Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Functional brain imaging in gastroenterology: to new beginnings

Key Points

  • Functional brain imaging is an established field in gastroenterology

  • Although functional brain imaging studies have provided important insights into brain–gut interactions in health and disease, progress in this field has been hampered due to issues with reproducibility and lack of standardization

  • Reproducibility and standardization issues are not unique to studies of the gastrointestinal tract and are present in other disciplines using functional brain imaging

  • Adequate control for psychobiological factors, inter-centre collaboration for standardization of imaging and analysis methods, and study of homogenous and psychophysiologically well-characterized healthy individuals could improve reproducibility and standardization

  • These approaches might provide the crucial first steps towards developing an understanding of the mechanisms of visceral pain in health and disease, and lead to patient-tailored treatments with improved efficacy

Abstract

With more than 100 studies published over the past two decades, functional brain imaging research in gastroenterology has become an established field; one that has enabled improved insight into the supraspinal responses evoked by gastrointestinal stimulation both in health and disease. However, there remains considerable inter-study variation in the published results, largely owing to methodological differences in stimulation and recording techniques, heterogeneous patient selection, lack of control for psychological factors and so on. These issues with reproducibility, although not unique to studies of the gastrointestinal tract, can lead to unjustified inferences. To obtain consistent and more clinically relevant results, there is a need to optimize and standardize brain imaging studies across different centres. In addition, the use of complementary and more novel brain imaging modalities and analyses, which are now being used in other fields of research, might help unravel the factors at play in functional gastrointestinal disorders. This Review highlights the areas in which functional brain imaging has been useful and what it has revealed, the areas that are in need of improvement, and finally suggestions for future directions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Networks of brain activation in visceral stimulation studies.
Figure 2: Pain clusters after visceral stimulation.

Similar content being viewed by others

References

  1. Jones, E. G. & Mendell, L. M. Assessing the decade of the brain. Science 284, 739 (1999).

    CAS  PubMed  Google Scholar 

  2. Aziz, Q. & Thompson, D. G. Brain-gut axis in health and disease. Gastroenterology 114, 559–578 (1998).

    CAS  PubMed  Google Scholar 

  3. Drossman, D. A. The functional gastrointestinal disorders and the Rome III process. Gastroenterology 130, 1377–1390 (2006).

    PubMed  Google Scholar 

  4. Van Oudenhove, L. & Aziz, Q. Recent insights on central processing and psychological processes in functional gastrointestinal disorders. Dig. Liver Dis. 41, 781–787 (2009).

    CAS  PubMed  Google Scholar 

  5. Talley, N. J. Functional gastrointestinal disorders as a public health problem. Neurogastroenterol. Motil. 20 (Suppl. 1), 121–129 (2008).

    PubMed  Google Scholar 

  6. Hongo, M. Epidemiology of FGID symptoms in Japanese general population with reference to life style. J. Gastroenterol. Hepatol. 26 (Suppl 3), 19–22 (2011).

    PubMed  Google Scholar 

  7. Boyce, P. M., Talley, N. J., Burke, C. & Koloski, N. A. Epidemiology of the functional gastrointestinal disorders diagnosed according to Rome II criteria: an Australian population-based study. Intern. Med. J. 36, 28–36 (2006).

    CAS  PubMed  Google Scholar 

  8. Derbyshire, S. W. A systematic review of neuroimaging data during visceral stimulation. Am. J. Gastroenterol. 98, 12–20 (2003).

    PubMed  Google Scholar 

  9. Mayer, E. A. et al. Brain imaging approaches to the study of functional GI disorders: a Rome working team report. Neurogastroenterol. Motil. 21, 579–596 (2009).

    CAS  PubMed  Google Scholar 

  10. Kupfer, D. J., Frank, E. & Phillips, M. L. Major depressive disorder: new clinical, neurobiological, and treatment perspectives. Lancet 379, 1045–1055 (2012).

    PubMed  Google Scholar 

  11. Phillips, M. L. & Kupfer, D. J. Bipolar disorder diagnosis: challenges and future directions. Lancet 381, 1663–1671 (2013).

    PubMed  PubMed Central  Google Scholar 

  12. Pitman, R. K. et al. Biological studies of post-traumatic stress disorder. Nat. Rev. Neurosci. 13, 769–787 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Dabbouseh, N. M. & Jensen, D. M. Future therapies for chronic hepatitis C. Nat. Rev. Gastroenterol. Hepatol. 10, 268–276 (2013).

    CAS  PubMed  Google Scholar 

  14. US Department of Health & Human services. The BRAIN initiative. Brain Research through Advancing Innovative Neurotechnologies (BRAIN). NIH [online], (2013).

  15. Human Brain Project. The Human Brain Project [online], (2013).

  16. Hobson, A. R. & Aziz, Q. Brain imaging and functional gastrointestinal disorders: has it helped our understanding? Gut 53, 1198–1206 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Craig, A. D. A new view of pain as a homeostatic emotion. Trends Neurosci. 26, 303–307 (2003).

    CAS  PubMed  Google Scholar 

  18. Apkarian, A. V., Bushnell, M. C., Treede, R. D. & Zubieta, J. K. Human brain mechanisms of pain perception and regulation in health and disease. Eur. J. Pain 9, 463–484 (2005).

    PubMed  Google Scholar 

  19. Tracey, I. & Mantyh, P. W. The cerebral signature for pain perception and its modulation. Neuron 55, 377–391 (2007).

    CAS  PubMed  Google Scholar 

  20. Tillisch, K. et al. Sex specific alterations in autonomic function among patients with irritable bowel syndrome. Gut 54, 1396–1401 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mayer, E. A. et al. Differences in brain responses to visceral pain between patients with irritable bowel syndrome and ulcerative colitis. Pain 115, 398–409 (2005).

    PubMed  Google Scholar 

  22. Berman, S. M. et al. Reduced brainstem inhibition during anticipated pelvic visceral pain correlates with enhanced brain response to the visceral stimulus in women with irritable bowel syndrome. J. Neurosci. 28, 349–359 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Downar, J., Mikulis, D. J. & Davis, K. D. Neural correlates of the prolonged salience of painful stimulation. Neuroimage 20, 1540–1551 (2003).

    PubMed  Google Scholar 

  24. Legrain, V., Iannetti, G. D., Plaghki, L. & Mouraux, A. The pain matrix reloaded: a salience detection system for the body. Prog. Neurobiol. 93, 111–124 (2011).

    PubMed  Google Scholar 

  25. Lee, M. C., Mouraux, A. & Iannetti, G. D. Characterizing the cortical activity through which pain emerges from nociception. J. Neurosci. 29, 7909–7916 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Strigo, I. A., Bushnell, M. C., Boivin, M. & Duncan, G. H. Psychophysical analysis of visceral and cutaneous pain in human subjects. Pain 97, 235–246 (2002).

    PubMed  Google Scholar 

  27. Strigo, I. A., Duncan, G. H., Boivin, M. & Bushnell, M. C. Differentiation of visceral and cutaneous pain in the human brain. J. Neurophysiol. 89, 3294–3303 (2003).

    PubMed  Google Scholar 

  28. Strigo, I. A., Albanese, M. C., Bushnell, M. C. & Duncan, G. H. Visceral and cutaneous pain representation in parasylvian cortex. Neurosci. Lett. 384, 54–59 (2005).

    CAS  PubMed  Google Scholar 

  29. Hobday, D. I. et al. A study of the cortical processing of ano-rectal sensation using functional MRI. Brain 124, 361–368 (2001).

    CAS  PubMed  Google Scholar 

  30. Dunckley, P. et al. A comparison of visceral and somatic pain processing in the human brainstem using functional magnetic resonance imaging. J. Neurosci. 25, 7333–7341 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hoeger Bement, M., Weyer, A., Keller, M., Harkins, A. L. & Hunter, S. K. Anxiety and stress can predict pain perception following a cognitive stress. Physiol. Behav. 101, 87–92 (2010).

    CAS  PubMed  Google Scholar 

  32. Vassend, O., Roysamb, E. & Nielsen, C. S. Five-factor personality traits and pain sensitivity: a twin study. Pain 154, 722–728 (2013).

    PubMed  Google Scholar 

  33. Zelman, D. C., Howland, E. W., Nichols, S. N. & Cleeland, C. S. The effects of induced mood on laboratory pain. Pain 46, 105–111 (1991).

    CAS  PubMed  Google Scholar 

  34. Weisenberg, M. Cognitive aspects of pain and pain control. Int. J. Clin. Exp. Hypn. 46, 44–61 (1998).

    CAS  PubMed  Google Scholar 

  35. Meagher, M. W., Arnau, R. C. & Rhudy, J. L. Pain and emotion: effects of affective picture modulation. Psychosom. Med. 63, 79–90 (2001).

    CAS  PubMed  Google Scholar 

  36. Pezawas, L. et al. 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nat. Neurosci. 8, 828–834 (2005).

    CAS  PubMed  Google Scholar 

  37. Stein, J. L. et al. A validated network of effective amygdala connectivity. Neuroimage 36, 736–745 (2007).

    PubMed  Google Scholar 

  38. Labus, J. S. et al. Sex differences in brain activity during aversive visceral stimulation and its expectation in patients with chronic abdominal pain: a network analysis. Neuroimage 41, 1032–1043 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Phillips, M. L. et al. The effect of negative emotional context on neural and behavioural responses to oesophageal stimulation. Brain 126, 669–684 (2003).

    PubMed  Google Scholar 

  40. Coen, S. J. et al. Negative mood affects brain processing of visceral sensation. Gastroenterology 137, 253–261. e1–e2 (2009).

    PubMed  Google Scholar 

  41. Kim, H. Y., Akbar, M., Lau, A. & Edsall, L. Inhibition of neuronal apoptosis by docosahexaenoic acid (22:6n-3). Role of phosphatidylserine in antiapoptotic effect. J. Biol. Chem. 275, 35215–35223 (2000).

    CAS  PubMed  Google Scholar 

  42. Johnston, N. E., Atlas, L. Y. & Wager, T. D. Opposing effects of expectancy and somatic focus on pain. PLoS ONE 7, e38854 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Whitehead, W. E. & Palsson, O. S. Is rectal pain sensitivity a biological marker for irritable bowel syndrome: psychological influences on pain perception. Gastroenterology 115, 1263–1271 (1998).

    CAS  PubMed  Google Scholar 

  44. Gregory, L. J. et al. Cognitive modulation of the cerebral processing of human oesophageal sensation using functional magnetic resonance imaging. Gut 52, 1671–1677 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Coen, S. J. et al. Effects of attention on visceral stimulus intensity encoding in the male human brain. Gastroenterology 135, 2065–2074 (2008).

    PubMed  Google Scholar 

  46. Silverman, D. H. et al. Regional cerebral activity in normal and pathological perception of visceral pain. Gastroenterology 112, 64–72 (1997).

    CAS  PubMed  Google Scholar 

  47. Wilder-Smith, C. H., Schindler, D., Lovblad, K., Redmond, S. M. & Nirkko, A. Brain functional magnetic resonance imaging of rectal pain and activation of endogenous inhibitory mechanisms in irritable bowel syndrome patient subgroups and healthy controls. Gut 53, 1595–1601 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Song, G. H. et al. Cortical effects of anticipation and endogenous modulation of visceral pain assessed by functional brain MRI in irritable bowel syndrome patients and healthy controls. Pain 126, 79–90 (2006).

    PubMed  Google Scholar 

  49. Bishop, S. J. Trait anxiety and impoverished prefrontal control of attention. Nat. Neurosci. 12, 92–98 (2009).

    CAS  PubMed  Google Scholar 

  50. Naliboff, B. D. et al. Cerebral activation in patients with irritable bowel syndrome and control subjects during rectosigmoid stimulation. Psychosom. Med. 63, 365–375 (2001).

    CAS  PubMed  Google Scholar 

  51. Verne, G. N. et al. Central representation of visceral and cutaneous hypersensitivity in the irritable bowel syndrome. Pain 103, 99–110 (2003).

    PubMed  Google Scholar 

  52. Ringel, Y. et al. Regional brain activation in response to rectal distension in patients with irritable bowel syndrome and the effect of a history of abuse. Dig. Dis. Sci. 48, 1774–1781 (2003).

    PubMed  Google Scholar 

  53. Kwan, C. L. et al. Abnormal forebrain activity in functional bowel disorder patients with chronic pain. Neurology 65, 1268–1277 (2005).

    CAS  PubMed  Google Scholar 

  54. Naliboff, B. D. et al. Longitudinal change in perceptual and brain activation response to visceral. Gastroenterology 131, 352–365 (2006).

    PubMed  Google Scholar 

  55. Lu, C. L. & Chang, F. Y. Placebo effect in patients with irritable bowel syndrome. J. Gastroenterol. Hepatol. 26 (Suppl 3.), 116–118 (2011).

    PubMed  Google Scholar 

  56. Tillisch, K., Mayer, E. A. & Labus, J. S. Quantitative meta-analysis identifies brain regions activated during rectal distension in irritable bowel syndrome. Gastroenterology 140, 91–100 (2011).

    PubMed  Google Scholar 

  57. Lawal, A., Kern, M., Sidhu, H., Hofmann, C. & Shaker, R. Novel evidence for hypersensitivity of visceral sensory neural circuitry in. Gastroenterology 130, 26–33 (2006).

    PubMed  Google Scholar 

  58. Naliboff, B. D. & Mayer, E. A. Brain imaging in IBS: drawing the line between cognitive and non-cognitive processes. Gastroenterology 130, 267–270 (2006).

    PubMed  Google Scholar 

  59. Berman, S. M. et al. Enhanced preattentive central nervous system reactivity in irritable bowel syndrome. Am. J. Gastroenterol. 97, 2791–2797 (2002).

    PubMed  Google Scholar 

  60. Ploghaus, A., Becerra, L., Borras, C. & Borsook, D. Neural circuitry underlying pain modulation: expectation, hypnosis, placebo. Trends Cogn. Sci. 7, 197–200 (2003).

    PubMed  Google Scholar 

  61. Porro, C. A., Cettolo, V., Francescato, M. P. & Baraldi, P. Functional activity mapping of the mesial hemispheric wall during anticipation of pain. Neuroimage 19, 1738–1747 (2003).

    PubMed  Google Scholar 

  62. Yaguez, L. et al. Brain response to visceral aversive conditioning: a functional magnetic resonance imaging study. Gastroenterology 128, 1819–1829 (2005).

    PubMed  Google Scholar 

  63. Tillisch, K. et al. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology 144, 1394–1401 (2013).

    CAS  PubMed  Google Scholar 

  64. Jalanka-Tuovinen, J. et al. Intestinal microbiota in healthy adults: temporal analysis reveals individual and common core and relation to intestinal symptoms. PLoS ONE 6, e23035 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Aziz, Q., Dore, J., Emmanuel, A., Guarner, F. & Quigley, E. M. Gut microbiota and gastrointestinal health: current concepts and future directions. Neurogastroenterol. Motil. 25, 4–15 (2013).

    CAS  PubMed  Google Scholar 

  66. European Cooperation in Science and Technology. The Genes in Irritable Bowel Syndrome Research Network Europe (GENIEUR). European Coooperation in Science and Technology [online], (2014).

  67. The Oppenheimer Center for Neurobiology of Sress at UCLA. Pain and interoception Imaging Network Repository [online], (2014).

  68. Ramsey, J. D. et al. Six problems for causal inference from fMRI. Neuroimage 49, 1545–1558 (2010).

    CAS  PubMed  Google Scholar 

  69. Poldrack, R. A. Can. cognitive processes be inferred from neuroimaging data? Trends Cogn. Sci. 10, 59–63 (2006).

    PubMed  Google Scholar 

  70. Poldrack, R. A. et al. Guidelines for reporting an fMRI study. Neuroimage 40, 409–414 (2008).

    PubMed  PubMed Central  Google Scholar 

  71. Mouraux, A., Diukova, A., Lee, M. C., Wise, R. G. & Iannetti, G. D. A multisensory investigation of the functional significance of the “pain matrix”. Neuroimage 54, 2237–2249 (2011).

    PubMed  Google Scholar 

  72. Mouraux, A. & Iannetti, G. D. Nociceptive laser-evoked brain potentials do not reflect nociceptive-specific neural activity. J. Neurophysiol. 101, 3258–3269 (2009).

    CAS  PubMed  Google Scholar 

  73. Iannetti, G. D., Salomons, T. V., Moayedi, M., Mouraux, A. & Davis, K. D. Beyond metaphor: contrasting mechanisms of social and physical pain. Trends Cogn. Sci. 17, 371–378 (2013).

    PubMed  Google Scholar 

  74. Hutzler, F. Reverse inference is not a fallacy per se: Cognitive processes can be inferred from functional imaging data. Neuroimage 84, 1061–1069 (2013).

    PubMed  Google Scholar 

  75. Haxby, J. V. Multivariate pattern analysis of fMRI: the early beginnings. Neuroimage 62, 852–855 (2012).

    PubMed  PubMed Central  Google Scholar 

  76. Liang, M., Mouraux, A., Hu, L. & Iannetti, G. D. Primary sensory cortices contain distinguishable spatial patterns of activity for each sense. Nat. Commun. 4, 1979 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Labus, J. S. et al. Brain networks underlying perceptual habituation to repeated aversive visceral stimuli in patients with irritable bowel syndrome. Neuroimage 47, 952–960 (2009).

    PubMed  PubMed Central  Google Scholar 

  78. Labus, J. S. et al. Acute tryptophan depletion alters the effective connectivity of emotional arousal circuitry during visceral stimuli in healthy women. Gut 60, 1196–1203 (2011).

    CAS  PubMed  Google Scholar 

  79. Wagner, J. A. Biomarkers: principles, policies, and practice. Clin. Pharmacol. Ther. 86, 3–7 (2009).

    CAS  PubMed  Google Scholar 

  80. Lathia, C. D. et al. The value, qualification, and regulatory use of surrogate end points in drug development. Clin. Pharmacol. Ther. 86, 32–43 (2009).

    CAS  PubMed  Google Scholar 

  81. Tillisch, K. & Labus, J. S. Advances in imaging the brain-gut axis: functional gastrointestinal disorders. Gastroenterology 140, 407–411.e1 (2011).

    PubMed  Google Scholar 

  82. Biswal, B. B. et al. Toward discovery science of human brain function. Proc. Natl Acad. Sci. USA 107, 4734–4739 (2010).

    CAS  PubMed  Google Scholar 

  83. Gottesman, II & Gould, T. D. The endophenotype concept in psychiatry: etymology and strategic intentions. Am. J. Psychiatry 160, 636–645 (2003).

    PubMed  Google Scholar 

  84. Greicius, M. Resting-state functional connectivity in neuropsychiatric disorders. Curr. Opin. Neurol. 21, 424–430 (2008).

    PubMed  Google Scholar 

  85. Baliki, M. N., Geha, P. Y., Apkarian, A. V. & Chialvo, D. R. Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics. J. Neurosci. 28, 1398–1403 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Hong, J. Y. et al. Patients with chronic visceral pain show sex-related alterations in intrinsic oscillations of the resting brain. J. Neurosci. 33, 11994–12002 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Farmer, A. D., Aziz, Q., Tack, J. & Van Oudenhove, L. The future of neuroscientific research in functional gastrointestinal disorders: integration towards multidimensional (visceral) pain endophenotypes? J. Psychosom. Res. 68, 475–481 (2010).

    PubMed  Google Scholar 

  88. Coen, S. J. et al. Neuroticism influences brain activity during the experience of visceral pain. Gastroenterology 141, 909–917.e1 (2011).

    PubMed  Google Scholar 

  89. Farmer, A. D. et al. Psychophysiological responses to pain identify reproducible human clusters. Pain 154, 2266–2276 (2013).

    CAS  PubMed  Google Scholar 

  90. Kosek, E., Jensen, K. B., Lonsdorf, T. B., Schalling, M. & Ingvar, M. Genetic variation in the serotonin transporter gene (5-HTTLPR, rs25531) influences the analgesic response to the short acting opioid Remifentanil in humans. Mol. Pain 5, 37 (2009).

    PubMed  PubMed Central  Google Scholar 

  91. Lindstedt, F., Lonsdorf, T. B., Schalling, M., Kosek, E. & Ingvar, M. Perception of thermal pain and the thermal grill illusion is associated with polymorphisms in the serotonin transporter gene. PLoS ONE 6, e17752 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Palit, S. et al. Serotonin transporter gene (5-HTTLPR) polymorphisms are associated with emotional modulation of pain but not emotional modulation of spinal nociception. Biol. Psychol. 86, 360–369 (2011).

    PubMed  Google Scholar 

  93. Farmer, A. D. et al. Psychophysiological responses to visceral and somatic pain in functional chest pain identify clinically relevant pain clusters. Neurogastroenterol. Motil. 26, 139–148 (2013).

    PubMed  Google Scholar 

  94. Holschneider, D. P., Bradesi, S. & Mayer, E. A. The role of experimental models in developing new treatments for irritable bowel syndrome. Expert Rev. Gastroenterol. Hepatol. 5, 43–57 (2011).

    PubMed  PubMed Central  Google Scholar 

  95. Zhou, G. et al. White-matter microstructural changes in functional dyspepsia: a diffusion tensor imaging study. Am. J. Gastroenterol. 108, 260–269 (2013).

    PubMed  Google Scholar 

  96. Mayer, E. A., Tillisch, K. & Ellingson, B. M. Dyspepsia: Structural changes in functional gastrointestinal disorders. Nat. Rev. Gastroenterol. Hepatol. 10, 200–202 (2013).

    PubMed  Google Scholar 

  97. Ellingson, B. M. et al. Diffusion tensor imaging detects microstructural reorganization in the brain associated with chronic irritable bowel syndrome. Pain 154, 1528–1541 (2013).

    PubMed  PubMed Central  Google Scholar 

  98. Huettel, S. A., Song, A. W. & McCarthy, G. (Eds) Functional Magnetic Resonance Imaging 2nd Edition 159–184 (Sinauer Associates, 2008).

    Google Scholar 

  99. Schweinhardt, P., Bountra, C. & Tracey, I. Pharmacological FMRI in the development of new analgesic compounds. NMR Biomed. 19, 702–711 (2006).

    CAS  PubMed  Google Scholar 

  100. Wise, R. G. & Preston, C. What is the value of human FMRI in CNS drug development? Drug Discov. Today 15, 973–980 (2010).

    CAS  PubMed  Google Scholar 

  101. Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001).

    CAS  PubMed  Google Scholar 

  102. Nagaoka, T. et al. Increases in oxygen consumption without cerebral blood volume change during visual stimulation under hypotension condition. J. Cereb. Blood Flow Metab. 26, 1043–1051 (2006).

    PubMed  Google Scholar 

  103. Schachinger, H., Klarhofer, M., Linder, L., Drewe, J. & Scheffler, K. Angiotensin II decreases the renal MRI blood oxygenation level-dependent signal. Hypertension 47, 1062–1066 (2006).

    CAS  PubMed  Google Scholar 

  104. Raichle, M. E. Behind the scenes of functional brain imaging: a historical and physiological perspective. Proc. Natl Acad. Sci. USA 95, 765–772 (1998).

    CAS  PubMed  Google Scholar 

  105. Fox, P. T., Burton, H. & Raichle, M. E. Mapping human somatosensory cortex with positron emission tomography. J. Neurosurg. 67, 34–43 (1987).

    CAS  PubMed  Google Scholar 

  106. Dolle, F. [18F]fluoropyridines: from conventional radiotracers to the labeling of macromolecules such as proteins and oligonucleotides. In Ernst Schering Research Foundation Workshop (Eds. Schubiger, P. A., Lehmann, L. & Friebe, M.) 113–157 (Springer, 2007).

    Google Scholar 

  107. Derbyshire, S. W. & Jones, A. K. Cerebral responses to a continual tonic pain stimulus measured using positron emission tomography. Pain 76, 127–135 (1998).

    CAS  PubMed  Google Scholar 

  108. Henningsen, P., Zimmermann, T. & Sattel, H. Medically unexplained physical symptoms, anxiety, and depression: a meta-analytic review. Psychosom. Med. 65, 528–533 (2003).

    PubMed  Google Scholar 

  109. Furlong, P. L. et al. Dissociating the spatio-temporal characteristics of cortical neuronal activity associated with human volitional swallowing in the healthy adult brain. Neuroimage 22, 1447–1455 (2004).

    CAS  PubMed  Google Scholar 

  110. Worthen, S. F., Hobson, A. R., Hall, S. D., Aziz, Q. & Furlong, P. L. Primary and secondary somatosensory cortex responses to anticipation and pain: a magnetoencephalography study. Eur. J. Neurosci. 33, 946–959 (2011).

    PubMed  Google Scholar 

  111. Smith, J. K. et al. fMRI and MEG analysis of visceral pain in healthy volunteers. Neurogastroenterol. Motil. 23, 648–e260 (2011).

    CAS  PubMed  Google Scholar 

  112. Sami, S. A. et al. Cortical changes to experimental sensitization of the human esophagus. Neuroscience 140, 269–279 (2006).

    CAS  PubMed  Google Scholar 

  113. Dimcevski, G. et al. Pain in chronic pancreatitis: the role of reorganization in the central nervous system. Gastroenterology 132, 1546–1556 (2007).

    PubMed  Google Scholar 

  114. Olesen, S. S., Hansen, T. M., Graversen, C., Valeriani, M. & Drewes, A. M. Cerebral excitability is abnormal in patients with painful chronic pancreatitis. Eur. J. Pain 17, 46–54 (2013).

    CAS  PubMed  Google Scholar 

  115. Detre, J. A., Rao, H., Wang, D. J., Chen, Y. F. & Wang, Z. Applications of arterial spin labeled MRI in the brain. J. Magn. Reson. Imaging 35, 1026–1037 (2012).

    PubMed  PubMed Central  Google Scholar 

  116. Detre, J. A., Wang, J., Wang, Z. & Rao, H. Arterial spin-labeled perfusion MRI in basic and clinical neuroscience. Curr. Opin. Neurol. 22, 348–355 (2009).

    PubMed  Google Scholar 

  117. Kano, M. et al. Physiological and psychological individual differences influence resting brain function measured by ASL perfusion. Brain Struct. Funct. http://dx.doi.org/10.1007/s00429-013-0593-8.

  118. Owen, D. G., Clarke, C. F., Ganapathy, S., Prato, F. S. & St. Lawrence, K. S. Using perfusion MRI to measure the dynamic changes in neural activation associated with tonic muscular pain. Pain 148, 375–386 (2010).

    PubMed  Google Scholar 

  119. Mori, S. & Zhang, J. Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51, 527–539 (2006).

    CAS  PubMed  Google Scholar 

  120. Tsurugizawa, T., Ciobanu, L. & Le Bihan, D. Water diffusion in brain cortex closely tracks underlying neuronal activity. Proc. Natl Acad. Sci. USA 110, 11636–11641 (2013).

    CAS  PubMed  Google Scholar 

  121. Blankstein, U., Chen, J., Diamant, N. E. & Davis, K. D. Altered brain structure in irritable bowel syndrome: potential contributions of pre-existing and disease-driven factors. Gastroenterology 138, 1783–1789 (2010).

    PubMed  Google Scholar 

  122. Labus, J. et al. Irritable bowel syndrome in female patients is associated with alterations in structural brain networks. Pain 155, 137–149 (2013).

    PubMed  PubMed Central  Google Scholar 

  123. Seminowicz, D. A. et al. Regional gray matter density changes in brains of patients with irritable bowel syndrome. Gastroenterology 139, 48–57 (2010).

    PubMed  PubMed Central  Google Scholar 

  124. Frokjaer, J. B. et al. Reduced cortical thickness of brain areas involved in pain processing in patients with chronic pancreatitis. Clin. Gastroenterol. Hepatol. 10, 434–438.e1 (2012).

    PubMed  Google Scholar 

  125. Apkarian, A. V. et al. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J. Neurosci. 24, 10410–10415 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Y.A.O. researched data for and wrote the article. Both authors made substantial contributions to discussion of content and reviewing/editing the manuscript before submission.

Corresponding author

Correspondence to Qasim Aziz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omran, Y., Aziz, Q. Functional brain imaging in gastroenterology: to new beginnings. Nat Rev Gastroenterol Hepatol 11, 565–576 (2014). https://doi.org/10.1038/nrgastro.2014.89

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2014.89

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing