Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Loss-of-function genetic tools for animal models: cross-species and cross-platform differences

Key Points

  • Loss-of-function (LOF) technologies are widely used across many model organisms and many fields.

  • Although all LOF approaches have the shared goal of perturbing gene function, there are complex differences between approaches that can have a considerable effect on the outcome of experiments.

  • The specific properties and effect of each loss-of-function approach depend on the model organism in which they are used.

  • Outcomes from LOF experiments depend on the strength and duration of knockdown or knockout and the process targeted (for example, DNA sequence, transcription, mRNA or protein).

  • The most appropriate choice of LOF method requires careful consideration and will depend on both the biological question to be answered and the model organism to be used.

  • It can be advantageous to apply different LOF approaches in parallel in order to gain greater confidence in results and a deeper understanding of the underlying biology.

Abstract

Our understanding of the genetic mechanisms that underlie biological processes has relied extensively on loss-of-function (LOF) analyses. LOF methods target DNA, RNA or protein to reduce or to ablate gene function. By analysing the phenotypes that are caused by these perturbations the wild-type function of genes can be elucidated. Although all LOF methods reduce gene activity, the choice of approach (for example, mutagenesis, CRISPR-based gene editing, RNA interference, morpholinos or pharmacological inhibition) can have a major effect on phenotypic outcomes. Interpretation of the LOF phenotype must take into account the biological process that is targeted by each method. The practicality and efficiency of LOF methods also vary considerably between model systems. We describe parameters for choosing the optimal combination of method and system, and for interpreting phenotypes within the constraints of each method.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of loss-of-function approaches.
Figure 2: Effects of different LOF approaches and potential for compensation.

Similar content being viewed by others

References

  1. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Nüsslein-Volhard, C. & Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801 (1980).

    Article  PubMed  Google Scholar 

  3. Gans, M., Audit, C. & Masson, M. Isolation and characterization of sex-linked female-sterile mutants in Drosophila melanogaster. Genetics 81, 683–704 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Haffter, P. et al. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123, 1–36 (1996).

    CAS  PubMed  Google Scholar 

  5. Driever, W. et al. A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123, 37–46 (1996). References 4 and 5 are leading papers that describe the first large-scale ENU screens conducted in zebrafish.

    CAS  PubMed  Google Scholar 

  6. Nolan, P. M. et al. A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse. Nat. Genet. 25, 440–443 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Kasarskis, A., Manova, K. & Anderson, K. V. A phenotype-based screen for embryonic lethal mutations in the mouse. Proc. Natl Acad. Sci. USA 95, 7485–7490 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mohr, S. E., Smith, J. A., Shamu, C. E., Neumüller, R. A. & Perrimon, N. RNAi screening comes of age: improved techniques and complementary approaches. Nat. Rev. Mol. Cell. Biol. 15, 591–600 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hartenian, E. & Doench, J. G. Genetic screens and functional genomics using CRISPR/Cas9 technology. FEBS J. 282, 1383–1393 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Horn, T. et al. Mapping of signaling networks through synthetic genetic interaction analysis by RNAi. Nat. Methods 8, 341–346 (2011). Describes a large-scale dual-RNAi approach to genetic interaction mapping (>70,000 pairwise combinations).

    Article  CAS  PubMed  Google Scholar 

  11. Bassik, M. C. et al. A systematic mammalian genetic interaction map reveals pathways underlying ricin susceptibility. Cell 152, 909–922 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Teng, X. et al. Genome-wide consequences of deleting any single gene. Mol. Cell 52, 485–494 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ma, Y., Creanga, A., Lum, L. & Beachy, P. A. Prevalence of off-target effects in Drosophila RNA interference screens. Nature 443, 359–363 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Kulkarni, M. M. et al. Evidence of off-target effects associated with long dsRNAs in Drosophila melanogaster cell-based assays. Nat. Methods 3, 833–838 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Wu, X., Kriz, A. J. & Sharp, P. A. Target specificity of the CRISPR-Cas9 system. Quant. Biol. 2, 59–70 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Peng, R., Lin, G. & Li, J. Potential pitfalls of CRISPR/Cas9-mediated genome editing. FEBS J. 283, 1218–1231 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Hendel, A., Fine, E. J., Bao, G. & Porteus, M. H. Quantifying on- and off-target genome editing. Trends Biotechnol. 33, 132–140 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tsai, S. Q. & Joung, J. K. Defining and improving the genome-wide specificities of CRISPR–Cas9 nucleases. Nat. Rev. Genet. 17, 300–312 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Anderson, P. Mutagenesis. Methods Cell Biol. 48, 31–58 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Corsi, A. K., Wightman, B. & Chalfie, M. A. Transparent window into biology: a primer on Caenorhabditis elegans. Genetics 200, 387–407 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. St Johnston, D. The art and design of genetic screens: Drosophila melanogaster. Nat. Rev. Genet. 3, 176–188 (2002). Seminal review that describes successful approaches to genetic screening in D. melanogaster and key elements of the 'genetic toolbox' for flies.

    Article  CAS  PubMed  Google Scholar 

  22. Venken, K. J. T. & Bellen, H. J. Chemical mutagens, transposons, and transgenes to interrogate gene function in Drosophila melanogaster. Methods 68, 15–28 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jin, S.-W. et al. A transgene-assisted genetic screen identifies essential regulators of vascular development in vertebrate embryos. Dev. Biol. 307, 29–42 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Furutani-Seiki, M. et al. A systematic genome-wide screen for mutations affecting organogenesis in Medaka, Oryzias latipes. Mech. Dev. 121, 647–658 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Li, Y. et al. Global genetic analysis in mice unveils central role for cilia in congenital heart disease. Nature 521, 520–524 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hutter, H. & Moerman, D. Big Data in Caenorhabditis elegans: quo vadis? Mol. Biol. Cell 26, 3909–3914 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kettleborough, R. N. W. et al. A systematic genome-wide analysis of zebrafish protein-coding gene function. Nature 496, 494–497 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pan, L. et al. Rapid identification and recovery of ENU-induced mutations with next-generation sequencing and Paired-End Low-Error analysis. BMC Genomics 16, 83 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sarin, S. et al. Analysis of multiple ethyl methanesulfonate-mutagenized Caenorhabditis elegans strains by whole-genome sequencing. Genetics 185, 417–430 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Miskey, C., Izsvák, Z., Kawakami, K. & Ivics, Z. DNA transposons in vertebrate functional genomics. Cell. Mol. Life Sci. 62, 629–641 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Collier, L. S., Carlson, C. M., Ravimohan, S., Dupuy, A. J. & Largaespada, D. A. Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse. Nature 436, 272–276 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Greenwald, I. lin-12, a nematode homeotic gene, is homologous to a set of mammalian proteins that includes epidermal growth factor. Cell 43, 583–590 (1985).

    Article  CAS  PubMed  Google Scholar 

  33. Spradling, A. C. & Rubin, G. M. Transposition of cloned P elements into Drosophila germ line chromosomes. Science 218, 341–347 (1982).

    Article  CAS  PubMed  Google Scholar 

  34. Moerman, D. G., Benian, G. M. & Waterston, R. H. Molecular cloning of the muscle gene unc-22 in Caenorhabditis elegans by Tc1 transposon tagging. Proc. Natl Acad. Sci. USA 83, 2579–2583 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vallin, E. et al. A genome-wide collection of Mos1 transposon insertion mutants for the C. elegans research community. PLoS ONE 7, e30482 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hacker, U., Nystedt, S., Barmchi, M. P., Horn, C. & Wimmer, E. A. piggyBac-based insertional mutagenesis in the presence of stably integrated P elements in Drosophila. Proc. Natl Acad. Sci. USA 100, 7720–7725 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hummel, T. & Klämbt, C. P-Element mutagenesis. Methods Mol. Biol. 420, 97–117 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Ikeda, R. et al. Sleeping beauty transposase has an affinity for heterochromatin conformation. Mol. Cell. Biol. 27, 1665–1676 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Venken, K. J. T. et al. MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes. Nat. Methods 8, 737–743 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Amsterdam, A. et al. A large-scale insertional mutagenesis screen in zebrafish. Genes Dev. 13, 2713–2724 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Golling, G. et al. Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development. Nat. Genet. 31, 135–140 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Clark, K. J. et al. In vivo protein trapping produces a functional expression codex of the vertebrate proteome. Nat. Methods 8, 506–515 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Trinh, L. A. et al. A versatile gene trap to visualize and interrogate the function of the vertebrate proteome. Genes Dev. 25, 2306–2320 (2011).

    Article  CAS  PubMed Central  Google Scholar 

  44. Varshney, G. K. et al. A large-scale zebrafish gene knockout resource for the genome-wide study of gene function. Genome Res. 23, 727–735 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Quach, H. N. B. et al. A multifunctional mutagenesis system for analysis of gene function in zebrafish. G3 (Bethesda). 5, 1283–1299 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zambrowicz, B. P. et al. Disruption and sequence identification of 2,000 genes in mouse embryonic stem cells. Nature 392, 608–611 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Skarnes, W. C. et al. A public gene trap resource for mouse functional genomics. Nat. Genet. 36, 543–544 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Guo, G., Wang, W. & Bradley, A. Mismatch repair genes identified using genetic screens in Blm-deficient embryonic stem cells. Nature 429, 891–895 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Carette, J. E. et al. Haploid genetic screens in human cells identify host factors used by pathogens. Science 326, 1231–1235 (2009). This study introduced genome-scale gene-trap mutagenesis screening to mammalian genetics by exploiting a near-haploid human cancer cell line.

    Article  CAS  PubMed  Google Scholar 

  50. Leeb, M. & Wutz, A. Derivation of haploid embryonic stem cells from mouse embryos. Nature 479, 131–134 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Elling, U. et al. Forward and reverse genetics through derivation of haploid mouse embryonic stem cells. Stem Cell 9, 563–574 (2011).

    CAS  Google Scholar 

  52. Bürckstümmer, T. et al. A reversible gene trap collection empowers haploid genetics in human cells. Nat. Methods 10, 965–971 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hilton, I. B. & Gersbach, C. A. Enabling functional genomics with genome engineering. Genome Res. 25, 1442–1455 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gaj, T., Gersbach, C. A. & Barbas, C. F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31, 397–405 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lee, H. J., Kim, E. & Kim, J.-S. Targeted chromosomal deletions in human cells using zinc finger nucleases. Genome Res. 20, 81–89 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Essletzbichler, P. et al. Megabase-scale deletion using CRISPR/Cas9 to generate a fully haploid human cell line. Genome Res. 24, 2059–2065 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jinek, M. et al. RNA-programmed genome editing in human cells. eLife 2, e00471 (2013). References 57–59 were the first demonstration of CRISPR–Cas9 repurposed for genome editing in eukaryotic cells.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hwang, W. Y. et al. Efficient genome editing in zebrafish using a CRISPR–Cas system. Nat. Biotechnol. 31, 227–229 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Friedland, A. E. et al. Heritable genome editing in C. elegans via a CRISPR–Cas9 system. Nat. Methods 10, 741–743 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gratz, S. J. et al. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 194, 1029–1035 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yang, H. et al. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas mediated genome engineering. Cell 154, 1370–1379 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chang, N. et al. Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res. 23, 465–472 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dickinson, D. J., Ward, J. D., Reiner, D. J. & Goldstein, B. Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat. Methods 10, 1028–1034 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bassett, A. R., Tibbit, C., Ponting, C. P. & Liu, J.-L. Mutagenesis and homologous recombination in Drosophila cell lines using CRISPR/Cas9. Biol. Open 3, 42–49 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Shen, Z. et al. Conditional knockouts generated by engineered CRISPR–Cas9 endonuclease reveal the roles of Coronin in C. elegans neural development. Dev. Cell 30, 625–636 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Li, W., Yi, P. & Ou, G. Somatic CRISPR–Cas9-induced mutations reveal roles of embryonically essential dynein chains in Caenorhabditis elegans cilia. J. Cell Biol. 208, 683–692 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tian, D. et al. Anillin regulates neuronal migration and neurite growth by linking RhoG to the actin cytoskeleton. Curr. Biol. 25, 1135–1145 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Xue, Z. et al. CRISPR/Cas9 mediates efficient conditional mutagenesis in Drosophila. G3 (Bethesda). 4, 2167–2173 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Dow, L. E. et al. Inducible in vivo genome editing with CRISPR–Cas9. Nat. Biotechnol. 33, 390–394 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ablain, J., Durand, E. M., Yang, S., Zhou, Y. & Zon, L. I. A. CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish. Dev. Cell 32, 756–764 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Arribere, J. A. et al. Efficient marker-free recovery of custom genetic modifications with CRISPR/Cas9 in Caenorhabditis elegans. Genetics 198, 837–846 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Paix, A. et al. Scalable and versatile genome editing using linear DNAs with microhomology to Cas9 Sites in Caenorhabditis elegans. Genetics 198, 1347–1356 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Paix, A., Folkmann, A., Rasoloson, D. & Seydoux, G. High efficiency, homology-directed genome editing in Caenorhabditis elegans using CRISPR–Cas9 ribonucleoprotein complexes. Genetics 201, 47–54 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Brocal, I. et al. Efficient identification of CRISPR/Cas9-induced insertions/deletions by direct germline screening in zebrafish. BMC Genomics 17, 259 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Parnas, O. et al. A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks. Cell 162, 675–686 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013). This paper first demonstrated the broad utility of CRISPR–Cas9 targeting transcriptional regulators to specific genomic sites.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Thakore, P. I., Black, J. B., Hilton, I. B. & Gersbach, C. A. Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat. Methods 13, 127–137 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shalem, O. et al. Genome-scale CRISPR–Cas9 knockout screening in human cells. Science. 343, 84–87 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic screens in human cells using the CRISPR–Cas9 system. Science 343, 80–84 (2014). References 81 and 82 are the first examples of the use of pooled gRNA libraries and the CRISPR–Cas9 platform to carry out whole genome knockout screens in human cells.

    Article  CAS  PubMed  Google Scholar 

  83. Yang, H. et al. Generation of genetically modified mice by oocyte injection of androgenetic haploid embryonic stem cells. Cell 149, 605–617 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Aguirre, A. J. et al. Genomic copy number dictates a gene-independent cell response to CRISPR–Cas9 targeting. Cancer Discov. 6, 914–929 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Munoz, D. M. et al. CRISPR screens provide a comprehensive assessment of cancer vulnerabilities but generate false-positive hits for highly amplified genomic regions. Cancer Discov. 6, 900–913 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Platt, R. J. et al. CRISPR–Cas9 knockin mice for genome editing and cancer modeling. Cell 159, 440–455 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Li, W. & Ou, G. The application of somatic CRISPR–Cas9 to conditional genome editing in Caenorhabditis elegans. Genesis 54, 170–181 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Braun, C. J. et al. Versatile in vivo regulation of tumor phenotypes by dCas9-mediated transcriptional perturbation. Proc. Natl Acad. Sci. USA 113, E3892–E3900 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chen, S. et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160, 1246–1260 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Burger, A. et al. Maximizing mutagenesis with solubilized CRISPR–Cas9 ribonucleoprotein complexes. Development 143, 2025–2037 (2016).

    Article  CAS  PubMed  Google Scholar 

  91. Fatehullah, A., Tan, S. H. & Barker, N. Organoids as an in vitro model of human development and disease. Nat. Cell Biol. 18, 246–254 (2016).

    Article  CAS  PubMed  Google Scholar 

  92. O'Rourke, S. M. et al. A survey of new temperature-sensitive, embryonic-lethal mutations in C. elegans: 24 alleles of thirteen genes. PLoS ONE 6, e16644 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Davies, T. et al. High-resolution temporal analysis reveals a functional timeline for the molecular regulation of cytokinesis. Dev. Cell 30, 209–223 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Golic, K. G. & Lindquist, S. The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59, 499–509 (1989).

    Article  CAS  PubMed  Google Scholar 

  95. Lewandoski, M. Conditional control of gene expression in the mouse. Nat. Rev. Genet. 2, 743–755 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Sauer, B. & Henderson, N. Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc. Natl Acad. Sci. USA 85, 5166–5170 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Orban, P. C., Chui, D. & Marth, J. D. Tissue- and site-specific DNA recombination in transgenic mice. Proc. Natl Acad. Sci. USA 89, 6861–6865 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Duffy, J. B., Harrison, D. A. & Perrimon, N. Identifying loci required for follicular patterning using directed mosaics. Development 125, 2263–2271 (1998).

    CAS  PubMed  Google Scholar 

  99. Xu, T., Wang, W., Zhang, S., Stewart, R. A. & Yu, W. Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development 121, 1053–1063 (1995).

    CAS  PubMed  Google Scholar 

  100. Gu, H., Marth, J. D., Orban, P. C., Mossmann, H. & Rajewsky, K. Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 265, 103–106 (1994).

    Article  CAS  PubMed  Google Scholar 

  101. Kühn, R., Schwenk, F., Aguet, M. & Rajewsky, K. Inducible gene targeting in mice. Science 269, 1427–1429 (1995).

    Article  PubMed  Google Scholar 

  102. Koo, B.-K. et al. Rapid, one-step generation of biallelic conditional gene knockouts. Preprint at bioRxiv http://dx.doi.org/10.1101/056549 (2016).

  103. Robles-Oteiza, C. et al. Recombinase-based conditional and reversible gene regulation via XTR alleles. Nat. Commun. 6, 8783 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Perez-Pinera, P. et al. RNA-guided gene activation by CRISPR–Cas9-based transcription factors. Nat. Methods 10, 973–976 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Maeder, M. L. et al. CRISPR RNA-guided activation of endogenous human genes. Nat. Methods 10, 977–979 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chavez, A. et al. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12, 326–328 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S. & Vale, R. D. A. Protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635–646 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mali, P. et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31, 833–838 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Chavez, A. et al. Comparison of Cas9 activators in multiple species. Nat. Methods 13, 563–567 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Vojta, A. et al. Repurposing the CRISPR–Cas9 system for targeted DNA methylation. Nucleic Acids Res. 44, 5615–5628 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hilton, I. B. et al. Epigenome editing by a CRISPR–Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33, 510–517 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kearns, N. A. et al. Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat. Methods 12, 401–403 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Thakore, P. I. et al. Highly specific epigenome editing by CRISPR–Cas9 repressors for silencing of distal regulatory elements. Nat. Methods 12, 1143–1149 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lin, S., Ewen-Campen, B., Ni, X., Housden, B. E. & Perrimon, N. In vivo transcriptional activation using CRISPR/Cas9 in Drosophila. Genetics 201, 433–442 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ghosh, S., Tibbit, C. & Liu, J.-L. Effective knockdown of Drosophila long non-coding RNAs by CRISPR interference. Nucleic Acids Res. 44, e84 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Long, L. et al. Regulation of transcriptionally active genes via the catalytically inactive Cas9 in C. elegans and D. rerio. Cell Res. 25, 638–641 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Rossi, A. et al. Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 524, 230–233 (2015). Reports that for two genes, zebrafish mutants and morphants differ in their adaptive transcriptional response.

    Article  CAS  PubMed  Google Scholar 

  118. Gilbert, L. A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR–Cas9 complex. Nature 517, 583–588 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998). Seminal paper describing the first evidence that RNAi could function at substoichiometric levels.

    Article  CAS  PubMed  Google Scholar 

  121. Alló, M. et al. Control of alternative splicing through siRNA-mediated transcriptional gene silencing. Nat. Struct. Mol. Biol. 16, 717–724 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Conte, D., MacNeil, L. T., Walhout, A. J. M. & Mello, C. C. RNA Interference in Caenorhabditis elegans. Curr. Protoc. Mol. Biol. 109, 26.3.1–26.3.30 (2015).

    Article  Google Scholar 

  123. Grishok, A., Tabara, H. & Mello, C. C. Genetic requirements for inheritance of RNAi in C. elegans. Science 287, 2494–2497 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Timmons, L. & Fire, A. Specific interference by ingested dsRNA. Nature 395, 854 (1998). First description of gene knockdown upon feeding dsRNA-expressing E. coli to C. elegans.

    Article  CAS  PubMed  Google Scholar 

  125. Jose, A. M. & Hunter, C. P. Transport of sequence-specific RNA interference information between cells. Annu. Rev. Genet. 41, 305–330 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Tavernarakis, N., Wang, S. L., Dorovkov, M., Ryazanov, A. & Driscoll, M. Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes. Nat. Genet. 24, 180–183 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Sugimoto, A. High-throughput RNAi in Caenorhabditis elegans: genome-wide screens and functional genomics. Differentiation. 72, 81–91 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Piccin, A. et al. Efficient and heritable functional knock-out of an adult phenotype in Drosophila using a GAL4-driven hairpin RNA incorporating a heterologous spacer. Nucleic Acids Res. 29, E55–E55 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Giordano, E., Rendina, R., Peluso, I. & Furia, M. RNAi triggered by symmetrically transcribed transgenes in Drosophila melanogaster. Genetics 160, 637–648 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Dietzl, G. et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448, 151–156 (2007). Demonstrates the first example of tissue-specific RNAi in D . melanogaster enabling the genome-wide interrogation of gene functions.

    Article  CAS  PubMed  Google Scholar 

  131. Perrimon, N., Ni, J.-Q. & Perkins, L. In vivo RNAi: today and tomorrow. Cold Spring Harb. Perspect. Biol. 2, a003640 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Dow, L. E. et al. Apc restoration promotes cellular differentiation and reestablishes crypt homeostasis in colorectal cancer. Cell 161, 1539–1552 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Mohr, S. E. RNAi screening in Drosophila cells and in vivo. Methods 68, 82–88 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  135. Caplen, N. J., Parrish, S., Imani, F., Fire, A. & Morgan, R. A. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc. Natl Acad. Sci. USA 98, 9742–9747 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Brummelkamp, T. R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002).

    Article  CAS  PubMed  Google Scholar 

  137. Berns, K. et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428, 431–437 (2004). This study reports the first targeted LOF screen in mammalian cells using shRNAs.

    Article  CAS  PubMed  Google Scholar 

  138. Paddison, P. J. et al. A resource for large-scale RNA-interference-based screens in mammals. Nature 428, 427–431 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. Gu, S. et al. The loop position of shRNAs and pre-miRNAs is critical for the accuracy of Dicer processing in vivo. Cell 151, 900–911 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. McBride, J. L. et al. Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: implications for the therapeutic development of RNAi. Proc. Natl Acad. Sci. USA 105, 5868–5873 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Grimm, D. et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441, 537–541 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Zeng, Y., Wagner, E. J., Cullen, B. R. & Carolina, N. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell 9, 1327–1333 (2002).

    Article  CAS  PubMed  Google Scholar 

  143. Chung, K.-H. et al. Polycistronic RNA polymerase II expression vectors for RNA interference based on BIC/miR-155. Nucleic Acids Res. 34, e53 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hinterberger, M. et al. Autonomous role of medullary thymic epithelial cells in central CD4+ T cell tolerance. Nat. Immunol. 11, 512–519 (2010).

    Article  CAS  PubMed  Google Scholar 

  145. Dickins, R. A. et al. Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nat. Genet. 37, 1289–1295 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Stegmeier, F., Hu, G., Rickles, R. J., Hannon, G. J. & Elledge, S. J. A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc. Natl Acad. Sci. USA 102, 13212–13217 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zuber, J. et al. Toolkit for evaluating genes required for proliferation and survival using tetracycline-regulated RNAi. Nat. Biotechnol. 29, 79–83 (2011).

    Article  CAS  PubMed  Google Scholar 

  148. Dickins, R. A. et al. Tissue-specific and reversible RNA interference in transgenic mice. Nat. Genet. 39, 914–921 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Premsrirut, P. K. et al. A rapid and scalable system for studying gene function in mice using conditional RNA interference. Cell 145, 145–158 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. McJunkin, K. et al. Reversible suppression of an essential gene in adult mice using transgenic RNA interference. Proc. Natl Acad. Sci. USA 108, 7113–7118 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Fellmann, C. et al. Functional identification of optimized RNAi triggers using a massively parallel sensor assay. Mol. Cell 41, 733–746 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Auyeung, V. C., Ulitsky, I., McGeary, S. E. & Bartel, D. P. Beyond secondary structure: primary-sequence determinants license pri-miRNA hairpins for processing. Cell 152, 844–858 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kampmann, M. et al. Next-generation libraries for robust RNA interference-based genome-wide screens. Proc. Natl Acad. Sci. USA 112, E3384–E3391 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Fellmann, C. et al. An optimized microRNA backbone for effective single-copy RNAi. Cell Rep. 5, 1704–1713 (2013).

    Article  CAS  PubMed  Google Scholar 

  155. Fellmann, C. & Lowe, S. W. Stable RNA interference rules for silencing. Nat. Cell Biol. 16, 10–18 (2014). This review summarizes the development of RNAi reagents for mammalian genetics from first siRNA-mediated knockdowns to miRNA-based RNAi triggers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Kelly, A. & Hurlstone, A. F. The use of RNAi technologies for gene knockdown in zebrafish. Brief. Funct. Genomics 10, 189–196 (2011).

    Article  CAS  PubMed  Google Scholar 

  157. Summerton, J. E. Morpholino, siRNA, and S-DNA compared: impact of structure and mechanism of action on off-target effects and sequence specificity. Curr. Top. Med. Chem. 7, 651–660 (2007).

    Article  CAS  PubMed  Google Scholar 

  158. Nasevicius, A. & Ekker, S. C. Effective targeted gene 'knockdown' in zebrafish. Nat. Genet. 26, 216–220 (2000). Introduces the morpholino technology in zebrafish.

    Article  CAS  PubMed  Google Scholar 

  159. Law, S. H. W. & Sargent, T. D. The serine–threonine protein kinase PAK4 is dispensable in zebrafish: identification of a morpholino-generated pseudophenotype. PLoS ONE 9, e100268 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kok, F. O. et al. Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish. Dev. Cell 32, 97–108 (2015).

    Article  CAS  PubMed  Google Scholar 

  161. Novodvorsky, P. et al. klf2ash317 mutant zebrafish do not recapitulate morpholino-induced vascular and haematopoietic phenotypes. PLoS ONE 10, e0141611 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Blum, M., De Robertis, E. M., Wallingford, J. B. & Niehrs, C. Morpholinos: antisense and sensibility. Dev. Cell 35, 145–149 (2015).

    Article  CAS  PubMed  Google Scholar 

  163. Lawson, N. D. Reverse genetics in zebrafish: mutants, morphants, and moving forward. Trends Cell Biol. 26, 77–79 (2016).

    Article  CAS  PubMed  Google Scholar 

  164. Schulte-Merker, S. & Stainier, D. Y. R. Out with the old, in with the new: reassessing morpholino knockdowns in light of genome editing technology. Development 141, 3103–3104 (2014).

    Article  CAS  PubMed  Google Scholar 

  165. Stainier, D. Y. R., Kontarakis, Z. & Rossi, A. Making sense of anti-sense data. Dev. Cell 32, 7–8 (2015).

    Article  CAS  PubMed  Google Scholar 

  166. Lim, S. et al. A simple strategy for heritable chromosomal deletions in zebrafish via the combinatorial action of targeting nucleases. Genome Biol. 14, R69 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Arrowsmith, C. H. et al. The promise and peril of chemical probes. Nat. Chem. Biol. 11, 536–541 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Sakamoto, K. M. et al. Protacs: chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation. Proc. Natl Acad. Sci. USA 98, 8554–8559 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Banaszynski, L. A., Chen, L. C., Maynard-Smith, L. A., Ooi, A. G. & Wandless, T. J. A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell 126, 995–1004 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Bonger, K. M., Chen, L., Liu, C. W. & Wandless, T. J. Small-molecule displacement of a cryptic degron causes conditional protein degradation. Nat. Chem. Biol. 7, 531–537 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Schneekloth, J. S. et al. Chemical genetic control of protein levels: selective in vivo targeted degradation. J. Am. Chem. Soc. 126, 3748–3754 (2004).

    Article  CAS  PubMed  Google Scholar 

  172. Caussinus, E., Kanca, O. & Affolter, M. Fluorescent fusion protein knockout mediated by anti-GFP nanobody. Nat. Struct. Mol. Biol. 19, 117–121 (2012).

    Article  CAS  Google Scholar 

  173. Shin, Y. J. et al. Nanobody-targeted E3-ubiquitin ligase complex degrades nuclear proteins. Sci. Rep. 5, 14269 (2015).

    Article  CAS  PubMed  Google Scholar 

  174. Hermann, A., Liewald, J. F. & Gottschalk, A. A photosensitive degron enables acute light-induced protein degradation in the nervous system. Curr. Biol. 25, R749–R750 (2015).

    Article  CAS  PubMed  Google Scholar 

  175. Zhang, L., Ward, J. D., Cheng, Z. & Dernburg, A. F. The auxin-inducible degradation (AID) system enables versatile conditional protein depletion in C. elegans. Development 142, 4374–4384 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Armenti, S. T., Lohmer, L. L., Sherwood, D. R. & Nance, J. Repurposing an endogenous degradation system for rapid and targeted depletion of C. elegans proteins. Development 141, 4640–4647 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Rakhit, R., Navarro, R. & Wandless, T. J. Chemical biology strategies for posttranslational control of protein function. Chem. Biol. 21, 1238–1252 (2014). This review provides a comprehensive overview of chemical-genetic tools.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Nagarkar-Jaiswal, S. et al. A library of MiMICs allows tagging of genes and reversible, spatial and temporal knockdown of proteins in Drosophila. eLife 4, e05338 (2015).

    Article  CAS  PubMed Central  Google Scholar 

  179. Lowe, N. et al. Analysis of the expression patterns, subcellular localisations and interaction partners of Drosophila proteins using a pigP protein trap library. Development 141, 3994–4005 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Morin, X., Daneman, R., Zavortink, M. & Chia, W. A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila. Proc. Natl Acad. Sci. USA 98, 15050–15055 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Sarov, M. et al. A genome-wide resource for the analysis of protein localisation in Drosophila. eLife 5, e12068 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Holland, A. J., Fachinetti, D., Han, J. S. & Cleveland, D. W. Inducible, reversible system for the rapid and complete degradation of proteins in mammalian cells. Proc. Natl Acad. Sci. USA 109, E3350–E3357 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Nishimura, K., Fukagawa, T., Takisawa, H., Kakimoto, T. & Kanemaki, M. An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nat. Methods 6, 917–922 (2009).

    Article  CAS  PubMed  Google Scholar 

  184. Natsume, T., Kiyomitsu, T., Saga, Y. & Kanemaki, M. T. Rapid protein depletion in human cells by auxin-inducible degron tagging with short homology donors. Cell Rep. 15, 210–218 (2016).

    Article  CAS  PubMed  Google Scholar 

  185. Trost, M., Blattner, A. C. & Lehner, C. F. Regulated protein depletion by the auxin-inducible degradation system in Drosophila melanogaster. Fly (Austin) 10, 35–46 (2016).

    Article  Google Scholar 

  186. Yeh, J. T.-H., Binari, R., Gocha, T., Dasgupta, R. & Perrimon, N. PAPTi: a peptide aptamer interference toolkit for perturbation of protein–protein interaction networks. Sci. Rep. 3, 1156 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Jost, A. P.-T. & Weiner, O. D. Probing yeast polarity with acute, reversible, optogenetic inhibition of protein function. ACS Synth. Biol. 4, 1077–1085 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Daude, N. et al. Knockout of the prion protein (PrP)-like Sprn gene does not produce embryonic lethality in combination with PrPC-deficiency. Proc. Natl Acad. Sci. USA 109, 9035–9040 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  189. De Souza, A. T. et al. Transcriptional and phenotypic comparisons of Ppara knockout and siRNA knockdown mice. Nucleic Acids Res. 34, 4486–4494 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Gao, Y. et al. Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. Proc. Natl Acad. Sci. USA 112, 2275–2280 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Jopling, C. L., Yi, M., Lancaster, A. M., Lemon, S. M. & Sarnow, P. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 309, 1577–1581 (2005).

    Article  CAS  PubMed  Google Scholar 

  192. Janssen, H. L. A. et al. Treatment of HCV infection by targeting microRNA. N. Engl. J. Med. 368, 1685–1694 (2013).

    Article  CAS  PubMed  Google Scholar 

  193. Hsu, S.-H. et al. Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J. Clin. Invest. 122, 2871–2883 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Tsai, W.-C. et al. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J. Clin. Invest. 122, 2884–2897 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Newton, K. RIPK1 and RIPK3: critical regulators of inflammation and cell death. Trends Cell Biol. 25, 347–353 (2015).

    Article  CAS  PubMed  Google Scholar 

  196. Weiss, W. A., Taylor, S. S. & Shokat, K. M. Recognizing and exploiting differences between RNAi and small-molecule inhibitors. Nat. Chem. Biol. 3, 739–744 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Andrews, P. D. Aurora kinases: shining lights on the therapeutic horizon? Oncogene 24, 5005–5015 (2005).

    Article  CAS  PubMed  Google Scholar 

  198. Carmena, M. & Earnshaw, W. C. The cellular geography of aurora kinases. Nat. Rev. Mol. Cell. Biol. 4, 842–854 (2003).

    Article  CAS  PubMed  Google Scholar 

  199. Ditchfield, C. et al. Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores. J. Cell Biol. 161, 267–280 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Keen, N. & Taylor, S. Aurora-kinase inhibitors as anticancer agents. Nat. Rev. Cancer 4, 927–936 (2004).

    Article  CAS  PubMed  Google Scholar 

  201. Hauf, S. et al. The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J. Cell Biol. 161, 281–294 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Ruchaud, S., Carmena, M. & Earnshaw, W. C. Chromosomal passengers: conducting cell division. Nat. Rev. Mol. Cell. Biol. 8, 798–812 (2007).

    Article  CAS  PubMed  Google Scholar 

  203. Girdler, F. et al. Validating Aurora B as an anti-cancer drug target. J. Cell Sci. 119, 3664–3675 (2006).

    Article  CAS  PubMed  Google Scholar 

  204. Sage, J., Miller, A. L., Pérez-Mancera, P. A., Wysocki, J. M. & Jacks, T. Acute mutation of retinoblastoma gene function is sufficient for cell cycle re-entry. Nature 424, 223–228 (2003).

    Article  CAS  PubMed  Google Scholar 

  205. Shalem, O., Sanjana, N. E. & Zhang, F. High-throughput functional genomics using CRISPR–Cas9. Nat. Rev. Genet. 16, 299–311 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Zhan, T. & Boutros, M. Towards a compendium of essential genes — from model organisms to synthetic lethality in cancer cells. Crit. Rev. Biochem. Mol. Biol. 51, 74–85.

  207. Marcotte, R. et al. Essential gene profiles in breast, pancreatic, and ovarian cancer cells. Cancer Discov. 2, 172–189 (2012).

    Article  CAS  PubMed  Google Scholar 

  208. Cheung, H. W. et al. Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer. Proc. Natl Acad. Sci. USA 108, 12372–12377 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Luo, B. et al. Highly parallel identification of essential genes in cancer cells. Proc. Natl Acad. Sci. USA 105, 20380–20385 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Cowley, G. S. et al. Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies. Sci. Data 1, 140035 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Wang, T. et al. Identification and characterization of essential genes in the human genome. Science 350, 1096–1101 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Blomen, V. A. et al. Gene essentiality and synthetic lethality in haploid human cells. Science 350, 1092–1096 (2015).

    Article  CAS  PubMed  Google Scholar 

  213. Evers, B. et al. CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes. Nat. Biotechnol. 34, 631–633 (2016).

    Article  CAS  PubMed  Google Scholar 

  214. Morgens, D. W., Deans, R. M., Li, A. & Bassik, M. C. Systematic comparison of CRISPR/Cas9 and RNAi screens for essential genes. Nat. Biotechnol. 34, 634–636 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Deans, R. M. et al. Parallel shRNA and CRISPR–Cas9 screens enable antiviral drug target identification. Nat. Chem. Biol. 12, 361–366 (2016). This study compares state-of-the-art CRISPR and RNAi reagents in a systematic large-scale screen and demonstrates the complementarity of these two key technologies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Nijman, S. M. B. Synthetic lethality: general principles, utility and detection using genetic screens in human cells. FEBS Lett. 585, 1–6 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Kaelin, W. G. The concept of synthetic lethality in the context of anticancer therapy. Nat. Rev. Cancer 5, 689–698 (2005).

    Article  CAS  PubMed  Google Scholar 

  218. Westbrook, T. F., Stegmeier, F. & Elledge, S. J. Dissecting cancer pathways and vulnerabilities with RNAi. Cold Spring Harb. Symp. Quant. Biol. 70, 435–444 (2005).

    Article  CAS  PubMed  Google Scholar 

  219. Thompson, J. M., Nguyen, Q. H., Singh, M. & Razorenova, O. V. Approaches to identifying synthetic lethal interactions in cancer. Yale J. Biol. Med. 88, 145–155 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Neumüller, R. A. et al. Conserved regulators of nucleolar size revealed by global phenotypic analyses. Sci. Signal. 6, ra70 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Housden, B. E. et al. Identification of potential drug targets for tuberous sclerosis complex by synthetic screens combining CRISPR-based knockouts with RNAi. Sci. Signal. 8, rs9 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

    Article  CAS  PubMed  Google Scholar 

  223. Garbe, D., Doto, J. B. & Sundaram, M. V. Caenorhabditis elegans lin-35/Rb, efl-1/E2F and other synthetic multivulva genes negatively regulate the anaphase-promoting complex gene mat-3/APC8. Genetics 167, 663–672 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Doitsidou, M. et al. A combinatorial regulatory signature controls terminal differentiation of the dopaminergic nervous system in C. elegans. Genes Dev. 27, 1391–1405 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Noma, K. & Jin, Y. Optogenetic mutagenesis in Caenorhabditis elegans. Nat. Commun. 6, 8868 (2015).

    Article  CAS  PubMed  Google Scholar 

  226. Zuryn, S. & Jarriault, S. Deep sequencing strategies for mapping and identifying mutations from genetic screens. Worm 2, e25081 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Paquet, D. et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533, 125–129 (2016).

    Article  CAS  PubMed  Google Scholar 

  229. Paix, A., Schmidt, H. & Seydoux, G. Cas9-assisted recombineering in C. elegans: genome editing using in vivo assembly of linear DNAs. Nucleic Acids Res. 44, e128 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Muller, H. J. in Proceedings of the 6th International Congress of Genetics (ed. Jones, D. F.) 213–255 (Banta, 1932). Influential and useful categorization of mutations ('Muller's morphs').

    Google Scholar 

  231. Simon, M. A., Bowtell, D. D., Dodson, G. S., Laverty, T. R. & Rubin, G. M. Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the sevenless protein tyrosine kinase. Cell 67, 701–716 (1991).

    Article  CAS  PubMed  Google Scholar 

  232. Hsu, J. C. & Perrimon, N. A temperature-sensitive MEK mutation demonstrates the conservation of the signaling pathways activated by receptor tyrosine kinases. Genes Dev. 8, 2176–2187 (1994).

    Article  CAS  PubMed  Google Scholar 

  233. Dohmen, R. J., Wu, P. & Varshavsky, A. Heat-inducible degron: a method for constructing temperature-sensitive mutants. Science 263, 1273–1276 (1994).

    Article  CAS  PubMed  Google Scholar 

  234. Zeidler, M. P. et al. Temperature-sensitive control of protein activity by conditionally splicing inteins. Nat. Biotechnol. 22, 871–876 (2004).

    Article  CAS  PubMed  Google Scholar 

  235. Lu, H. et al. Compensatory induction of MYC expression by sustained CDK9 inhibition via a BRD4-dependent mechanism. eLife 4, e06535 (2015); erratum 4, e09993 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Thompson, O. et al. The million mutation project: a new approach to genetics in Caenorhabditis elegans. Genome Res. 23, 1749–1762 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. C. elegans Deletion Mutant Consortium. Large-scale screening for targeted knockouts in the Caenorhabditis elegans genome. G3 (Bethesda) 2, 1415–1425 (2012).

  238. Kamath, R. S. et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237 (2003).

    Article  CAS  PubMed  Google Scholar 

  239. Mohr, S. E., Hu, Y., Kim, K., Housden, B. E. & Perrimon, N. Resources for functional genomics studies in Drosophila melanogaster. Genetics 197, 1–18 (2014). Comprehensive review of LOF tools for D. melanogaster.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health (NIH) R01HD37047 (G.S.) and 5P01CA120964 (N.P.). Research in D.Y.R.S.' laboratory is funded in part by the DFG, EU and the Max Planck Society. Research in J.Z.'s laboratory is funded by ERC Starting Grant 336860, SFB grant F4710 of the Austrian Science Fund (FWF) and generous institutional support from Boehringer Ingelheim. M.M. is a recipient of a DOC Fellowship of the Austrian Academy of Sciences. S.E.M. is supported in part by NIH NIGMS R01 GM067761 (N.P., PI) and by NCI Cancer Center Support Grant NIH 5 P30 CA06516 (E. Benz, PI). C.A.G. and M.G. are supported in part by NIH DP2OD008586, R01DA036865, R21DA041878, and R21AR065956. N.P. and G.S. are HHMI Investigators. The authors apologize to the authors of the many relevant papers that they were not able to cite owing to length limitations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Benjamin E. Housden or Norbert Perrimon.

Ethics declarations

Competing interests

J.Z. is a member of the scientific advisory board of Mirimus Inc., a company that develops RNAi-based reagents and transgenic mice. The other authors declare no competing interests.

Related links

PowerPoint slides

Glossary

Knockout

A genetic perturbation that completely ablates gene function.

Knockdown

A perturbation at the DNA, RNA or protein level that reduces the amount of functional protein.

Pleiotropic

A gene that has roles in more than one stage, tissue or process.

Off-targets

Disruptive effects on gene function at unintended targets.

Enhancer-trap mutants

An exogenous DNA cassette or construct that is used to provide a minimal promoter and reporter such as Gal4 or GFP that, when inserted near a DNA element (such as an enhancer), becomes expressed under the control of that element. It is distinct from a gene trap in that an enhancer trap is not necessarily inserted within a gene.

Gene-trap mutants

An exogenous DNA cassette or construct that is used to provide a reporter such as Gal4 or GFP (for example, as an artificial exon) that, when inserted into a gene (for example, into an intron separating coding exons), becomes expressed under the control of the endogenous promoter of that gene.

Knock-ins

Introduction of a specific exogenous sequence — such as a reporter, selectable marker or engineered mutation — into a specific genomic region, typically a gene region.

Arrayed format

A high-throughput screen format in which each reagent or set of gene-specific reagents (such as a small interfering RNA (siRNA) 'mini-pool') is in a separate well of a micro-well format plate. Positive results of a cell-based assay carried out in an arrayed format can be matched back with reagents (and thus the targeted gene) using a look-up table.

Pooled format

A high-throughput screen format in which gene-specific reagents are introduced into cultured cells en masse and at random, such that the identity of the reagent introduced into any given cell is not known. Positive results of a cell-based assay in a pooled format are typically identified through the sequencing of the starting and final reagent population, for example, reagent sequences extracted from cells at the start of a selection versus sequences remaining following a selection.

Morphants

Organisms that have been treated with a morpholino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Housden, B., Muhar, M., Gemberling, M. et al. Loss-of-function genetic tools for animal models: cross-species and cross-platform differences. Nat Rev Genet 18, 24–40 (2017). https://doi.org/10.1038/nrg.2016.118

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg.2016.118

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing