Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pathophysiology of gastro-oesophageal reflux disease: implications for diagnosis and management

Abstract

Gastro-oesophageal reflux disease (GERD) is a common gastrointestinal disorder in which retrograde flow of gastric content into the oesophagus causes uncomfortable symptoms and/or complications. It has a multifactorial and partially understood pathophysiology. GERD starts in the stomach, where the refluxate material is produced. Following the trajectory of reflux, the failure of the antireflux barrier, primarily the lower oesophageal sphincter and the crural diaphragm, enables the refluxate to reach the oesophageal lumen, triggering oesophageal or extra-oesophageal symptoms. Reflux clearance mechanisms such as primary and secondary peristalsis and the arrival of bicarbonate-rich saliva are critical to prevent mucosal damage. Alterations of the oesophageal mucosal integrity, such as macroscopic oesophagitis or microscopic changes, determine the perception of symptoms. The intensity of the symptoms is affected by peripheral and central neural and psychological mechanisms. In this Review, we describe an updated understanding of the complex and multifactorial pathophysiology of GERD. It is now recognized that different GERD phenotypes have different degrees of reflux, severity of mucosal integrity damage and type, and severity of symptoms. These variations are probably due to the occurrence of a predominant pathophysiological mechanism in each patient. We also describe the main pathophysiological mechanisms of GERD and their implications for personalized diagnosis and management.

Key points

  • Gastro-oesophageal reflux disease (GERD) is a common gastrointestinal disorder and has a multifactorial pathophysiology; there are two phenotypes of GERD, erosive and non-erosive reflux disease, and their distinct pathophysiology is not completely known.

  • The oesophagogastric junction works as a functional antireflux barrier; transient lower oesophageal sphincter relaxations are the most frequent mechanism for reflux in healthy individuals and in patients with GERD. Hiatal hernia is an important mechanism of GERD.

  • Motility impairment of both the oesophagus and the proximal stomach is involved in GERD pathophysiology.

  • The refluxate is a mix of gastric and biliopancreatic secretions. Acid reflux is associated with heartburn and mucosal damage. Bile reflux provokes more severe oesophagitis or Barrett oesophagus. Non-acid reflux is mainly associated with symptoms but no mucosal damage.

  • Impairment of oesophageal mucosal integrity, innervation and microinflammation has a crucial role in symptom perception.

  • Severity of GERD symptoms is influenced by psychoneuroimmune modulation; psychosocial comorbidities and hypervigilance determine the severity of GERD symptoms as well as response to treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multifactorial pathophysiology of GERD.

Similar content being viewed by others

References

  1. Delaney, B. C. Review article: prevalence and epidemiology of gastro-oesophageal reflux disease. Aliment. Pharmacol. Ther. 20, 2–4 (2004).

    Article  PubMed  Google Scholar 

  2. Richter, J. E. & Rubenstein, J. H. Presentation and epidemiology of gastroesophageal reflux disease. Gastroenterology 154, 267–276 (2018).

    Article  PubMed  Google Scholar 

  3. Vakil, N. et al. The Montreal definition and classification of gastroesophageal reflux disease: a global evidence-based consensus. Am. J. Gastroenterol. 101, 1900–1920 (2006).

    Article  PubMed  Google Scholar 

  4. Locke, G. R., Talley, N. J., Fett, S. L., Zinsmeister, A. R. & Melton, L. J. Prevalence and clinical spectrum of gastroesophageal reflux: a population-based study in Olmsted County, Minnesota. Gastroenterology 112, 1448–1456 (1997).

    Article  PubMed  Google Scholar 

  5. McColl, K. E. L., Clarke, A. & Seenan, J. Acid pocket, hiatus hernia and acid reflux. Gut 59, 430–431 (2010).

    Article  PubMed  Google Scholar 

  6. Fletcher, J., Wirz, A., Young, J., Vallance, R. & McColl, K. E. L. Unbuffered highly acidic gastric juice exists at the gastroesophageal junction after a meal. Gastroenterology 121, 775–783 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Boecxstaens, V. et al. Modulation of the postprandial acid and bile pockets at the gastro-oesophageal junction by drugs that affect gastric motility. Aliment. Pharmacol. Ther. 33, 1370–1377 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Vaezi, M. F. & Richter, J. E. Role of acid and duodenogastroesophageal reflux in gastroesophageal reflux disease. Gastroenterology 111, 1192–1199 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Pandolfino, J. E. et al. Acidity surrounding the squamocolumnar junction in GERD patients: ‘acid pocket’ versus ‘acid film’. Am. J. Gastroenterol. 102, 2633–2641 (2007).

    Article  PubMed  Google Scholar 

  10. Clarke, A. T. et al. Paradox of gastric cardia: it becomes more acidic following meals while the rest of stomach becomes less acidic. Gut 58, 904–909 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Clarke, A. T. et al. Severe reflux disease is associated with an enlarged unbuffered proximal gastric acid pocket. Gut 57, 292–297 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Derakhshan, M. H. et al. Gastric histology, serological markers and age as predictors of gastric acid secretion in patients infected with Helicobacter pylori. J. Clin. Pathol. 59, 1293–1299 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Abe, Y. et al. The prevalence of Helicobacter pylori infection and the status of gastric acid secretion in patients with Barrett’s esophagus in Japan. Am. J. Gastroenterol. 99, 1213–1221 (2004).

    Article  PubMed  Google Scholar 

  14. El-Serag, H. B. et al. Corpus gastritis is protective against reflux oesophagitis. Gut 45, 181–185 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vaezi, M. F. et al. CagA-positive strains of Helicobacter pylori may protect against Barrett’s esophagus. Am. J. Gastroenterol. 95, 2206–2211 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Azpiroz, F. Control of gastric emptying by gastric tone. Dig. Dis. Sci. 39, 18S–19S (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Zerbib, F. et al. Proximal gastric tone in gastro-oesophageal reflux disease. Eur. J. Gastroenterol. Hepatol. 11, 511–515 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Penagini, R. et al. Motor function of the proximal stomach and visceral perception in gastro-oesophageal reflux disease. Gut 42, 251–257 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cunningham, K. M. et al. Relations among autonomic nerve dysfunction, oesophageal motility, and gastric emptying in gastro-oesophageal reflux disease. Gut 32, 1436–1440 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stacher, G. Gastric emptying: a contributory factor in gastro-oesophageal reflux activity. Gut 47, 661–666 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Emerenziani, S. et al. Gastric fullness, physical activity, and proximal extent of gastroesophageal reflux. Am. J. Gastroenterol. 100, 1251–1256 (2005).

    Article  PubMed  Google Scholar 

  22. Gonlachanvit, S., Maurer, A. H., Fisher, R. S. & Parkman, H. P. Regional gastric emptying abnormalities in functional dyspepsia and gastro-oesophageal reflux disease. Neurogastroenterol. Motil. 18, 894–904 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Ayazi, S. et al. Obesity and gastroesophageal reflux: quantifying the association between body mass index, esophageal acid exposure, and lower esophageal sphincter status in a large series of patients with reflux symptoms. J. Gastrointest. Surg. 13, 1440–1447 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tutuian, R. Obesity and GERD: pathophysiology and effect of bariatric surgery. Curr. Gastroenterol. Rep. 13, 205–212 (2011).

    Article  PubMed  Google Scholar 

  25. Pandolfino, J. E., Howden, C. W. & Kahrilas, P. J. H. Pylori and GERD: is less more? Am. J. Gastroenterol. 99, 1222–1225 (2004).

    Article  PubMed  Google Scholar 

  26. Nocon, M., Labenz, J. & Willich, S. N. Lifestyle factors and symptoms of gastro-oesophageal reflux — a population-based study. Aliment. Pharmacol. Ther. 23, 169–174 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Murray, L. et al. Relationship between body mass and gastro-oesophageal reflux symptoms: the Bristol Helicobacter Project. Int. J. Epidemiol. 32, 645–650 (2003).

    Article  PubMed  Google Scholar 

  28. El-Serag, H. B., Graham, D. Y., Satia, J. A. & Rabeneck, L. Obesity is an independent risk factor for GERD symptoms and erosive esophagitis. Am. J. Gastroenterol. 100, 1243–1250 (2005).

    Article  PubMed  Google Scholar 

  29. O’Brien, P. E. et al. Long-term outcomes after bariatric surgery: a systematic review and meta-analysis of weight loss at 10 or more years for all bariatric procedures and a single-centre review of 20-year outcomes after adjustable gastric banding. Obes. Surg. 29, 3–14 (2019).

    Article  PubMed  Google Scholar 

  30. Patti, M. G., Di Corpo, M. & Schlottmann, F. (eds) Foregut Surgery: Achalasia, Gastroesophageal Reflux Disease and Obesity (Springer Nature, 2019).

  31. Langer, F. B. et al. Sleeve gastrectomy and gastric banding: effects on plasma ghrelin levels. Obes. Surg. 15, 1024–1029 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Foster, A., Laws, H. L., Gonzalez, Q. H. & Clements, R. H. Gastrointestinal symptomatic outcome after laparoscopic Roux-en-Y gastric bypass. J. Gastrointest. Surg. 7, 750–753 (2003).

    Article  PubMed  Google Scholar 

  33. Vaezi, M. F. & Richter, J. E. Contribution of acid and duodenogastrooesophageal reflux to oesophageal mucosal injury and symptoms in partial gastrectomy patients. Gut 41, 297–302 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guo, Z., Wu, H., Jiang, J. & Zhang, C. Pepsin in saliva as a diagnostic marker for gastroesophageal reflux disease: a meta-analysis. Med. Sci. Monit. 24, 9509–9516 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tobey, N. A. et al. The role of pepsin in acid injury to esophageal epithelium. Am. J. Gastroenterol. 96, 3062–3070 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Wang, J., Zhao, Y., Ren, J. & Xu, Y. Pepsin in saliva as a diagnostic biomarker in laryngopharyngeal reflux: a meta-analysis. Eur. Arch. Otorhinolaryngol. 275, 671–678 (2018).

    Article  PubMed  Google Scholar 

  37. Kahrilas, P. J. et al. The acid pocket: a target for treatment in reflux disease? Am. J. Gastroenterol. 108, 1058–1064 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Mittal, R. & Vaezi, M. F. Esophageal motility disorders and gastroesophageal reflux disease. N. Engl. J. Med. 383, 1961–1972 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Dodds, W. J. et al. Mechanisms of gastroesophageal reflux in patients with reflux esophagitis. N. Engl. J. Med. 307, 1547–1552 (1982).

    Article  CAS  PubMed  Google Scholar 

  40. Sears, V. W. Jr, Castell, J. A. & Castell, D. O. Comparison of effects of upright versus supine body position and liquid versus solid bolus on esophageal pressures in normal humans. Dig. Dis. Sci. 35, 857–864 (1990).

    Article  PubMed  Google Scholar 

  41. Schoeman, M. N., Tippett, M. D., Akkermans, L. M., Dent, J. & Holloway, R. H. Mechanisms of gastroesophageal reflux in ambulant healthy human subjects. Gastroenterology 108, 83–91 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Jiang, Y., Bhargava, V. & Mittal, R. K. Mechanism of stretch-activated excitatory and inhibitory responses in the lower esophageal sphincter. Am. J. Physiol. Gastrointest. Liver Physiol. 297, G397–G405 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Babaei, A., Bhargava, V., Korsapati, H., Zheng, W. H. & Mittal, R. K. A unique longitudinal muscle contraction pattern associated with transient lower esophageal sphincter relaxation. Gastroenterology 134, 1322–1331 (2008).

    Article  PubMed  Google Scholar 

  44. Sifrim, D. & Holloway, R. Transient lower esophageal sphincter relaxations: how many or how harmful. Am. J. Gastroenterol. 96, 2529–2532 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. van Herwaarden, M. A., Samsom, M. & Smout, A. J. Excess gastroesophageal reflux in patients with hiatus hernia is caused by mechanisms other than transient LES relaxations. Gastroenterology 119, 1439–1446 (2000).

    Article  PubMed  Google Scholar 

  46. Kahrilas, P. J., Kim, H. C. & Pandolfino, J. E. Approaches to the diagnosis and grading of hiatal hernia. Best Pract. Res. Clin. Gastroenterol. 22, 601–616 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mittal, R. K. Current concepts of the antireflux barrier. Gastroenterol. Clin. North Am. 19, 501–516 (1990).

    Article  CAS  PubMed  Google Scholar 

  48. Kahrilas, P. J., Lin, S., Chen, J. & Manka, M. The effect of hiatus hernia on gastro-oesophageal junction pressure. Gut 44, 476–482 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mittal, R. K. & Balaban, D. H. The esophagogastric junction. N. Engl. J. Med. 336, 924–932 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Andrici, J., Tio, M., Cox, M. R. & Eslick, G. D. Hiatal hernia and the risk of Barrett’s esophagus. J. Gastroenterol. Hepatol. 28, 415–431 (2013).

    Article  PubMed  Google Scholar 

  51. Gordon, C., Kang, J. Y., Neild, P. J. & Maxwell, J. D. The role of the hiatus hernia in gastro-oesophageal reflux disease. Aliment. Pharmacol. Ther. 20, 719–732 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Pandolfino, J. E. et al. Obesity: a challenge to esophagogastric junction integrity. Gastroenterology 130, 639–649 (2006).

    Article  PubMed  Google Scholar 

  53. Sloan, S. & Kahrilas, P. J. Impairment of esophageal emptying with hiatal hernia. Gastroenterology 100, 596–605 (1991).

    Article  CAS  PubMed  Google Scholar 

  54. Sawada, A. et al. Effect of hiatus hernia on reflux patterns and mucosal integrity in patients with non-erosive reflux disease. Neurogastroenterol. Motil. 34, e14412 (2022).

    Article  PubMed  Google Scholar 

  55. Pauwels, A. et al. How to select patients for antireflux surgery? The ICARUS guidelines (international consensus regarding preoperative examinations and clinical characteristics assessment to select adult patients for antireflux surgery). Gut 68, 1928–1941 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Blondeau, K. et al. Baclofen improves symptoms and reduces postprandial flow events in patients with rumination and supragastric belching. Clin. Gastroenterol. Hepatol. 10, 379–384 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Tack, J. Review article: the role of bile and pepsin in the pathophysiology and treatment of gastro-oesophageal reflux disease. Aliment. Pharmacol. Ther. 24, 10–16 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Emerenziani, S. et al. Presence of gas in the refluxate enhances reflux perception in non-erosive patients with physiological acid exposure of the oesophagus. Gut 57, 443–447 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Sifrim, D. et al. Acid, nonacid, and gas reflux in patients with gastroesophageal reflux disease during ambulatory 24-hour pH-impedance recordings. Gastroenterology 120, 1588–1598 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Bredenoord, A. J., Hemmink, G. J. M. & Smout, A. J. P. Relationship between gastro-oesophageal reflux pattern and severity of mucosal damage. Neurogastroenterol. Motil. 21, 807–812 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Bredenoord, A. J. Determinants of perception of heartburn and regurgitation. Gut 55, 313–318 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Boeckxstaens, G. E. & Smout, A. Systematic review: role of acid, weakly acidic and weakly alkaline reflux in gastro-oesophageal reflux disease. Aliment. Pharmacol. Ther. 32, 334–343 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. López-Alonso, M. et al. Twenty-four-hour esophageal impedance-pH monitoring in healthy preterm neonates: rate and characteristics of acid, weakly acidic, and weakly alkaline gastroesophageal reflux. Pediatrics 118, e299–e308 (2006).

    Article  PubMed  Google Scholar 

  64. Koek, G. H., Sifrim, D., Lerut, T., Janssens, J. & Tack, J. Multivariate analysis of the association of acid and duodeno-gastro-oesophageal reflux exposure with the presence of oesophagitis, the severity of oesophagitis and Barrett’s oesophagus. Gut 57, 1056–1064 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. McQuaid, K. R., Laine, L., Fennerty, M. B., Souza, R. & Spechler, S. J. Systematic review: the role of bile acids in the pathogenesis of gastro-oesophageal reflux disease and related neoplasia. Aliment. Pharmacol. Ther. 34, 146–165 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Farre, R. et al. Short exposure of oesophageal mucosa to bile acids, both in acidic and weakly acidic conditions, can impair mucosal integrity and provoke dilated intercellular spaces. Gut 57, 1366–1374 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Siddiqui, A., Rodriguez-Stanley, S., Zubaidi, S. & Miner, P. B. Jr. Esophageal visceral sensitivity to bile salts in patients with functional heartburn and in healthy control subjects. Dig. Dis. Sci. 50, 81–85 (2005).

    Article  PubMed  Google Scholar 

  68. Sun, D. et al. Bile acids but not acidic acids induce Barrett’s esophagus. Int. J. Clin. Exp. Pathol. 8, 1384–1392 (2015).

    PubMed  PubMed Central  Google Scholar 

  69. Dvorak, K. et al. Bile acids in combination with low pH induce oxidative stress and oxidative DNA damage: relevance to the pathogenesis of Barrett’s oesophagus. Gut 56, 763–771 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Kessing, B. F., Bredenoord, A. J., Velosa, M. & Smout, A. J. P. Supragastric belches are the main determinants of troublesome belching symptoms in patients with gastro-oesophageal reflux disease. Aliment. Pharmacol. Ther. 35, 1073–1079 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Koukias, N., Woodland, P., Yazaki, E. & Sifrim, D. Supragastric belching: prevalence and association with gastroesophageal reflux disease and esophageal hypomotility. J. Neurogastroenterol. Motil. 21, 398–403 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Sifrim, D., Silny, J., Holloway, R. H. & Janssens, J. J. Patterns of gas and liquid reflux during transient lower oesophageal sphincter relaxation: a study using intraluminal electrical impedance. Gut 44, 47–54 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sifrim, D. et al. Normal values and regional differences in oesophageal impedance-pH metrics: a consensus analysis of impedance-pH studies from around the world. Gut https://doi.org/10.1136/gutjnl-2020-322627 (2020).

    Article  PubMed  Google Scholar 

  74. Gyawali, C. P. et al. Modern diagnosis of GERD: the Lyon Consensus. Gut 67, 1351–1362 (2018).

    Article  PubMed  Google Scholar 

  75. Gyawali, C. P. et al. Value of pH impedance monitoring while on twice-daily proton pump inhibitor therapy to identify need for escalation of reflux management. Gastroenterology 161, 1412–1422 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Pandolfino, J. E., Schreiner, M. A., Lee, T. J., Zhang, Q. & Kahrilas, P. J. Bravo capsule placement in the gastric cardia: a novel method for analysis of proximal stomach acid environment. Am. J. Gastroenterol. 100, 1721–1727 (2005).

    Article  PubMed  Google Scholar 

  77. Woodland, P. et al. Distinct afferent innervation patterns within the human proximal and distal esophageal mucosa. Am. J. Physiol. Gastrointest. Liver Physiol. 308, G525–G531 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ahlawat, S. K. et al. Day-to-day variability in acid reflux patterns using the BRAVO pH monitoring system. J. Clin. Gastroenterol. 40, 20–24 (2006).

    Article  PubMed  Google Scholar 

  79. Penagini, R. et al. Inconsistency in the diagnosis of functional heartburn: usefulness of prolonged wireless pH monitoring in patients with proton pump inhibitor refractory gastroesophageal reflux disease. J. Neurogastroenterol. Motil. 21, 265–272 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Tutuian, R. & Castell, D. O. Nocturnal acid breakthrough — approach to management. MedGenMed 6, 11 (2004).

    PubMed  PubMed Central  Google Scholar 

  81. Domingues, G. et al. Potassium-competitive acid blockers, a new therapeutic class, and their role in acid-related diseases: a narrative review. Prz. Gastroenterol. 18, 47–55 (2023).

    CAS  PubMed  Google Scholar 

  82. Savarino, V. et al. Pharmacological management of gastro-esophageal reflux disease: an update of the state-of-the-art. Drug Des. Devel. Ther. 15, 1609–1621 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Sawada, A. et al. Management of supragastric belching with cognitive behavioural therapy: factors determining success and follow-up outcomes at 6–12 months post-therapy. Aliment. Pharmacol. Ther. 50, 530–537 (2019).

    Article  PubMed  Google Scholar 

  84. Argüero, J. & Sifrim, D. Actualización en la fisiopatología de la enfermedad por reflujo gastroesofágico. Acta Gastroenterol. Latinoam. 52, 135–152 (2022).

    Article  Google Scholar 

  85. Gyawali, C. P. et al. Classification of esophageal motor findings in gastro-esophageal reflux disease: conclusions from an international consensus group. Neurogastroenterol. Motil. 29, e13104 (2017).

    Article  Google Scholar 

  86. Lei, W.-Y. et al. Impact of ineffective esophageal motility on secondary peristalsis: studies with high-resolution manometry. Neurogastroenterol. Motil. 33, e14024 (2021).

    Article  CAS  PubMed  Google Scholar 

  87. Singh, P., Adamopoulos, A., Taylor, R. H. & Colin-Jones, D. G. Oesophageal motor function before and after healing of oesophagitis. Gut 33, 1590–1596 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Helm, J. F. et al. Effect of esophageal emptying and saliva on clearance of acid from the esophagus. N. Engl. J. Med. 310, 284–288 (1984).

    Article  CAS  PubMed  Google Scholar 

  89. Korsten, M. A. et al. Chronic xerostomia increases esophageal acid exposure and is associated with esophageal injury. Am. J. Med. 90, 701–706 (1991).

    Article  CAS  PubMed  Google Scholar 

  90. Frazzoni, M. et al. Analyses of the post-reflux swallow-induced peristaltic wave index and nocturnal baseline impedance parameters increase the diagnostic yield of impedance-pH monitoring of patients with reflux disease. Clin. Gastroenterol. Hepatol. 14, 40–46 (2016).

    Article  PubMed  Google Scholar 

  91. Alcalá-González, L. G., Jiménez-Masip, A., Relea Pérez, L., Barber-Caselles, C. & Barba-Orozco, E. Opioid-induced esophageal dysfunction — prevalence and manometric findings. Rev. Esp. Enferm. Dig. 114, 16–21 (2022).

    PubMed  Google Scholar 

  92. Bakhos, C. T., Petrov, R. V., Parkman, H. P., Malik, Z. & Abbas, A. E. Role and safety of fundoplication in esophageal disease and dysmotility syndromes. J. Thorac. Dis. 11, S1610–S1617 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Shaker, A. et al. Multiple rapid swallow responses during esophageal high-resolution manometry reflect esophageal body peristaltic reserve. Am. J. Gastroenterol. 108, 1706–1712 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Ribolsi, M., Savarino, E., Frazzoni, M. & Cicala, M. Prospective validation of reflux monitoring by impedance-pH in predicting PPI response in typical GERD. Dig. Liver Dis. 55, 721–726 (2023).

    Article  CAS  PubMed  Google Scholar 

  95. Ustaoglu, A. et al. Mucosal pathogenesis in gastro-esophageal reflux disease. Neurogastroenterol. Motil. 32, e14022 (2020).

    Article  PubMed  Google Scholar 

  96. Ustaoglu, A. & Woodland, P. Sensory phenotype of the oesophageal mucosa in gastro-oesophageal reflux disease. Int. J. Mol. Sci. 24, 2502 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. El-Serag, H. B. Epidemiology of non-erosive reflux disease. Digestion 78, 6–10 (2008).

    Article  PubMed  Google Scholar 

  98. Calabrese, C. et al. Reversibility of GERD ultrastructural alterations and relief of symptoms after omeprazole treatment. Am. J. Gastroenterol. 100, 537–542 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Woodland, P., Al-Zinaty, M., Yazaki, E. & Sifrim, D. In vivo evaluation of acid-induced changes in oesophageal mucosa integrity and sensitivity in non-erosive reflux disease. Gut 62, 1256–1261 (2013).

    Article  PubMed  Google Scholar 

  100. Calabrese, C. et al. Dilated intercellular spaces as a marker of oesophageal damage: comparative results in gastro-oesophageal reflux disease with or without bile reflux. Aliment. Pharmacol. Ther. 18, 525–532 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Tadiparthi, R. A. et al. Dilated intercellular spaces and lymphocytes on biopsy relate to symptoms in erosive GERD but not NERD. Aliment. Pharmacol. Ther. 33, 1202–1208 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Azumi, T. et al. Esophageal epithelial surface in patients with gastroesophageal reflux disease: an electron microscopic study. World J. Gastroenterol. 14, 5712–5716 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Jovov, B. et al. Role of E-cadherin in the pathogenesis of gastroesophageal reflux disease. Am. J. Gastroenterol. 106, 1039–1047 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ustaoglu, A. et al. Heartburn sensation in nonerosive reflux disease: pattern of superficial sensory nerves expressing TRPV1 and epithelial cells expressing ASIC3 receptors. Am. J. Physiol. Gastrointest. Liver Physiol. 320, G804–G815 (2021).

    Article  CAS  PubMed  Google Scholar 

  105. Dunbar, K. B. et al. Association of acute gastroesophageal reflux disease with esophageal histologic changes. JAMA 315, 2104–2112 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Souza, R. F. et al. Gastroesophageal reflux might cause esophagitis through a cytokine-mediated mechanism rather than caustic acid injury. Gastroenterology 137, 1776–1784 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. McDonald, S. A. C., Lavery, D., Wright, N. A. & Jansen, M. Barrett oesophagus: lessons on its origins from the lesion itself. Nat. Rev. Gastroenterol. Hepatol. 12, 50–60 (2015).

    Article  PubMed  Google Scholar 

  108. Souza, R. F. & Spechler, S. J. Mechanisms and pathophysiology of Barrett oesophagus. Nat. Rev. Gastroenterol. Hepatol. 19, 605–620 (2022).

    Article  PubMed  Google Scholar 

  109. Hahn, H. P. et al. Intestinal differentiation in metaplastic, nongoblet columnar epithelium in the esophagus. Am. J. Surg. Pathol. 33, 1006–1015 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Jiang, M. et al. Transitional basal cells at the squamous–columnar junction generate Barrett’s oesophagus. Nature 550, 529–533 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Milano, F. et al. Bone morphogenetic protein 4 expressed in esophagitis induces a columnar phenotype in esophageal squamous cells. Gastroenterology 132, 2412–2421 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Quante, M. et al. Bile acid and inflammation activate gastric cardia stem cells in a mouse model of Barrett-like metaplasia. Cancer Cell 21, 36–51 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lata, T., Trautman, J., Townend, P. & Wilson, R. B. Current management of gastro-oesophageal reflux disease-treatment costs, safety profile, and effectiveness: a narrative review. Gastroenterol. Rep. 11, goad008 (2023).

    Article  Google Scholar 

  114. Vaezi, M. F. Diagnosis and Treatment of Gastroesophageal Reflux Disease (Springer, 2015).

  115. Martinucci, I. et al. Barrett’s esophagus in 2016: from pathophysiology to treatment. World J. Gastrointest. Pharmacol. Ther. 7, 190–206 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Sharma, P. Barrett esophagus: a review. JAMA 328, 663–671 (2022).

    Article  CAS  PubMed  Google Scholar 

  117. Weijenborg, P. W., Smout, A. J. P. M. & Bredenoord, A. J. Esophageal acid sensitivity and mucosal integrity in patients with functional heartburn. Neurogastroenterol. Motil. 28, 1649–1654 (2016).

    Article  CAS  PubMed  Google Scholar 

  118. Shi, G., des Varannes, S. B., Scarpignato, C., Le Rhun, M. & Galmiche, J. P. Reflux related symptoms in patients with normal oesophageal exposure to acid. Gut 37, 457–464 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Byrne, P. J., Mulligan, E. D., O’Riordan, J., Keeling, P. W. N. & Reynolds, J. V. Impaired visceral sensitivity to acid reflux in patients with Barrett’s esophagus. The role of esophageal motility. Dis. Esophagus 16, 199–203 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Farré, R. et al. Critical role of stress in increased oesophageal mucosa permeability and dilated intercellular spaces. Gut 56, 1191–1197 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Schey, R. et al. Sleep deprivation is hyperalgesic in patients with gastroesophageal reflux disease. Gastroenterology 133, 1787–1795 (2007).

    Article  PubMed  Google Scholar 

  122. Kahrilas, P. J., Keefer, L. & Pandolfino, J. E. Patients with refractory reflux symptoms: what do they have and how should they be managed? Neurogastroenterol. Motil. 27, 1195–1201 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Riehl, M. E. & Keefer, L. Hypnotherapy for esophageal disorders. Am. J. Clin. Hypn. 58, 22–33 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Guadagnoli, L. et al. Esophageal hypervigilance is prevalent across gastroesophageal reflux disease presentations. Neurogastroenterol. Motil. 33, e14081 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. El-Serag, H., Becher, A. & Jones, R. Systematic review: persistent reflux symptoms on proton pump inhibitor therapy in primary care and community studies. Aliment. Pharmacol. Ther. 32, 720–737 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. Fass, R. & Tougas, G. Functional heartburn: the stimulus, the pain, and the brain. Gut 51, 885–892 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Frazzoni, L. et al. Critical appraisal of Rome IV criteria: hypersensitive esophagus does belong to gastroesophageal reflux disease spectrum. Ann. Gastroenterol. Hepatol. 31, 1–7 (2018).

    Google Scholar 

  128. Sawada, A. et al. Identification of different phenotypes of esophageal reflux hypersensitivity and implications for treatment. Clin. Gastroenterol. Hepatol. 19, 690–698.e2 (2021).

    Article  CAS  PubMed  Google Scholar 

  129. Farmer, A. D., Ruffle, J. K. & Aziz, Q. The role of esophageal hypersensitivity in functional esophageal disorders. J. Clin. Gastroenterol. 51, 91–99 (2017).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank A. Ustaoglu, M. Peiris and P. Woodland from the Wingate Institute of Neurogastroenterology, Queen Mary University of London, UK, for sharing their research data (now published) on the role of the oesophageal mucosa in the pathophysiology of GERD.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of the manuscript.

Corresponding author

Correspondence to Daniel Sifrim.

Ethics declarations

Competing interests

D.S. has served as a consultant for Reckitt Benckiser (UK), Jinshan Technology (China) and AlfaSigma (Italy). J.A. declares no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Ravinder Mittal and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argüero, J., Sifrim, D. Pathophysiology of gastro-oesophageal reflux disease: implications for diagnosis and management. Nat Rev Gastroenterol Hepatol 21, 282–293 (2024). https://doi.org/10.1038/s41575-023-00883-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-023-00883-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing