Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol Extension
  • Published:

Utilizing Skyline to analyze lipidomics data containing liquid chromatography, ion mobility spectrometry and mass spectrometry dimensions

Abstract

Lipidomics studies suffer from analytical and annotation challenges because of the great structural similarity of many of the lipid species. To improve lipid characterization and annotation capabilities beyond those afforded by traditional mass spectrometry (MS)-based methods, multidimensional separation methods such as those integrating liquid chromatography, ion mobility spectrometry, collision-induced dissociation and MS (LC-IMS-CID-MS) may be used. Although LC-IMS-CID-MS and other multidimensional methods offer valuable hydrophobicity, structural and mass information, the files are also complex and difficult to assess. Thus, the development of software tools to rapidly process and facilitate confident lipid annotations is essential. In this Protocol Extension, we use the freely available, vendor-neutral and open-source software Skyline to process and annotate multidimensional lipidomic data. Although Skyline (https://skyline.ms/skyline.url) was established for targeted processing of LC-MS-based proteomics data, it has since been extended such that it can be used to analyze small-molecule data as well as data containing the IMS dimension. This protocol uses Skyline’s recently expanded capabilities, including small-molecule spectral libraries, indexed retention time and ion mobility filtering, and provides a step-by-step description for importing data, predicting retention times, validating lipid annotations, exporting results and editing our manually validated 500+ lipid library. Although the time required to complete the steps outlined here varies on the basis of multiple factors such as dataset size and familiarity with Skyline, this protocol takes ~5.5 h to complete when annotations are rigorously verified for maximum confidence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Lipidomic LC-IMS-CID-MS protocol overview.
Fig. 2: Summary of library lipids.
Fig. 3: Skyline spectral library explorer view.
Fig. 4: Precursor chromatogram for positive-mode iRT calibrants.
Fig. 5: Annotation validation.
Fig. 6: Annotation validation example.
Fig. 7: Lipid MS/MS spectra example.
Fig. 8: Skyline replicate comparisons.
Fig. 9: iRT performance assessment.

Similar content being viewed by others

Data availability

All associated library and data files are publicly available at Panorama Public (https://panoramaweb.org/baker-lipid-ims.url) and Zenodo (https://zenodo.org/record/6374209#.YpzPMxPMJJU)47.

Code availability

Skyline source code is freely available at https://skyline.ms/source.url.

References

  1. Soppert, J., Lehrke, M., Marx, N., Jankowski, J. & Noels, H. Lipoproteins and lipids in cardiovascular disease: from mechanistic insights to therapeutic targeting. Adv. Drug Deliv. Rev. 159, 4–33 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Maradonna, F. & Carnevali, O. Lipid metabolism alteration by endocrine disruptors in animal models: an overview. Front. Endocrinol. 9, 654 (2018).

    Article  Google Scholar 

  3. Niemann, R. The effects of xenobiotics on hepatic lipid and lipo-protein metabolism. Exp. Pathol. 39, 213–232 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Miao, H. et al. Lipidomics biomarkers of diet-induced hyperlipidemia and its treatment with Poria cocos. J. Agric. Food Chem. 64, 969–979 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Perla, F. M., Prelati, M., Lavorato, M., Visicchio, D. & Anania, C. The role of lipid and lipoprotein metabolism in non-alcoholic fatty liver disease. Children 4, 46 (2017).

    Article  PubMed Central  Google Scholar 

  6. Wenk, M. R. The emerging field of lipidomics. Nat. Rev. Drug Discov. 4, 594–610 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Rolim, A. E. H., Henrique-Araújo, R., Ferraz, E. G., de Araújo Alves Dultra, F. K. & Fernandez, L. G. Lipidomics in the study of lipid metabolism: current perspectives in the omic sciences. Gene 554, 131–139 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Züllig, T., Trötzmüller, M. & Köfeler, H. C. Lipidomics from sample preparation to data analysis: a primer. Anal. Bioanal. Chem. 412, 2191–2209 (2020).

    Article  PubMed  Google Scholar 

  9. Leaptrot, K. L., May, J. C., Dodds, J. N. & Mclean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nat. Commun. 10, 985 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liebisch, G. et al. Lipidomics needs more standardization. Nat. Metab. 1, 745–747 (2019).

    Article  Google Scholar 

  11. Yang, K., Dilthey, B. G. & Gross, R. W. Identification and quantitation of fatty acid double bond positional isomers: a shotgun lipidomics approach using charge-switch derivatization. Anal. Chem. 85, 9742–9750 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Ma, X. & Xia, Y. Pinpointing double bonds in lipids by Paternò-Büchi reactions and mass spectrometry. Angew. Chem. Int. Ed. Engl. 53, 2592–2596 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Brown, S. H. J., Mitchell, T. W. & Blanksby, S. J. Analysis of unsaturated lipids by ozone-induced dissociation. Biochim. Biophys. Acta 1811, 807–817 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Thomas, M. C., Mitchell, T. W. & Blanksby, S. J. Ozonolysis of phospholipid double bonds during electrospray ionization: a new tool for structure determination. J. Am. Chem. Soc. 128, 58–59 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Campbell, J. L. & Baba, T. Near-complete structural characterization of phosphatidylcholines using electron impact excitation of ions from organics. Anal. Chem. 87, 5837–5845 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Klein, D. R. & Brodbelt, J. S. Structural characterization of phosphatidylcholines using 193 nm ultraviolet photodissociation mass spectrometry. Anal. Chem. 89, 1516–1522 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ryan, E., Nguyen, C. Q. N., Shiea, C. & Reid, G. E. Detailed structural characterization of sphingolipids via 193 nm ultraviolet photodissociation and ultra high resolution tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 28, 1406–1419 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Kyle, J. E. et al. Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry. Analyst 141, 1649–1659 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Maclean, B. X. et al. Using Skyline to analyze data-containing liquid chromatography, ion mobility spectrometry, and mass spectrometry dimensions. J. Am. Soc. Mass Spectrom. 29, 2182–2188 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hancock, S. E., Poad, B. L. J., Batarseh, A., Abbott, S. K. & Mitchell, T. W. Advances and unresolved challenges in the structural characterization of isomeric lipids. Anal. Biochem. 524, 45–55 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Paglia, G., Kliman, M., Claude, E., Geromanos, S. & Astarita, G. Applications of ion-mobility mass spectrometry for lipid analysis. Anal. Bioanal. Chem. 407, 4995–5007 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Egertson, J. D., MacLean, B., Johnson, R., Xuan, Y. & MacCoss, M. J. Multiplexed peptide analysis using data-independent acquisition and Skyline. Nat. Protoc. 10, 887–903 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Maclean, B. et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26, 966–968 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pino, L. K. et al. The Skyline ecosystem: informatics for quantitative mass spectrometry proteomics. Mass Spectrom. Rev. 39, 229–244 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Adams, K. J. et al. Skyline for small molecules: a unifying software package for quantitative metabolomics. J. Proteome Res 19, 1447–1458 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kirkwood, K. I. et al. Development and application of multidimensional lipid libraries to investigate lipidomic dysregulation related to smoke inhalation injury severity. J. Proteome Res 21, 232–242 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Fahy, E. et al. A comprehensive classification system for lipids. J. Lipid Res. 46, 839–862 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Peng, B. et al. LipidCreator workbench to probe the lipidomic landscape. Nat. Commun. 11, 2057 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kind, T. et al. LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat. Methods 10, 755–758 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Murphy, R. Tandem Mass Spectrometry of Lipids: Molecular Analysis of Complex Lipids (Royal Society of Chemistry, 2015).

  32. Escher, C. et al. Using iRT, a normalized retention time for more targeted measurement of peptides. Proteomics 12, 1111–1121 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Picache, J. A. et al. Collision cross section compendium to annotate and predict multi-omic compound identities. Chem. Sci. 10, 983–993 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Kyle, J. E. et al. LIQUID: an-open source software for identifying lipids in LC-MS/MS-based lipidomics data. Bioinformatics 33, 1744–1746 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tsugawa, H. et al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 12, 523–526 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhou, Z. et al. LipidIMMS Analyzer: integrating multi-dimensional information to support lipid identification in ion mobility—mass spectrometry based lipidomics. Bioinformatics 35, 698–700 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Koelmel, J. P. et al. LipidMatch: an automated workflow for rule-based lipid identification using untargeted high-resolution tandem mass spectrometry data. BMC Bioinforma. 18, 331 (2017).

    Article  Google Scholar 

  38. Hartler, J. et al. Deciphering lipid structures based on platform-independent decision rules. Nat. Methods 14, 1171–1174 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kochen, M. A. et al. Greazy: open-source software for automated phospholipid tandem mass spectrometry identification. Anal. Chem. 88, 5733–5741 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 3, 211–221 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Blaženović, I., Kind, T., Ji, J. & Fiehn, O. Software tools and approaches for compound identification of LC-MS/MS data in metabolomics. Metabolites 8, 1–23 (2018).

    Article  Google Scholar 

  42. Köfeler, H. C. et al. Quality control requirements for the correct annotation of lipidomics data. Nat. Commun. 12, 4771 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Koelmel, J. P., Ulmer, C. Z., Jones, C. M., Yost, R. A. & Bowden, J. A. Common cases of improper lipid annotation using high-resolution tandem mass spectrometry data and corresponding limitations in biological interpretation. Biochim. Biophys. Acta 1862, 766–770 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  44. Rampler, E. et al. Recurrent topics in mass spectrometry-based metabolomics and lipidomics—standardization, coverage, and throughput. Anal. Chem. 93, 519–545 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Frewen, B. E. et al. Analysis of peptide MS/MS spectra from large-scale proteomics experiments using spectrum libraries. Anal. Chem. 78, 5678–5684 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Odenkirk, M. T. et al. Combining micropunch histology and multidimensional lipidomic measurements for in-depth tissue mapping. ACS Meas. Sci. Au 2, 67–75 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Kirkwood, K. I. et al. Utilizing Skyline to analyze lipidomics data containing liquid chromatography, ion mobility spectrometry and mass spectrometry dimensions. Zenodo https://zenodo.org/record/6374209#.YpzYhBPMJJU (2022).

Download references

Acknowledgements

Portions of this research were supported by grants from the NIH National Institute of Environmental Health Sciences (P30 ES025128, P42 ES027704 and P42 ES031009), NIH National Institute of General Medicine Sciences (R24 GM141156, P41 GM103533 and T32 GM133366), a cooperative agreement with the United States Environmental Protection Agency (STAR RD 84003201) and startup funds from North Carolina State University. In addition, most of the LC-IMS-CID-MS measurements were made in the Molecular Education, Technology, and Research Innovation Center (METRIC) at North Carolina State University.

Author information

Authors and Affiliations

Authors

Contributions

K.I.K., B.S.P., N.S., K.T., M.J.M., B.X.M. and E.S.B. developed and optimized the protocol and Skyline tools. K.I.K. drafted the text of the manuscript.

Corresponding author

Correspondence to Erin S. Baker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Kirkwood, K. I. et al. J. Proteome Res. 21, 232–242 (2022): https://doi.org/10.1021/acs.jproteome.1c00820

Odenkirk, M. T. et al. ACS Meas. Sci. Au 2, 67–75 (2022): https://doi.org/10.1021/acsmeasuresciau.1c00035

Key data used in this protocol

NCSU Baker Lab—Lipid Libraries: https://panoramaweb.org/baker-lipid-ims.url

Kirkwood, K. I. et al. Zenodo https://doi.org/10.5281/zenodo.6374209

This protocol is an extension to: Nat. Protoc. 10, 887–903 (2015): https://doi.org/10.1038/nprot.2015.055

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Tables 3–5 and Supplementary Figs. 1–17.

Supplementary Table 1

Transition lists

Supplementary Table 2

iRT prediction results

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirkwood, K.I., Pratt, B.S., Shulman, N. et al. Utilizing Skyline to analyze lipidomics data containing liquid chromatography, ion mobility spectrometry and mass spectrometry dimensions. Nat Protoc 17, 2415–2430 (2022). https://doi.org/10.1038/s41596-022-00714-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-022-00714-6

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics