Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Multiplexed peptide analysis using data-independent acquisition and Skyline

Abstract

Here we describe the use of data-independent acquisition (DIA) on a Q-Exactive mass spectrometer for the detection and quantification of peptides in complex mixtures using the Skyline Targeted Proteomics Environment (freely available online at http://skyline.maccosslab.org). The systematic acquisition of mass spectrometry (MS) or tandem MS (MS/MS) spectra by DIA is in contrast to DDA, in which the acquired MS/MS spectra are only suitable for the identification of a stochastically sampled set of peptides. Similarly to selected reaction monitoring (SRM), peptides can be quantified from DIA data using targeted chromatogram extraction. Unlike SRM, data acquisition is not constrained to a predetermined set of target peptides. In this protocol, a spectral library is generated using data-dependent acquisition (DDA), and chromatograms are extracted from the DIA data for all peptides in the library. As in SRM, quantification using DIA data is based on the area under the curve of extracted MS/MS chromatograms. In addition, a quality control (QC) method suitable for DIA based on targeted MS/MS acquisition is detailed. Not including time spent acquiring data, and time for database searching, the procedure takes 1–2 h to complete. Typically, data acquisition requires roughly 1–4 h per sample, and a database search will take 0.5–2 h to complete.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MS/MS analysis in data-dependent acquisition and data-independent acquisition.
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9: Skyline: QC peptide GILFVGSGVSGGEEGAR++.
Figure 10: Skyline DIA data: LGEHNIDVLEGNEQFINAAK+++.
Figure 11
Figure 12: Skyline: QC peptide LTILEELR++.
Figure 13: Skyline DIA data: NYIIEELNVR++.
Figure 14: Skyline DIA data: TYAAEIAHNISAK.
Figure 15: Skyline DIA data: VSLDDLQQSIEEDEDHVQST.

Similar content being viewed by others

References

  1. Purvine, S., Eppel, J.-T., Yi, E.C. & Goodlett, D.R. Shotgun collision-induced dissociation of peptides using a time-of-flight mass analyzer. Proteomics 3, 847–850 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Venable, J.D., Dong, M.-Q., Wohlschlegel, J., Dillin, A. & Yates, J.R. Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra. Nat. Methods 1, 39–45 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Law, K.P. & Lim, Y.P. Recent advances in mass spectrometry: data independent analysis and hyper reaction monitoring. Expert Rev. Proteomics 10, 551–566 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Gillet, L.C. et al. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol. Cell. Proteomics 11, O111.016717 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Stahl-Zeng, J. et al. High sensitivity detection of plasma proteins by multiple reaction monitoring of N-glycosites. Mol. Cell. Proteomics 6, 1809–1817 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Lange, V., Picotti, P., Domon, B. & Aebersold, R. Selected reaction monitoring for quantitative proteomics: a tutorial. Mol. Syst. Biol. 4, 222 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Percy, A.J., Chambers, A.G., Yang, J., Hardie, D.B. & Borchers, C.H. Advances in multiplexed MRM-based protein biomarker quantitation toward clinical utility. Biochim. Biophys. Acta 1844, 917–926 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198–207 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Chait, B.T. Mass spectrometry: bottom-up or top-down? Science 314, 65–66 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Yates, J.R., Ruse, C.I. & Nakorchevsky, A. Proteomics by mass spectrometry: approaches, advances, and applications. Annu. Rev. Biomed. Eng. 11, 49–79 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Payne, A.H. & Glish, G.L. in Methods in Enzymology (ed. Burlingame, A.L.) 402, 109–148 (Academic Press, 2005).

    Article  CAS  PubMed  Google Scholar 

  12. McLafferty, F.W. Tandem Mass Spectrometry (John Wiley & Sons Inc., 1983).

  13. Egertson, J.D. et al. Multiplexed MS/MS for improved data-independent acquisition. Nat. Methods 10, 744–746 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Norbeck, A.D., Monroe, M.E., Adkins, J.N. & Smith, R.D. The utility of accurate mass and LC elution time information in the analysis of complex proteomes. J. Am. Soc. Mass Spectrom. 16, 1239–1249 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Weisbrod, C.R., Eng, J.K., Hoopmann, M.R., Baker, T. & Bruce, J.E. Accurate peptide fragment mass analysis: multiplexed peptide identification and quantification. J. Proteome Res. 11, 1621–1632 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Clough, T., Thaminy, S., Ragg, S., Aebersold, R. & Vitek, O. Statistical protein quantification and significance analysis in label-free LC-MS experiments with complex designs. BMC Bioinformatics 13, S6 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. MacLean, B. et al. Skyline: an open-source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26, 966–968 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang, J., Bourne, P.E. & Bandeira, N. MixGF: spectral probabilities for mixture spectra from more than one peptide. Mol. Cell Proteomics 13, 3688–3697 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Röst, H.L. et al. OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat. Biotechnol. 32, 219–223 (2014).

    Article  PubMed  CAS  Google Scholar 

  20. Gallien, S., Duriez, E., Demeure, K. & Domon, B. Selectivity of LC-MS/MS analysis: Implication for proteomics experiments. J. Proteomics 81, 148–158 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Matthews, D.E. & Hayes, J.M. Systematic errors in gas chromatography-mass spectrometry isotope ratio measurements. Anal. Chem. 48, 1375–1382 (1976).

    Article  CAS  Google Scholar 

  22. King, N.L. et al. Analysis of the Saccharomyces cerevisiae proteome with PeptideAtlas. Genome Biol. 7, R106 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Canterbury, J.D., Merrihew, G.E., MacCoss, M.J., Goodlett, D.R. & Shaffer, S.A. Comparison of data acquisition strategies on quadrupole ion trap instrumentation for shotgun proteomics. J. Am. Soc. Mass Spectrom. 25, 2048–2059 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Scigelova, M., Hornshaw, M., Giannakopulos, A. & Makarov, A. Fourier transform mass spectrometry. Mol. Cell Proteomics 10, M111.009431 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Jonscher, K.R. & Yates, J.R. III. The quadrupole ion trap mass spectrometer—a small solution to a big challenge. Anal. Biochem. 244, 1–15 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Clauser, K.R., Baker, P. & Burlingame, A.L. Role of accurate mass measurement (+/− 10 ppm) in protein identification strategies employing MS or MS/MS and database searching. Anal. Chem. 71, 2871–2882 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Zubarev, R.A., Håkansson, P. & Sundqvist, B. Accuracy requirements for peptide characterization by monoisotopic molecular mass measurements. Anal. Chem. 68, 4060–4063 (1996).

    Article  CAS  Google Scholar 

  28. Marshall, A.G., Hendrickson, C.L. & Jackson, G.S. Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom. Rev. 17, 1–35 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Randall, S.M., Cardasis, H.L. & Muddiman, D.C. Factorial experimental designs elucidate significant variables affecting data acquisition on a quadrupole orbitrap mass spectrometer. J. Am. Soc. Mass Spectrom. 24, 1501–1512 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Eng, J.K., McCormack, A.L. & Yates, J.R. III. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Käll, L., Canterbury, J.D., Weston, J., Noble, W.S. & MacCoss, M.J. Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat. Methods 4, 923–925 (2007).

    Article  PubMed  CAS  Google Scholar 

  32. Perry, R.H., Cooks, R.G. & Noll, R.J. Orbitrap mass spectrometry: instrumentation, ion motion and applications. Mass Spectrom. Rev. 27, 661–699 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Plumb, R.S. et al. UPLC/MS(E); a new approach for generating molecular fragment information for biomarker structure elucidation. Rapid Commun. Mass Spectrom. 20, 1989–1994 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Moon, M.H., Myung, S., Plasencia, M., Hilderbrand, A.E. & Clemmer, D.E. Nanoflow LC/ion mobility/CID/TOF for proteomics: analysis of a human urinary proteome. J. Proteome Res. 2, 589–597 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Yost, R.A. & Enke, C.G. Selected ion fragmentation with a tandem quadrupole mass spectrometer. J. Am. Chem. Soc. 100, 2274–2275 (1978).

    Article  CAS  Google Scholar 

  36. Yost, R.A. & Enke, C.G. Triple-quadrupole mass spectrometry for direct mixture analysis and structure elucidation. Anal. Chem. 51, 1251–1264 (1979).

    Article  CAS  PubMed  Google Scholar 

  37. Bensimon, A., Heck, A.J.R. & Aebersold, R. Mass spectrometry–based proteomics and network biology. Annu. Rev. Biochem. 81, 379–405 (2012).

    Article  CAS  Google Scholar 

  38. Stahl, D.C., Swiderek, K.M., Davis, M.T. & Lee, T.D. Data-controlled automation of liquid chromatography/tandem mass spectrometry analysis of peptide mixtures. J. Am. Soc. Mass Spectrom. 7, 532–540 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Bantscheff, M., Schirle, M., Sweetman, G., Rick, J. & Kuster, B. Quantitative mass spectrometry in proteomics: a critical review. Anal. Bioanal. Chem. 389, 1017–1031 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. McLafferty, F.W. Tandem mass spectrometry. Science 214, 280–287 (1981).

    Article  CAS  PubMed  Google Scholar 

  41. Anderson, N.L. & Anderson, N.G. The human plasma proteome history, character, and diagnostic prospects. Mol. Cell Proteomics 1, 845–867 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Geromanos, S.J. et al. The detection, correlation, and comparison of peptide precursor and product ions from data independent LC-MS with data-dependent LC-MS/MS. Proteomics 9, 1683–1695 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Bern, M. et al. Deconvolution of mixture spectra from ion-trap data-independent-acquisition tandem mass spectrometry. Anal. Chem. 82, 833–841 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schubert, O.T. et al. The Mtb Proteome Library: a resource of assays to quantify the complete proteome of Mycobacterium tuberculosis. Cell Host Microbe 13, 602–612 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. MacLean, B. et al. Effect of collision energy optimization on the measurement of peptides by selected reaction monitoring (SRM) mass spectrometry. Anal. Chem. 82, 10116–10124 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, Y., Ficarro, S.B., Li, S. & Marto, J.A. Optimized Orbitrap HCD for quantitative analysis of phosphopeptides. J. Am. Soc. Mass Spectrom. 20, 1425–1434 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Bereman, M.S. Tools for monitoring system suitability in LC-MS/MS–centric proteomic experiments. Proteomics 15, 891–902 (2015.

    Article  CAS  PubMed  Google Scholar 

  48. Bereman, M.S. et al. Implementation of statistical process control for proteomic experiments via LC-MS/MS. J. Am. Soc. Mass Spectrom. 25, 581–587 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mallick, P. et al. Computational prediction of proteotypic peptides for quantitative proteomics. Nat. Biotechnol. 25, 125–131 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Stergachis, A.B., MacLean, B., Lee, K., Stamatoyannopoulos, J.A. & MacCoss, M.J. Rapid empirical discovery of optimal peptides for targeted proteomics. Nat. Methods 8, 1041–1043 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Financial support for this work was provided from US National Institutes of Health grants P41 GM103533, R01 GM103551, R21 CA192983 and U54 HG008097.

Author information

Authors and Affiliations

Authors

Contributions

J.D.E., B.M., R.J., Y.X. and M.J.M. developed and optimized the protocol. J.D.E. drafted the text of the manuscript. R.J. prepared samples and acquired data presented in ANTICIPATED RESULTS section.

Corresponding author

Correspondence to Michael J MacCoss.

Ethics declarations

Competing interests

M.J.M. is a paid consultant for Thermo Fisher Scientific. Y.X. is an employee of Thermo Fisher Scientific. The MacCoss laboratory receives research support from Thermo Fisher Scientific.

Supplementary information

Supplementary Text and Figures

Supplementary Note and Supplementary Methods (PDF 746 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egertson, J., MacLean, B., Johnson, R. et al. Multiplexed peptide analysis using data-independent acquisition and Skyline. Nat Protoc 10, 887–903 (2015). https://doi.org/10.1038/nprot.2015.055

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2015.055

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing