Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genome editing in cardiovascular diseases

Key Points

  • Genome-editing technology has advanced considerably since 2013

  • Genome-editing tools, particularly ZFNs, TALENs, and CRISPR/Cas9, are being rapidly assimilated into cardiovascular disease research

  • Genome-editing tools facilitate the creation of novel cellular and animal disease models, the purification or labelling of cell types, the study of transcriptional regulation, and modulation of gene expression

  • Genome-editing tools not only allow for the evaluation of traditional therapeutic agents, but are also a new therapeutic modality to prevent and treat diseases

  • Despite considerable progress, genome-editing tools still have substantial shortcomings that need to be addressed

Abstract

Genome-editing tools, which include zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) systems, have emerged as an invaluable technology to achieve somatic and germline genomic manipulation in cells and model organisms for multiple applications, including the creation of knockout alleles, introducing desired mutations into genomic DNA, and inserting novel transgenes. Genome editing is being rapidly adopted into all fields of biomedical research, including the cardiovascular field, where it has facilitated a greater understanding of lipid metabolism, electrophysiology, cardiomyopathies, and other cardiovascular disorders, has helped to create a wider variety of cellular and animal models, and has opened the door to a new class of therapies. In this Review, we discuss the applications of genome-editing technology throughout cardiovascular disease research and the prospect of in vivo genome-editing therapies in the future. We also describe some of the existing limitations of genome-editing tools that will need to be addressed if cardiovascular genome editing is to achieve its full scientific and therapeutic potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Modes of repair of double-strand DNA breaks.
Figure 2: Use of CRISPR/Cas9 for genome editing.
Figure 3: Use of genome editing to rapidly generate isogenic hPSCs and differentiated cells.
Figure 4: Use of genome editing to rapidly generate knockout and knock-in mice.
Figure 5: Two approaches to therapeutic genome editing.

Similar content being viewed by others

References

  1. Urnov, F. D. et al. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11, 636–646 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Bogdanove, A. J. & Voytas, D. F. TAL effectors: customizable proteins for DNA targeting. Science 333, 1843–1846 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gupta, R. M. & Musunuru, K. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J. Clin. Invest. 124, 4154–4161 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wright, A. V., Nuñez, J. K. & Doudna, J. A. Biology and applications of CRISPR systems: harnessing nature's toolbox for genome engineering. Cell 164, 29–44 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Kim, Y. G., Cha, J. & Chandrasegaran, S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl Acad. Sci. USA 93, 1156–1160 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bitinaite, J., Wah, D. A., Aggarwal, A. K. & Schildkraut, I. FokI dimerization is required for DNA cleavage. Proc. Natl Acad. Sci. USA 95, 10570–10575 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Moscou, M. J. & Bogdanove, A. J. A simple cipher governs DNA recognition by TAL effectors. Science 326, 1501 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Boch, J. et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326, 1509–1512 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Christian, M. et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186, 757–761 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hwang, W. Y. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31, 227–229 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cho, S. W., Kim, S., Kim, J. M. & Kim, J. S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 230–232 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Hou, Z. et al. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc. Natl Acad. Sci. USA 110, 15644–15649 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Esvelt, K. M. et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat. Methods 10, 1116–1121 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kleinstiver, B. P. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481–485 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hirano, H. et al. Structure and engineering of Francisella novicida Cas9. Cell 164, 950–961 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759–771 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. West, S. C. Molecular views of recombination proteins and their control. Nat. Rev. Mol. Cell Biol. 4, 435–445 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Bibikova, M., Golic, M., Golic, K. G. & Carroll, D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161, 1169–1175 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Branzei, D. & Foiani, M. Regulation of DNA repair throughout the cell cycle. Nat. Rev. Mol. Cell Biol. 9, 297–308 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Bibikova, M. et al. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol. Cell. Biol. 21, 289–297 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kleinstiver, B. P. et al. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat. Biotechnol. 33, 1293–1298 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, G. et al. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat. Med. 20, 616–623 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hinson, J. T. et al. Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. Science 349, 982–986 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Karakikes, I. et al. Correction of human phospholamban R14del mutation associated with cardiomyopathy using targeted nucleases and combination therapy. Nat. Commun. 6, 6955 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, Y. et al. Genome editing of isogenic human induced pluripotent stem cells recapitulates long QT phenotype for drug testing. J. Am. Coll. Cardiol. 64, 451–459 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang, M. et al. Recessive cardiac phenotypes in induced pluripotent stem cell models of Jervell and Lange-Nielsen syndrome: disease mechanisms and pharmacological rescue. Proc. Natl Acad. Sci. USA 111, E5383–E5392 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Theodoris, C. V. et al. Human disease modeling reveals integrated transcriptional and epigenetic mechanisms of NOTCH1 haploinsufficiency. Cell 160, 1072–1086 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ding, Q. et al. A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell 12, 238–251 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Maetzel, D. et al. Genetic and chemical correction of cholesterol accumulation and impaired autophagy in hepatic and neural cells derived from Niemann-Pick type C patient-specific iPS cells. Stem Cell Rep. 2, 866–880 (2014).

    Article  CAS  Google Scholar 

  35. Gupta, R. M., Meissner, T. B., Cowan, C. A. & Musunuru, K. Genome-edited human pluripotent stem cell-derived macrophages as a model of reverse cholesterol transport—brief report. Arterioscler. Thromb. Vasc. Biol. 36, 15–18 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Rossi, A. et al. Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 524, 230–233 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Novodvorsky, P. et al. klf2ash317 mutant zebrafish do not recapitulate morpholino-induced vascular and haematopoietic phenotypes. PLoS ONE 10, e0141611 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ota, S., Hisano, Y., Ikawa, Y. & Kawahara, A. Multiple genome modifications by the CRISPR/Cas9 system in zebrafish. Genes Cells 19, 555–564 (2014).

    CAS  PubMed  Google Scholar 

  39. Kotani, H., Taimatsu, K., Ohga, R., Ota, S. & Kawahara, A. Efficient multiple genome modifications induced by the crRNAs, tracrRNA and Cas9 protein complex in zebrafish. PLoS ONE 10, e0128319 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cao, J. et al. Single epicardial cell transcriptome sequencing identifies Caveolin 1 as an essential factor in zebrafish heart regeneration. Development 143, 232–243 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zou, J. et al. An internal promoter underlies the difference in disease severity between N and C-terminal truncation mutations of Titin in zebrafish. eLife 4, e09406 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang, H. et al. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154, 1370–1379 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu, H. et al. TALEN-mediated gene mutagenesis in rhesus and cynomolgus monkeys. Cell Stem Cell 14, 323–328 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Niu, Y. et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156, 836–843 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Jacob, H. J., Lazar, J. & Dwinell, M. R., Moreno, C. & Geurts, A. M. Gene targeting in the rat: advances and opportunities. Trends Genet. 26, 510–518 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Moreno, C. et al. Creation and characterization of a renin knockout rat. Hypertension 57, 614–619 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Endres, B. T. et al. Mutation of Plekha7 attenuates salt-sensitive hypertension in the rat. Proc. Natl Acad. Sci. USA 111, 12817–12822 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Larcher, T. et al. Characterization of dystrophin deficient rats: a new model for Duchenne muscular dystrophy. PLoS ONE 9, e110371 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li, J. et al. Cold-inducible RNA-binding protein regulates cardiac repolarization by targeting transient outward potassium channels. Circ. Res. 116, 1655–1659 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Zhu, X. et al. Exacerbating pressure overload-induced cardiac hypertrophy: novel role of adaptor molecule Src homology 2-B3. Hypertension 66, 571–581 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Yang, D. et al. Effective gene targeting in rabbits using RNA-guided Cas9 nucleases. J. Mol. Cell. Biol. 6, 97–99 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ji, D., Zhao, G., Songstad, A., Cui, X. & Weinstein, E. J. Efficient creation of an APOE knockout rabbit. Transgenic Res. 24, 227–235 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Niimi, M. et al. ApoE knockout rabbits: a novel model for the study of human hyperlipidemia. Atherosclerosis 245, 187–193 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Wang, T. et al. Efficient generation of gene-modified pigs via injection of zygote with Cas9/sgRNA. Sci. Rep. 5, 8256 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Umeyama, K. et al. Generation of heterozygous fibrillin-1 mutant cloned pigs from genome-edited foetal fibroblasts. Sci. Rep. 6, 24413 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ding, Q. et al. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ. Res. 115, 488–492 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yin, H. et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat. Biotechnol. 34, 328–333 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Platt, R. J. et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159, 440–455 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Carroll, K. J. et al. A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9. Proc. Natl Acad. Sci. USA 113, 338–343 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Gantz, J. A. et al. Targeted genomic integration of a selectable floxed dual fluorescence reporter in human embryonic stem cells. PLoS ONE 7, e46971 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang, Y. et al. Genome editing of human embryonic stem cells and induced pluripotent stem cells with zinc finger nucleases for cellular imaging. Circ. Res. 111, 1494–1503 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lepperhof, V. et al. Bioluminescent imaging of genetically selected induced pluripotent stem cell-derived cardiomyocytes after transplantation into infarcted heart of syngeneic recipients. PLoS ONE 9, e107363 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Luo, Y. et al. Stable enhanced green fluorescent protein expression after differentiation and transplantation of reporter human induced pluripotent stem cells generated by AAVS1 transcription activator-like effector nucleases. Stem Cells Transl. Med. 3, 821–835 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shiba, Y. et al. Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature 489, 322–325 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Han, Y., Slivano, O. J., Christie, C. K., Cheng, A. W. & Miano, J. M. CRISPR-Cas9 genome editing of a single regulatory element nearly abolishes target gene expression in mice—brief report. Arterioscler. Thromb. Vasc. Biol. 35, 312–315 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Beaudoin, M. et al. Myocardial infarction-associated SNP at 6p24 interferes with MEF2 binding and associates with PHACTR1 expression levels in human coronary arteries. Arterioscler. Thromb. Vasc. Biol. 35, 1472–1479 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gilbert, L. A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mandegar, M. A. et al. CRISPR interference efficiently induces specific and reversible gene silencing in human iPSCs. Cell Stem Cell 18, 541–553 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sakurai, T. et al. Creation of apolipoprotein C-II (apoC-II) mutant mice and correction of their hypertriglyceridemia with an apoC-II mimetic peptide. J. Pharmacol. Exp. Ther. 356, 341–353 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Nagiec, M. M. et al. Modulators of hepatic lipoprotein metabolism identified in a search for small-molecule inducers of tribbles pseudokinase 1 expression. PLoS ONE 10, e0120295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang, H. S. et al. A designed zinc-finger transcriptional repressor of phospholamban improves function of the failing heart. Mol. Ther. 20, 1508–1515 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cohen, J. C., Boerwinkle, E., Mosley, T. H. Jr & Hobbs, H. H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 354, 1264–1272 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Wang, X. et al. CRISPR–Cas9 targeting of PCSK9 in human hepatocytes in vivo—brief report. Arterioscler. Thromb. Vasc. Biol. 36, 783–786 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Long, C. et al. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351, 400–403 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Nelson, C. E. et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351, 403–407 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. Tabebordbar, M. et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351, 407–411 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Yang, Y. et al. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat. Biotechnol. 34, 334–338 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jiang, J., Wakimoto, H., Seidman, J. G. & Seidman, C. E. Allele-specific silencing of mutant Myh6 transcripts in mice suppresses hypertrophic cardiomyopathy. Science 342, 111–114 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Coelho, T. et al. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N. Engl. J. Med. 369, 819–829 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Chong, J. J. et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 12, 273–277 (2014).

    Article  CAS  Google Scholar 

  82. Tebas, P. et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med. 370, 901–910 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hinz, J. M., Laughery, M. F. & Wyrick, J. J. Nucleosomes inhibit Cas9 endonuclease activity in vitro. Biochemistry 54, 7063–7066 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Knight, S. C. et al. Dynamics of CRISPR-Cas9 genome interrogation in living cells. Science 350, 823–826 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Maruyama, T. et al. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat. Biotechnol. 33, 538–542 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chu, V. T. et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat. Biotechnol. 33, 543–548 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Yu, C. et al. Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell 16, 142–147 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Orthwein, A. et al. A mechanism for the suppression of homologous recombination in G1 cells. Nature 528, 422–426 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lin, S., Staahl, B. T., Alla, R. K. & Doudna, J. A. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. eLife 3, e04766 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Howden, S. E. et al. A Cas9 variant for efficient generation of indel-free knockin or gene-corrected human pluripotent stem cells. Stem Cell Rep. http://dx.doi.org/10.1016/j.stemcr.2016.07.001 (2016).

  92. Sternberg, S. H., LaFrance, B., Kaplan, M. & Doudna, J. A. Conformational control of DNA target cleavage by CRISPR–Cas9. Nature 527, 110–113 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Fu, Y. et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31, 822–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mali, P. et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31, 833–838 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pattanayak, V. et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat. Biotechnol. 31, 839–843 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Smith, C. et al. Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs. Cell Stem Cell 15, 12–13 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Veres, A. et al. Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell 15, 27–30 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Fu, Y., Sander, J. D., Reyon, D., Cascio, V. M. & Joung, J. K. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32, 279–284 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ran, F. A. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154, 1380–1389 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Shen, B. et al. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat. Methods 11, 399–402 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Tsai, S. Q. et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat. Biotechnol. 32, 569–576 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Guilinger, J. P., Thompson, D. B. & Liu, D. R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 32, 577–582 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Slaymaker, I. M. et al. Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84–88 (2016).

    Article  CAS  PubMed  Google Scholar 

  104. Kleinstiver, B. P. et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490–495 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tsai, S. Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33, 187–197 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Kim, D. et al. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat. Methods 12, 237–243 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Long, C. et al. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science 345, 1184–1188 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wu, Y. et al. Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Res. 25, 67–79 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Liang, P. et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 6, 363–372 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kang, X. et al. Introducing precise genetic modifications into human 3PN embryos by CRISPR/Cas-mediated genome editing. J. Assist. Reprod. Genet. 33, 581–588 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, discussed its content, wrote the manuscript, and reviewed and edited it before submission.

Corresponding author

Correspondence to Kiran Musunuru.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strong, A., Musunuru, K. Genome editing in cardiovascular diseases. Nat Rev Cardiol 14, 11–20 (2017). https://doi.org/10.1038/nrcardio.2016.139

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2016.139

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research