasia and leukaemia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chitteti, B. R. et al. Impact of interactions of cellular components of the bone marrow microenvironment on hematopoietic stem and progenitor cell function. Blood 115, 3239–3248 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nakamura, Y. et al. Isolation and characterization of endosteal niche cell populations that regulate hematopoietic stem cells. Blood 116, 1422–1432 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Jung, Y. et al. Regulation of SDF-1 (CXCL12) production by osteoblasts; a possible mechanism for stem cell homing. Bone 38, 497–508 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Ponomaryov, T. et al. Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. J. Clin. Invest. 106, 1331–1339 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Porter, R. L. & Calvi, L. M. Communications between bone cells and hematopoietic stem cells. Arch. Biochem. Biophys. 473, 193–200 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lewandowski, D. et al. In vivo cellular imaging pinpoints the role of reactive oxygen species in the early steps of adult hematopoietic reconstitution. Blood 115, 443–452 (2009).

    Article  PubMed  CAS  Google Scholar 

  103. Xie, Y. et al. Detection of functional haematopoietic stem cell niche using real-time imaging. Nature 457, 97–101 (2009). References 74–76 and 103 use groundbreaking imaging technology to visualize HSCs in the niche in mice. The authors of references 74 and 103 image bones ex vivo , and the authors of references 75 and 76 image cells in the bone in vivo.

    Article  CAS  PubMed  Google Scholar 

  104. Méndez-Ferrer, S. et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466, 829–834 (2010). Identifies NES+ MSCs as important niche cells, which are capable of maintaining HSC numbers and function.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Tzeng, Y.-S. et al. Loss of Cxcl12/Sdf-1 in adult mice decreases the quiescent state of hematopoietic stem/progenitor cells and alters the pattern of hematopoietic regeneration after myelosuppression. Blood 117, 429–439 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Chen, J. et al. Mobilization as a preparative regimen for hematopoietic stem cell transplantation. Blood 107, 3764–3771 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Katayama, Y. et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124, 407–421 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Wu, J., Scadden, D. & Kronenberg, H. Role of the osteoblast lineage in the bone marrow hematopoietic niches. J. Bone Miner. Res. 24, 759–764 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Zhu, J. et al. Osteoblasts support B-lymphocyte commitment and differentiation from hematopoietic stem cells. Blood 109, 3706–3712 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Omatsu, Y. et al. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 33, 1–13 (2010). Identifies the CAR cell as an adipo-osteogenic precursor cell capable of serving an HSC niche function, maintaining HSC numbers and function.

    Article  CAS  Google Scholar 

  111. Spiegel, A. et al. Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling. Nature Immunol. 8, 1123–1131 (2007).

    Article  CAS  Google Scholar 

  112. Spiegel, A., Kalinkovich, A., Shivtiel, S., Kollet, O. & Lapidot, T. Stem cell regulation via dynamic interactions of the nervous and immune systems with the microenvironment. Cell Stem Cell 3, 484–492 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Butler, J. M. et al. Endothelial cells are essential for the self-renewal and repopulation of notch-dependent hematopoietic stem cells. Stem Cell 6, 251–264 (2010).

    CAS  Google Scholar 

  114. Kobayashi, H. et al. Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells. Nature Cell Biol. 12, 1046–1056 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Hooper, A. T. et al. Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Stem Cell 4, 263–274 (2009).

    CAS  Google Scholar 

  116. Cao, J. J., Sun, L. & Gao, H. Diet-induced obesity alters bone remodeling leading to decreased femoral trabecular bone mass in mice. Ann. N. Y. Acad. Sci. 1192, 292–297 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Rosen, C. J., Ackert-Bicknell, C., Rodriguez, J. P. & Pino, A. M. Marrow fat and the bone microenvironment: developmental, functional, and pathological implications. Crit. Rev. Eukaryot. Gene Expr. 19, 109–124 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Halade, G. V., Rahman, M. M., Williams, P. J. & Fernandes, G. High fat diet-induced animal model of age-associated obesity and osteoporosis. J. Nutr. Biochem. 21, 1162–1169 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Casamassima, F. et al. Hematopoietic bone marrow recovery after radiation therapy: MRI evaluation. Blood 73, 1677–1681 (1989).

    Article  CAS  PubMed  Google Scholar 

  120. Bredella, M. A. et al. Vertebral bone marrow fat is positively associated with visceral fat and inversely associated with IGF-1 in obese women. Obesity (Silver Spring) 19, 49–53 (2011).

    Article  CAS  Google Scholar 

  121. Naveiras, O. et al. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460, 259–263 (2009). Indicates a negative influence of bone marrow adipocytes on HSC function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Claycombe, K., King, L. E. & Fraker, P. J. A role for leptin in sustaining lymphopoiesis and myelopoiesis. Proc. Natl Acad. Sci. USA 105, 2017–2021 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Pietramaggiori, G. et al. Improved cutaneous healing in diabetic mice exposed to healthy peripheral circulation. J. Invest. Dermatol. 129, 2265–2274 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Belaid-Choucair, Z. et al. Human bone marrow adipocytes block granulopoiesis through neuropilin-1-induced granulocyte colony-stimulating factor inhibition. Stem Cells 26, 1556–1564 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Lane, S. W. et al. The Apcmin mouse has altered hematopoietic stem cell function and provides a model for MPD/MDS. Blood 115, 3489–3497 (2010). Demonstrates that expression of a hypomorphic allele of APC causes myelodysplastic/myeloproliferative disease (MDS/MPD) in an HSC-extrinsic fashion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Walkley, C. et al. A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor-γ deficiency. Cell 129, 1097–1110 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Walkley, C. R., Shea, J. M., Sims, N. A., Purton, L. E. & Orkin, S. H. Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment. Cell 129, 1081–1095 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sudo, K., Ema, H., Morita, Y. & Nakauchi, H. Age-associated characteristics of murine hematopoietic stem cells. J. Exp. Med. 192, 1273–1280 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. de Haan, G., Nijhof, W. & Van Zant, G. Mouse strain-dependent changes in frequency and proliferation of hematopoietic stem cells during aging: correlation between lifespan and cycling activity. Blood 89, 1543–1550 (1997).

    Article  CAS  PubMed  Google Scholar 

  130. Dykstra, B. & Haan, G. Hematopoietic stem cell aging and self-renewal. Cell Tissue Res. 331, 91–101 (2008).

    Article  PubMed  Google Scholar 

  131. Rossi, D. J. et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc. Natl Acad. Sci. USA 102, 9194–9199 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Liang, Y., Van Zant, G. & Szilvassy, S. J. Effects of aging on the homing and engraftment of murine hematopoietic stem and progenitor cells. Blood 106, 1479–1487 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wagner, W., Horn, P., Bork, S. & Ho, A. D. Aging of hematopoietic stem cells is regulated by the stem cell niche. Exp. Gerontol. 43, 974–980 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Chen, C., Liu, Y., Liu, Y. & Zheng, P. mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci. Signal. 2, ra75 (2009). Shows that increased expression of mTOR in HSCs from old mice is responsible for the phenotypic and functional changes in haematopoiesis seen in ageing and that forced upregulation of mTOR in young HSCs makes them assume an 'aged' phenotype.

    PubMed  PubMed Central  Google Scholar 

  135. Wang, W. et al. Proteomic analysis of interstitial fluid in bone marrow identified that peroxiredoxin 2 regulates H2O2 level of bone marrow during aging. J. Proteome Res. 9, 3812–3819 (2010).

    Article  CAS  PubMed  Google Scholar 

  136. Milyavsky, M. et al. A distinctive DNA damage response in human hematopoietic stem cells reveals an apoptosis-independent role for p53 in self-renewal. Stem Cell 7, 1–12 (2010).

    Google Scholar 

  137. Mohrin, M. et al. Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell 7, 174–185 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Stevens, S. K., Moore, S. G. & Kaplan, I. D. Early and late bone-marrow changes after irradiation: MR evaluation. Am. J. Roentgenol. 154, 745–750 (1990).

    Article  CAS  Google Scholar 

  139. Dominici, M. et al. Restoration and reversible expansion of the osteoblastic hematopoietic stem cell niche after marrow radioablation. Blood 114, 2333–2343 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lichtman, M. A. Obesity and the risk for a hematological malignancy: leukemia, lymphoma, or myeloma. Oncologist 15, 1083–1101 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Busik, J. V. et al. Diabetic retinopathy is associated with bone marrow neuropathy and a depressed peripheral clock. J. Exp. Med. 206, 2897–2906 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Song, J. et al. An in vivo model to study and manipulate the hematopoietic stem cell niche. Blood 115, 2592–2600 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Vunjak-Novakovic, G. & Scadden, David T. Biomimetic platforms for human stem cell research. Cell Stem Cell 8, 252–261 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. McNiece, I., Harrington, J., Turney, J., Kellner, J. & Shpall, E. J. Ex vivo expansion of cord blood mononuclear cells on mesenchymal stem cells. Cytotherapy 6, 311–317 (2004).

    Article  CAS  PubMed  Google Scholar 

  145. Delaney, C. et al. Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nature Med. 16, 232–236 (2010). Demonstrates that UBC HSCs can be expanded ex vivo using engineered Notch ligands and that expanded HSCs can successfully be used in clinical bone marrow transplantation.

    Article  CAS  PubMed  Google Scholar 

  146. Lutolf, M. P., Gilbert, P. M. & Blau, H. M. Designing materials to direct stem-cell fate. Nature 462, 433–441 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Goessling, W. et al. Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell 136, 1136–1147 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. North, T. E. & Goessling, W. NOTCHing an arrow at cord blood: translating stem cell knowledge into clinical practice. Stem Cell 6, 186–187 (2010).

    Article  CAS  Google Scholar 

  149. Tesio, M. et al. Enhanced c-Met activity promotes G-CSF-induced mobilization of hematopoietic progenitor cells via ROS signaling. Blood 117, 419–428 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Silberstein and T. Reya for provision of unpublished data and C. Dall'Osso, A. Hartigan and T. Nageswara Rao for helpful comments on the manuscript. This work was funded, in part, by grants from the US National Institutes of Health (NIH) (HL088582 and HL100402 to A.J.W.) and the Keck Foundation. L.D.W. is supported by an NIH T32 Training Grant (T32CA136432). Content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH or other funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leo D. Wang or Amy J. Wagers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

ClinicalTrials.gov

FURTHER INFORMATION

Amy J. Wagers's homepage

Glossary

Aorta–gonad–mesonephros

(AGM). A region of embryonic mesoderm that develops from the para-aortic splanchnopleura during embryogenesis and gives rise to definitive haematopoietic stem cells.

Myelodysplasia

General term for haematologic defects involving deficiencies in the myeloid blood lineages, which in fact manifest dysfunction in multiple blood lineages. Myelodysplasias are sometimes referred to as 'preleukaemias' because they can transform over time.

Extramedullary

'Outside the marrow.' Used to describe blood formation occurring in anatomical locations that are distinct from the bone marrow. In adults, extramedullary haematopoiesis often signifies haematopoietic stress.

Haemogenic endothelium

A layer of committed endothelial cells that have the capacity to differentiate into blood cells, losing endothelial characteristics and adopting haematopoietic features.

Haemangioblast

An undifferentiated precursor cell formed during development that has the potential to give rise (at the single cell level) to blood cells and endothelial cells, but not to other cell lineages.

Long-term HSCs

(Long-term haematopoietic stem cells; LT-HSCs). Cells that are capable of nearly indefinite self-renewal and differentiation into the mature cells of blood lineages (as assayed by transplantation). These are the bona fide stem cells of haematopoiesis. They are operationally distinct from short-term HSCs, which are capable of only limited self-renewal (but competent to differentiate into the mature cells of all blood lineages) and therefore cannot reconstitute haematopoiesis for the life of an organism.

Cancellous bone

(Also known as trabecular bone). The spongy osseous tissue located at the ends of long bones and within vertebral bodies. It contains haematopoietic (red) marrow but, unlike the medullary cavity of the long bones, also contains trabeculae (tiny osseous beams that traverse the cancellous bone, creating an anatomical and functional structure through which blood and bone marrow elements transit).

Homing

The process whereby haematopoietic stem cells (HSCs) find their way from the circulation to the haematopoietic 'niche'. It is distinct from lodgement, which is the ability of HSCs to enter into the niche and stay there, as well as from engraftment, which is the ability of HSCs to respond to appropriate maintenance and differentiation signals when lodged.

Endosteal structures

Elements of the endosteum, which is a connective-tissue membrane that lines the inner surface of the medullary (marrow) cavity of the bone. Many researchers also refer to the endosteum as the inner surfaces of the bone (that is, the location of osteoblasts; see the glossary entry for osteoid cells).

Osteoid cells

Cells of the bone lineage: osteocytes, osteoblasts and their precursors. Osteoclasts are not osteoid cells, as they are haematopoietic in origin. Anatomically, osteoid is the unmineralized immature bone matrix laid down by osteoblasts and containing osteocytes.

CXCL12-abundant reticular cells

(CAR cells). Cells that were originally identified on the basis of their high expression of CXC chemokine ligand 12 (CXCL12). CAR cells can be perivascular or endosteal in location.

Vascular sinusoid

A fenestrated capillary-sized blood vessel. Sinusoids are quite porous, permitting the free passage of many blood components.

Parabiosis

A surgical procedure whereby the circulatory systems of two animals are joined such that there is free flow of blood between them.

Non-homologous end joining

A double-strand DNA break repair mechanism that does not make use of a homologous DNA template and is therefore more error-prone than homologous recombination.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Wagers, A. Dynamic niches in the origination and differentiation of haematopoietic stem cells. Nat Rev Mol Cell Biol 12, 643–655 (2011). https://doi.org/10.1038/nrm3184

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3184

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing