Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transcription as a source of genome instability

Key Points

  • Transcription is associated with elevated recombination and mutagenesis in bacteria and in eukaryotes and thereby alters the genetic landscape.

  • Concurrent transcription and replication of the same DNA template result in conflicts that lead to elevated chromosome fragility and recombination. In general, head-on collisions between the two machineries are more detrimental than co-directional collisions.

  • The formation of stable hybrids between the nascent RNA and its DNA template (R-loops) destabilizes the underlying template. Rapid engagement of the RNA discourages R-loop formation, but if formed, R-loops can be removed by RNase H or RNA–DNA helicases.

  • Transcription generates twin domains of positive and negative supercoiling, which are removed by topoisomerase 1 (Top1). The persistence of negative supercoils promotes R-loop formation.

  • Transcription facilitates the formation of non-B-DNA structures, which have been implicated in human trinucleotide repeat diseases.

  • Active genes suffer more DNA damage than inactive genes in bacteria and yeast, and damage preferentially accumulates on the non-transcribed strand. When DNA repair mechanisms are intact, most transcription-associated mutations in yeast are due to the activity of Top1.

  • Transcription in yeast can alter the base composition of the underlying DNA template, and uracil specifically replaces thymine.

Abstract

Alterations in genome sequence and structure contribute to somatic disease, affect the fitness of subsequent generations and drive evolutionary processes. The crucial roles of highly accurate replication and efficient repair in maintaining overall genome integrity are well-known, but the more localized stability costs that are associated with transcribing DNA into RNA molecules are less appreciated. Here we review the diverse ways in which the essential process of transcription alters the underlying DNA template and thereby modifies the genetic landscape.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Co-directional and head-on orientations of RNA polymerase and the replisome.
Figure 2: Factors that promote and remove R-loops during transcription.
Figure 3: Non-B-DNA structures and genome instability.
Figure 4: Deducing the strand on which mutations arise.

Similar content being viewed by others

References

  1. Savic, D. J. & Kanazir, D. T. The effect of a histidine operator-constitutive mutation on UV-induced mutability within the histidine operon of Salmonella typhimurium. Mol. Gen. Genet. 118, 45–50 (1972).

    CAS  PubMed  Google Scholar 

  2. Herman, R. K. & Dworkin, N. B. Effect of gene induction on the rate of mutagenesis by ICR-191 in Escherichia coli. J. Bacteriol. 106, 543–550 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Datta, A. & Jinks-Robertson, S. Association of increased spontaneous mutation rates with high levels of transcription in yeast. Science 268, 1616–1619 (1995). This work, using budding yeast as a model system, was the first demonstration of transcription-associated mutagenesis in eukaryotic cells.

    CAS  PubMed  Google Scholar 

  4. Saxowsky, T. T. & Doetsch, P. W. RNA polymerase encounters with DNA damage: transcription-coupled repair or transcriptional mutagenesis? Chem. Rev. 106, 474–488 (2006).

    CAS  PubMed  Google Scholar 

  5. Keil, R. L. & Roeder, G. S. Cis-acting, recombination-stimulating activity in a fragment of the ribosomal DNA of S. cerevisiae. Cell 39, 377–386 (1984).

    CAS  PubMed  Google Scholar 

  6. Voekel-Meiman, K., Keil, R. L. & Roeder, G. S. Recombination-stimulating sequences in yeast ribosomal DNA correspond to sequences regulating transcription by RNA polymerase I. Cell 48, 1071–1079 (1987). This paper identifies the recombination-stimulating sequence HOT1 as the rDNA promoter in budding yeast, thereby providing the first link between transcription and mitotic recombination.

    Google Scholar 

  7. Kim, N., Abdulovic, A. L., Gealy, R., Lippert, M. J. & Jinks-Robertson, S. Transcription-associated mutagenesis in yeast is directly proportional to the level of gene expression and influenced by the direction of DNA replication. DNA Repair 6, 1285–1296 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Reimers, J. M., Schmidt, K. H., Longacre, A., Reschke, D. K. & Wright, B. E. Increased transcription rates correlate with increased reversion rates in leuB and argH Escherichia coli auxotrophs. Microbiology 150, 1457–1466 (2004).

    CAS  PubMed  Google Scholar 

  9. Nickoloff, J. A. Transcription enhances intrachromosomal homologous recombination in mammalian cells. Mol. Cell. Biol. 12, 5311–5318 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Postow, L. et al. Positive torsional strain causes the formation of a four-way junction at replication forks. J. Biol. Chem. 276, 2790–2796 (2001).

    CAS  PubMed  Google Scholar 

  11. Rudolph, C. J., Dhillon, P., Moore, T. & Lloyd, R. G. Avoiding and resolving conflicts between DNA replication and transcription. DNA Repair 6, 981–993 (2007).

    CAS  PubMed  Google Scholar 

  12. Pomerantz, R. T. & O'Donnell, M. What happens when replication and transcription complexes collide? Cell Cycle 9, 2537–2543 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gottipati, P. & Helleday, T. Transcription-associated recombination in eukaryotes: link between transcription, replication and recombination. Mutagenesis 24, 203–210 (2009).

    CAS  PubMed  Google Scholar 

  14. Ellwood, M. & Nomura, M. Chromosomal locations of the genes for rRNA in Escherichia coli K-12. J. Bacteriol. 149, 458–468 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Guy, L. & Roten, C. A. Genometric analyses of the organization of circular chromosomes: a universal pressure determines the direction of ribosomal RNA genes transcription relative to chromosome replication. Gene 340, 45–52 (2004).

    CAS  PubMed  Google Scholar 

  16. Wang, J. D., Berkmen, M. B. & Grossman, A. D. Genome-wide coorientation of replication and transcription reduces adverse effects on replication in Bacillus subtilis. Proc. Natl Acad. Sci. USA 104, 5608–5613 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Srivatsan, A., Tehranchi, A., MacAlpine, D. M. & Wang, J. D. Co-orientation of replication and transcription preserves genome integrity. PLoS Genet. 6, e1000810 (2010).

    PubMed  PubMed Central  Google Scholar 

  18. Brewer, B. J. & Fangman, W. L. A replication fork barrier at the 3′ end of yeast ribosomal RNA genes. Cell 55, 637–643 (1988).

    CAS  PubMed  Google Scholar 

  19. Huvet, M. et al. Human gene organization driven by the coordination of replication and transcription. Genome Res. 17, 1278–1285 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Mirkin, E. V. & Mirkin, S. M. Mechanisms of transcription-replication collisions in bacteria. Mol. Cell. Biol. 25, 888–895 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Deshpande, A. M. & Newlon, C. S. DNA replication fork pause sites dependent on transcription. Science 272, 1030–1033 (1996).

    CAS  PubMed  Google Scholar 

  22. Prado, F. & Aguilera, A. Impairment of replication fork progression mediates RNA polII transcription-associated recombination. EMBO J. 24, 1267–1276 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Takeuchi, Y., Horiuchi, T. & Kobayashi, T. Transcription-dependent recombination and the role of fork collision in yeast rDNA. Genes Dev. 17, 1497–1506 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Azvolinsky, A., Giresi, P. G., Lieb, J. D. & Zakian, V. A. Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae. Mol. Cell 34, 722–734 (2009). In this paper, the ChIP–chip technique was used to identify sites of DNA Pol II occupancy, which are presumed to reflect replication pausing, throughout the budding yeast genome. Highly transcribed ORFs were enriched among these sites, indicating that transcription can impede replication.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Cox, M. M. et al. The importance of repairing stalled replication forks. Nature 404, 37–41 (2000).

    CAS  PubMed  Google Scholar 

  26. Gottipati, P., Cassel, T. N., Savolainen, L. & Helleday, T. Transcription-associated recombination is dependent on replication in mammalian cells. Mol. Cell. Biol. 28, 154–164 (2008).

    CAS  PubMed  Google Scholar 

  27. de la Loza, M. C., Wellinger, R. E. & Aguilera, A. Stimulation of direct-repeat recombination by RNA polymerase III transcription. DNA Repair 8, 620–626 (2009).

    PubMed  Google Scholar 

  28. Sikdar, N., Banerjee, S., Zhang, H., Smith, S. & Myung, K. Spt2p defines a new transcription-dependent gross chromosomal rearrangement pathway. PLoS Genet. 4, e1000290 (2008).

    PubMed  PubMed Central  Google Scholar 

  29. Vilette, D., Ehrlich, S. D. & Michel, B. Transcription-induced deletions in Escherichia coli plasmids. Mol. Microbiol. 17, 493–504 (1995).

    CAS  PubMed  Google Scholar 

  30. Dutta, D., Shatalin, K., Epshtein, V., Gottesman, M. E. & Nudler, E. Linking RNA polymerase backtracking to genome instability in E. coli. Cell 146, 533–543 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Blobel, G. Gene gating: a hypothesis. Proc. Natl Acad. Sci. USA 82, 8527–8529 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Bermejo, R. et al. The replication checkpoint protects fork stability by releasing transcribed genes from nuclear pores. Cell 146, 233–246 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Waters, L. S. et al. Eukaryotic translesion polymerases and their roles and regulation in DNA damage tolerance. Microbiol. Mol. Biol. Rev. 73, 134–154 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Aguilera, A. The connection between transcription and genomic instability. EMBO J. 21, 195–201 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Li, X. & Manley, J. L. Cotranscriptional processes and their influence on genome stability. Genes Dev. 20, 1838–1847 (2006).

    CAS  PubMed  Google Scholar 

  36. Gowrishankar, J. & Harinarayanan, R. Why is transcription coupled to translation in bacteria? Mol. Microbiol. 54, 598–603 (2004).

    CAS  PubMed  Google Scholar 

  37. Wu, H. Y., Shyy, S. H., Wang, J. C. & Liu, L. F. Transcription generates positively and negatively supercoiled domains in the template. Cell 53, 433–440 (1988). This paper proposed the 'twin domain' model of transcription-associated DNA helical stress.

    CAS  PubMed  Google Scholar 

  38. Tuduri, S. et al. Topoisomerase I suppresses genomic instability by preventing interference between replication and transcription. Nature Cell Biol. 11, 1315–1324 (2009).

    CAS  PubMed  Google Scholar 

  39. Cerritelli, S. M. & Crouch, R. J. Ribonuclease H: the enzymes in eukaryotes. FEBS J. 276, 1494–1505 (2009).

    CAS  PubMed  Google Scholar 

  40. Baaklini, I., Hraiky, C., Rallu, F., Tse-Dinh, Y. C. & Drolet, M. RNase HI overproduction is required for efficient full-length RNA synthesis in the absence of topoisomerase I in Escherichia coli. Mol. Microbiol. 54, 198–211 (2004).

    CAS  PubMed  Google Scholar 

  41. Mischo, H. E. et al. Yeast Sen1 helicase protects the genome from transcription-associated instability. Mol. Cell 41, 21–32 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Rudolph, C. J., Upton, A. L., Briggs, G. S. & Lloyd, R. G. Is RecG a general guardian of the bacterial genome? DNA Repair 9, 210–223 (2010).

    CAS  PubMed  Google Scholar 

  43. Skourti-Stathaki, K., Proudfoot, N. J. & Gromak, N. Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol. Cell 42, 794–805 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Chavez, S. & Aguilera, A. The yeast HPR1 gene has a functional role in transcriptional elongation that uncovers a novel source of genome instability. Genes Dev. 11, 3459–3470 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Huertas, P. & Aguilera, A. Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol. Cell 12, 711–721 (2003). This paper highlights the role of co-transcriptionally formed RNA–DNA hybrids (R-loops) in TAR by showing that degradation of the nascent mRNA by RNase H1 or a self-cleaving hammerhead ribozyme can suppress hyper-recombination in budding yeast hpr1 mutants.

    CAS  PubMed  Google Scholar 

  46. Rondon, A. G., Jimeno, S. & Aguilera, A. The interface between transcription and mRNP export: from THO to THSC/TREX-2. Biochim. Biophys. Acta 1799, 533–538 (2010).

    CAS  PubMed  Google Scholar 

  47. Gomez-Gonzalez, B. et al. Genome-wide function of THO/TREX in active genes prevents R-loop-dependent replication obstacles. EMBO J. 30, 3106–3119 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wahba, L., Amon, J. D., Koshland, D. & Vuica-Ross, M. RNase H and multiple RNA biogenesis factors cooperate to prevent RNA:DNA hybrids from generating genome instability. Mol. Cell 44, 978–988 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. French, S. L. et al. Distinguishing the roles of Topoisomerases I and II in relief of transcription-induced torsional stress in yeast rRNA genes. Mol. Cell. Biol. 31, 482–494 (2011).

    CAS  PubMed  Google Scholar 

  50. El Hage, A., French, S. L., Beyer, A. L. & Tollervey, D. Loss of Topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis. Genes Dev. 24, 1546–1558 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Christman, M. F., Dietrich, F. S. & Fink, G. R. Mitotic recombination in the rDNA of S. cerevisiae is suppressed by the combined action of DNA topoisomerases I and II. Cell 55, 413–425 (1988).

    CAS  PubMed  Google Scholar 

  52. Li, X. & Manley, J. L. Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability. Cell 122, 365–378 (2005). This paper demonstrated the role of mRNA splicing complex assembly in suppressing TAR in chicken DT40 and mammalian cells.

    CAS  PubMed  Google Scholar 

  53. Paulsen, R. D. et al. A genome-wide siRNA screen reveals diverse cellular processes and pathways that mediate genome stability. Mol. Cell 35, 228–239 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Dominguez-Sanchez, M. S., Barroso, S., Gomez-Gonzalez, B., Luna, R. & Aguilera, A. Genome instability and transcription elongation impairment in human cells depleted of THO/TREX. PLoS Genet. 7, e1002386 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Helmrich, A., Ballarino, M. & Tora, L. Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. Mol. Cell 44, 966–977 (2011).

    CAS  PubMed  Google Scholar 

  56. Yu, K., Chedin, F., Hsieh, C. L., Wilson, T. E. & Lieber, M. R. R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nature Immunol. 4, 442–451 (2003).

    CAS  Google Scholar 

  57. Maizels, N. Dynamic roles for G4 DNA in the biology of eukaryotic cells. Nature Struct. Mol. Biol. 13, 1055–1059 (2006).

    CAS  Google Scholar 

  58. Duquette, M. L., Handa, P., Vincent, J. A., Taylor, A. F. & Maizels, N. Intracellular transcription of G-rich DNAs induces formation of G-loops, novel structures containing G4 DNA. Genes Dev. 18, 1618–1629 (2004). This work demonstrated that a highly transcribed immunoglobulin switch region sequence forms G-loop structures visible by electron microscope both in vitro and in cells in E. coli.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Belotserkovskii, B. P. et al. Mechanisms and implications of transcription blockage by guanine-rich DNA sequences. Proc. Natl Acad. Sci. USA 107, 12816–12821 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Shinkura, R. et al. The influence of transcriptional orientation on endogenous switch region function. Nature Immunol. 4, 435–441 (2003).

    CAS  Google Scholar 

  61. Kim, N. & Jinks-Robertson, S. Guanine repeat-containing sequences confer transcription-dependent instability in an orientation-specific manner in yeast. DNA Repair 10, 953–960 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Gan, W. et al. R-loop-mediated genomic instability is caused by impairment of replication fork progression. Genes Dev. 25, 2041–2056 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Lopes, J. et al. G-quadruplex-induced instability during leading-strand replication. EMBO J. 30, 4033–4046 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Paeschke, K., Capra, J. A. & Zakian, V. A. DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell 145, 678–691 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Mirkin, S. M. Expandable DNA repeats and human disease. Nature 447, 932–940 (2007).

    CAS  PubMed  Google Scholar 

  66. McMurray, C. T. DNA secondary structure: a common and causative factor for expansion in human disease. Proc. Natl Acad. Sci. USA 96, 1823–1825 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Swami, M. et al. Somatic expansion of the Huntington's disease CAG repeat in the brain is associated with an earlier age of disease onset. Hum. Mol. Genet. 18, 3039–3047 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Petruska, J., Arnheim, N. & Goodman, M. F. Stability of intrastrand hairpin structures formed by the CAG/CTG class of DNA triplet repeats associated with neurological diseases. Nucleic Acids Res. 24, 1992–1998 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Salinas-Rios, V., Belotserkovskii, B. P. & Hanawalt, P. C. DNA slip-outs cause RNA polymerase II arrest in vitro: potential implications for genetic instability. Nucleic Acids Res. 39, 7444–7454 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Lin, Y., Dion, V. & Wilson, J. H. Transcription promotes contraction of CAG repeat tracts in human cells. Nature Struct. Mol. Biol. 13, 179–180 (2006). This work showed that contraction of CAG triplet repeats in human cells requires transcription and components of defined DNA repair pathways.

    CAS  Google Scholar 

  71. Lin, Y. & Wilson, J. H. Transcription-induced CAG repeat contraction in human cells is mediated in part by transcription-coupled nucleotide excision repair. Mol. Cell. Biol. 27, 6209–6217 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Jung, J. & Bonini, N. CREB-binding protein modulates repeat instability in a Drosophila model for polyQ disease. Science 315, 1857–1859 (2007). Using a D. melanogaster model system, this work demonstrated that CAG repeat expansion requires transcription and is mediated by TC-NER.

    CAS  PubMed  Google Scholar 

  73. Wells, R. D., Dere, R., Hebert, M. L., Napierala, M. & Son, L. S. Advances in mechanisms of genetic instability related to hereditary neurological diseases. Nucleic Acids Res. 33, 3785–3798 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Grabczyk, E., Mancuso, M. & Sammarco, M. C. A persistent RNA•DNA hybrid formed by transcription of the Friedreich ataxia triplet repeat in live bacteria, and by T7 RNAP in vitro. Nucleic Acids Res. 35, 5351–5359 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Ditch, S., Sammarco, M. C., Banerjee, A. & Grabczyk, E. Progressive GAA•TTC repeat expansion in human cell lines. PLoS Genet. 5, e1000704 (2009).

    PubMed  PubMed Central  Google Scholar 

  76. Rindler, P. M. & Bidichandani, S. I. Role of transcript and interplay between transcription and replication in triplet-repeat instability in mammalian cells. Nucleic Acids Res. 39, 526–535 (2011).

    CAS  PubMed  Google Scholar 

  77. Yelin, R. et al. Widespread occurrence of antisense transcription in the human genome. Nature Biotech. 21, 379–386 (2003).

    CAS  Google Scholar 

  78. Lin, Y. & Wilson, J. H. Transcription-induced DNA toxicity at trinucleotide repeats: double bubble is trouble. Cell Cycle 10, 611–618 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Lin, Y., Leng, M., Wan, M. & Wilson, J. H. Convergent transcription through a long CAG tract destabilizes repeats and induces apoptosis. Mol. Cell. Biol. 30, 4435–4451 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Nakamori, M., Pearson, C. E. & Thornton, C. A. Bidirectional transcription stimulates expansion and contraction of expanded (CTG)•(CAG) repeats. Hum. Mol. Genet. 20, 580–588 (2011).

    CAS  PubMed  Google Scholar 

  81. Morey, N. J., Greene, C. N. & Jinks-Robertson, S. Genetic analysis of transcription-associated mutation in Saccharomyces cerevisiae. Genetics 154, 109–120 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Garcia-Rubio, M., Huertas, P., Gonzalez-Barrera, S. & Aguilera, A. Recombinogenic effects of DNA-damaging agents are synergistically increased by transcription in Saccharomyces cerevisiae. New insights into transcription-associated recombination. Genetics 165, 457–466 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Lippert, M. J. et al. Role for topoisomerase 1 in transcription-associated mutagenesis in yeast. Proc. Natl Acad. Sci. USA 108, 698–703 (2011).

    CAS  PubMed  Google Scholar 

  84. Takahashi, T., Burguiere-Slezak, G., Van der Kemp, P. A. & Boiteux, S. Topoisomerase 1 provokes the formation of short deletions in repeated sequences upon high transcription in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 108, 692–697 (2011). The above two references describe transcription-dependent short deletions at tandem repeats and demonstrate that these events require Top1 activity.

    CAS  PubMed  Google Scholar 

  85. Kim, N. & Jinks-Robertson, S. Abasic sites in the transcribed strand of yeast DNA are removed by transcription-coupled nucleotide excision repair. Mol. Cell. Biol. 30, 3206–3215 (2010). This paper showed that uracil-derived AP sites and the ensuing mutagenesis are highly stimulated by transcription in budding yeast. The uracil reflects direct incorporation of dUTP in place of dTTP rather than cytosine deamination.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Hudson, R. E., Bergthorsson, U. & Ochman, H. Transcription increases multiple spontaneous point mutations in Salmonella enterica. Nucleic Acids Res. 31, 4517–4522 (2003).

    CAS  PubMed  Google Scholar 

  87. Klapacz, J. & Bhagwat, A. S. Transcription-dependent increase in multiple classes of base substitution mutations in Escherichia coli. J. Bacteriol. 184, 6866–6872 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Beletskii, A. & Bhagwat, A. S. Transcription-induced mutations: increase in C to T mutations in the nontranscribed strand during transcription in Escherichia coli. Proc. Natl Acad. Sci. USA 93, 13919–13924 (1996). This work demonstrated that in E. coli , C to T mutations resulting from spontaneous deamination of cytosines occur more frequently on the NTS of an active gene.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Beletskii, A. & Bhagwat, A. S. Correlation between transcription and C to T mutations in the non-transcribed DNA strand. Biol. Chem. 379, 549–551 (1998).

    CAS  PubMed  Google Scholar 

  90. Klapacz, J. & Bhagwat, A. S. Transcription promotes guanine to thymine mutations in the non-transcribed strand of an Escherichia coli gene. DNA Repair 4, 806–813 (2005).

    CAS  PubMed  Google Scholar 

  91. Frederico, L. A., Kunkel, T. A. & Shaw, B. R. A sensitive genetic assay for the detection of cytosine deamination: determination of rate constants and the activation energy. Biochemistry 29, 2532–2537 (1990).

    CAS  PubMed  Google Scholar 

  92. Gomez-Gonzalez, B. & Aguilera, A. Activation-induced cytidine deaminase action is strongly stimulated by mutations of the THO complex. Proc. Natl Acad. Sci. USA 104, 8409–8414 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Green, P., Ewing, B., Miller, W., Thomas, P. J. & Green, E. D. Transcription-associated mutational asymmetry in mammalian evolution. Nature Genet. 33, 514–517 (2003).

    CAS  PubMed  Google Scholar 

  94. Majewski, J. Dependence of mutational asymmetry on gene-expression levels in the human genome. Am. J. Hum. Genet. 73, 688–692 (2003). The above two papers together demonstrated a strand-specific mutation bias in mammalian genes that correlates with expression level.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Rubin, A. F. & Green, P. Mutation patterns in cancer genomes. Proc. Natl Acad. Sci. USA 106, 21766–21770 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Wright, B. E., Reschke, D. K., Schmidt, K. H., Reimers, J. M. & Knight, W. Predicting mutation frequencies in stem-loop structures of derepressed genes: implications for evolution. Mol. Microbiol. 48, 429–441 (2003).

    CAS  PubMed  Google Scholar 

  97. Schmidt, K. H., Reimers, J. M. & Wright, B. E. The effect of promoter strength, supercoiling and secondary structure on mutation rates in Escherichia coli. Mol. Microbiol. 60, 1251–1261 (2006).

    CAS  PubMed  Google Scholar 

  98. Wright, B. E. et al. The roles of transcription and genotoxins underlying p53 mutagenesis in vivo. Carcinogenesis 32, 1559–1567 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Hanawalt, P. C. & Spivak, G. Transcription-coupled DNA repair: two decades of progress and surprises. Nature Rev. Mol. Cell Biol. 9, 958–970 (2008).

    CAS  Google Scholar 

  100. Iannone, R. et al. Mutation spectra analysis suggests that N-(2-chloroethyl)-N′-cyclohexyl-N-nitrosourea-induced lesions are subject to transcription-coupled repair in Escherichia coli. Mol. Carcinog. 19, 39–45 (1997).

    CAS  PubMed  Google Scholar 

  101. Li, B. H., Ebbert, A. & Bockrath, R. Transcription-modulated repair in Escherichia coli evident with UV-induced mutation spectra in supF. J. Mol. Biol. 294, 35–48 (1999).

    CAS  PubMed  Google Scholar 

  102. Moriya, M. et al. TP53 Mutational signature for aristolochic acid: an environmental carcinogen. Int. J. Cancer 129, 1532–1536 (2011).

    CAS  PubMed  Google Scholar 

  103. Hendriks, G. et al. Gene transcription increases DNA damage-induced mutagenesis in mammalian stem cells. DNA Repair 7, 1330–1339 (2008).

    CAS  PubMed  Google Scholar 

  104. Hendriks, G. et al. Transcription-dependent cytosine deamination is a novel mechanism in ultraviolet light-induced mutagenesis. Curr. Biol. 20, 170–175 (2010).

    CAS  PubMed  Google Scholar 

  105. Kim, N. et al. Mutagenic processing of ribonucleotides in DNA by yeast topoisomerase I. Science 332, 1561–1564 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Kim, N. & Jinks-Robertson, S. dUTP incorporation into genomic DNA is linked to transcription in yeast. Nature 459, 1150–1153 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Neuberger, M. S. et al. Somatic hypermutation at A.T pairs: polymerase error versus dUTP incorporation. Nature Rev. Immunol. 5, 171–178 (2005).

    CAS  Google Scholar 

  108. Roche, B., Claes, A. & Rougeon, F. Deoxyuridine triphosphate incorporation during somatic hypermutation of mouse VkOx genes after immunization with phenyloxazolone. J. Immunol. 185, 4777–4782 (2010).

    CAS  PubMed  Google Scholar 

  109. Maul, R. W. et al. Uracil residues dependent on the deaminase AID in immunoglobulin gene variable and switch regions. Nature Immunol. 12, 70–76 (2011).

    CAS  Google Scholar 

  110. Cho, R. J. et al. A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell 2, 65–73 (1998).

    CAS  PubMed  Google Scholar 

  111. Pybus, C. et al. Transcription-associated mutation in Bacillus subtilis cells under stress. J. Bacteriol. 192, 3321–3328 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Maldonado, E. et al. A human RNA polymerase II complex associated with SRB and DNA-repair proteins. Nature 381, 86–89 (1996).

    CAS  PubMed  Google Scholar 

  113. Deem, A. et al. Break-induced replication is highly inaccurate. PLoS Biol. 9, e1000594 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Hicks, W. M., Kim, M. & Haber, J. E. Increased mutagenesis and unique mutation signature associated with mitotic gene conversion. Science 329, 82–85 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Strathern, J. N., Shafer, B. & McGill, C. B. DNA synthesis errors associated with double-strand-break repair. Genetics 140, 965–972 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Gonzalez-Barrera, S., Garcia-Rubio, M. & Aguilera, A. Transcription and double-strand breaks induce similar mitotic recombination events in Saccharomyces cerevisiae. Genetics 162, 603–614 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Saxe, D., Datta, A. & Jinks-Robertson, S. Stimulation of mitotic recombination events by high levels of RNA polymerase II transcription in yeast. Mol. Cell. Biol. 20, 5404–5414 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Schildkraut, E., Miller, C. A. & Nickoloff, J. A. Transcription of a donor enhances its use during double-strand break-induced gene conversion in human cells. Mol. Cell. Biol. 26, 3098–3105 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Derr, L. K. & Strathern, J. N. A role for reverse transcripts in gene conversion. Nature 361, 170–173 (1993).

    CAS  PubMed  Google Scholar 

  120. Fink, G. R. Pseudogenes in yeast? Cell 49, 5–6 (1987).

    CAS  PubMed  Google Scholar 

  121. Storici, F., Bebenek, K., Kunkel, T. A., Gordenin, D. A. & Resnick, M. A. RNA-templated DNA repair. Nature 447, 338–341 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Sekiguchi, J. & Shuman, S. Site-specific ribonuclease activity of eukaryotic DNA topoisomerase I. Mol. Cell 1, 89–97 (1997).

    CAS  PubMed  Google Scholar 

  123. Henningfeld, K. A. & Hecht, S. M. A model for topoisomerase I-mediated insertions and deletions with duplex DNA substrates containing branches, nicks, and gaps. Biochemistry 34, 6120–6129 (1995).

    CAS  PubMed  Google Scholar 

  124. Maizels, N. Immunoglobulin gene diversity. Annu. Rev. Genet. 39, 23–46 (2005).

    CAS  PubMed  Google Scholar 

  125. Chiarle, R. et al. Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell 147, 107–119 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work has been supported by grants from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sue Jinks-Robertson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Sue Jinks-Robertson's homepage

Glossary

Non-transcribed strand

(NTS). The NTS is complementary to the transcribed strand and has the same sequence as the RNA (except that it contains thymine instead of uracil); it is often referred to as the coding strand, whose sequence is given as standard.

Replisome

The multi-protein complex that contains all of the proteins that are required for DNA replication. This includes the DNA polymerases, factors that increase the processivity of DNA synthesis and a helicase to unwind duplex DNA.

Two-dimensional gels

These are used to visualize replication fork progression across a defined segment of DNA. DNA is separated by size in the first dimension and by shape in the second; the fragment of interest is visualized by Southern blot analysis. Linear fragments run on a diagonal; fragments that run off the diagonal correspond to replicating or branched molecules.

Chromatin immunoprecipitation followed by microarray

(ChIP–chip). DNA that interacts with a given protein is immunoprecipitated from cell extracts ('ChIP'). The precipitated DNA is labelled and hybridized to a microarray ('chip'), where signals above background reflect sequences preferentially immunoprecipitated with the protein of interest; it is used to map locations of protein–DNA interactions.

THO complex

A conserved protein complex that includes the proteins Tho2, Hpr1, Mft1 and Thp2 in yeast. It interacts with the TREX complex and functions in mRNA metabolism and export.

Transcription-coupled nucleotide excision repair

(TC-NER). TC-NER is a subpathway of the NER pathway that is initiated specifically in response to an RNA polymerase arrested by damage on the DNA template. The net effect is more efficient NER-directed repair of lesions on the transcribed than on the non-transcribed strand of active genes.

Reversion assays

Assays that start with a mutant allele, typically containing a change in a single base pair or the insertion or deletion of a single base pair, and that select for restoration of gene function. The change that restores gene function is usually limited to the position of the original mutation.

Forward mutations

Forward mutation assays select for loss of a gene function and can detect any change in the DNA sequence that inactivates the encoded product, which is usually a protein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, N., Jinks-Robertson, S. Transcription as a source of genome instability. Nat Rev Genet 13, 204–214 (2012). https://doi.org/10.1038/nrg3152

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3152

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology