Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Single-cell in situ imaging of palmitoylation in fatty-acylated proteins

Abstract

Dissecting the subcellular distribution of a fatty-acylated protein is key to the understanding of the molecular mechanisms regulating protein movement and function in a cell. This protocol describes how to perform single-cell imaging of palmitoylation in a fatty-acylated protein of interest with high sensitivity using click chemistry, proximity ligation and fluorescence microscopy. The initial steps in this protocol involve optimization of conditions for (i) metabolic incorporation of an alkynyl analog of palmitic acid into cellular proteins coupled with click chemistry and (ii) detecting a specific protein of interest with primary antibodies using automated fluorescence microscopy, followed by (iii) imaging palmitoylation of the target fatty-acylated protein of interest, such as Wnt, Sonic Hedgehog or H-Ras. Furthermore, we outline strategies for imaging specific fatty-acylated proteins with subcellular organelles and/or total proteome palmitoylation, and we discuss special considerations that need to be given depending on the experimental design. The use of clickable fatty acids with proximity ligation may have promising applications to the investigation of fatty acylation cell biology. The entire protocol takes 3 weeks to complete.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Development of the click chemistry–proximity ligation imaging protocol.
Figure 2: General workflow of the assay.
Figure 3: Experimental design for the simultaneous detection of various relevant targets.
Figure 4: Experimental setup for sample treatment on coverslips using a humidity chamber.
Figure 5: Examples of the click chemistry–proximity ligation imaging method applied to the visualization of various targets.

Similar content being viewed by others

References

  1. Hannoush, R.N. & Sun, J. The chemical toolbox for monitoring protein fatty acylation and prenylation. Nat. Chem. Biol. 6, 498–506 (2010).

    Article  CAS  Google Scholar 

  2. Salaun, C., Greaves, J. & Chamberlain, L.H. The intracellular dynamic of protein palmitoylation. J. Cell Biol. 191, 1229–1238 (2010).

    Article  CAS  Google Scholar 

  3. Eisenberg, S. et al. The role of palmitoylation in regulating Ras localization and function. Biochem. Soc. Trans. 41, 79–83 (2013).

    Article  CAS  Google Scholar 

  4. Linder, M.E. & Deschenes, R.J. Palmitoylation: policing protein stability and traffic. Nat. Rev. Mol. Cell Biol. 8, 74–84 (2007).

    Article  CAS  Google Scholar 

  5. Pepinsky, R.B. et al. Identification of a palmitic acid-modified form of human Sonic Hedgehog. J. Biol. Chem. 273, 14037–14045 (1998).

    Article  CAS  Google Scholar 

  6. Porter, J.A., Young, K.E. & Beachy, P.A. Cholesterol modification of Hedgehog signaling proteins in animal development. Science 274, 255–259 (1996).

    Article  CAS  Google Scholar 

  7. Takada, R. et al. Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Dev. Cell 11, 791–801 (2006).

    Article  CAS  Google Scholar 

  8. Gao, X. & Hannoush, R.N. Single-cell imaging of Wnt palmitoylation by the acyltransferase porcupine. Nat. Chem. Biol. 10, 61–68 (2014).

    Article  CAS  Google Scholar 

  9. Peseckis, S.M., Deichaite, I. & Resh, M.D. Iodinated fatty acids as probes for myristate processing and function. Incorporation into pp60v-src. J. Biol. Chem. 268, 5107–5114 (1993).

    CAS  PubMed  Google Scholar 

  10. Schlesinger, M.J., Magee, A.I. & Schmidt, M.F. Fatty acid acylation of proteins in cultured cells. J. Biol. Chem. 255, 10021–10024 (1980).

    CAS  PubMed  Google Scholar 

  11. Gao, X. & Hannoush, R.N. Method for cellular imaging of palmitoylated proteins with clickable probes and proximity ligation applied to Hedgehog, tubulin and Ras. J. Am. Chem. Soc. 136, 4544–4550 (2014).

    Article  CAS  Google Scholar 

  12. Hannoush, R.N. & Arenas-Ramirez, N. Imaging the lipidome: ù-alkynyl fatty acids for detection and cellular visualization of lipid-modified proteins. ACS Chem. Biol. 4, 581–587 (2009).

    Article  CAS  Google Scholar 

  13. Fredriksson, S. et al. Protein detection using proximity-dependent DNA ligation assays. Nat. Biotechnol. 20, 473–477 (2002).

    Article  CAS  Google Scholar 

  14. Gullberg, M. et al. Cytokine detection by antibody-based proximity ligation. Proc. Natl. Acad. Sci. USA 101, 8420–8424 (2004).

    Article  CAS  Google Scholar 

  15. Soderberg, O. et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat. Methods 3, 995–1000 (2006).

    Article  Google Scholar 

  16. Gao, X., Arenas-Ramirez, N., Scales, S.J. & Hannoush, R.N. Membrane targeting of palmitoylated Wnt and Hedgehog revealed by chemical probes. FEBS Lett. 585, 2501–2506 (2011).

    Article  CAS  Google Scholar 

  17. Charron, G. et al. Robust fluorescent detection of protein fatty-acylation with chemical reporters. J. Am. Chem. Soc. 131, 4967–4975 (2009).

    Article  CAS  Google Scholar 

  18. Martin, B.R. & Cravatt, B.F. Large-scale profiling of protein palmitoylation in mammalian cells. Nat. Methods 6, 135–138 (2009).

    Article  CAS  Google Scholar 

  19. Yap, M.C. et al. Rapid and selective detection of fatty acylated proteins using omega-alkynyl-fatty acids and click chemistry. J. Lipid Res. 51, 1566–1580 (2010).

    Article  CAS  Google Scholar 

  20. Hannoush, R.N. Development of chemical probes for biochemical detection and cellular imaging of myristoylated and palmitoylated proteins. Curr. Protoc. Chem. Biol. 3, 15–26 (2011).

    PubMed  Google Scholar 

  21. Hannoush, R.N. Profiling cellular myristoylation and palmitoylation using omega-alkynyl fatty acids. Methods Mol. Biol. 800, 85–94 (2012).

    Article  CAS  Google Scholar 

  22. Wang, Q. et al. Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc. 125, 3192–3193 (2003).

    Article  CAS  Google Scholar 

  23. Vocadlo, D.J., Hang, H.C., Kim, E.J., Hanover, J.A. & Bertozzi, C.R. A chemical approach for identifying O-GlcNAc–modified proteins in cells. Proc. Natl. Acad. Sci. USA 100, 9116–9121 (2003).

    Article  CAS  Google Scholar 

  24. Zaro, B.W., Yang, Y.Y., Hang, H.C. & Pratt, M.R. Chemical reporters for fluorescent detection and identification of O-GlcNAc–modified proteins reveal glycosylation of the ubiquitin ligase NEDD4-1. Proc. Natl. Acad. Sci. USA 108, 8146–8151 (2011).

    Article  CAS  Google Scholar 

  25. Clark, P.M. et al. Direct in-gel fluorescence detection and cellular imaging of O-GlcNAc–modified proteins. J. Am. Chem. Soc. 130, 11576–11577 (2008).

    Article  CAS  Google Scholar 

  26. Golks, A., Tran, T.T., Goetschy, J.F. & Guerini, D. Requirement for O-linked N-acetylglucosaminyltransferase in lymphocytes activation. EMBO J. 26, 4368–4379 (2007).

    Article  CAS  Google Scholar 

  27. Lamarre-Vincent, N. & Hsieh-Wilson, L.C. Dynamic glycosylation of the transcription factor CREB: a potential role in gene regulation. J. Am. Chem. Soc. 125, 6612–6613 (2003).

    Article  CAS  Google Scholar 

  28. Ozcan, S., Andrali, S.S. & Cantrell, J.E. Modulation of transcription factor function by O-GlcNAc modification. Biochim. Biophys. Acta 1799, 353–364 (2010).

    Article  Google Scholar 

  29. Yang, W.H. et al. Modification of p53 with O-linked N-acetylglucosamine regulates p53 activity and stability. Nat. Cell Biol. 8, 1074–1083 (2006).

    Article  CAS  Google Scholar 

  30. Heal, W.P. et al. Bioorthogonal chemical tagging of protein cholesterylation in living cells. Chem. Commun. (Camb) 47, 4081–4083 (2011).

    Article  CAS  Google Scholar 

  31. Bothwell, I.R. et al. Se-adenosyl-L-selenomethionine cofactor analogue as a reporter of protein methylation. J. Am. Chem. Soc. 134, 14905–14912 (2012).

    Article  CAS  Google Scholar 

  32. Willnow, S., Martin, M., Luscher, B. & Weinhold, E. A selenium-based click AdoMet analogue for versatile substrate labeling with wild-type protein methyltransferases. Chembiochem 13, 1167–1173 (2012).

    Article  CAS  Google Scholar 

  33. Yang, Y.Y., Ascano, J.M. & Hang, H.C. Bioorthogonal chemical reporters for monitoring protein acetylation. J. Am. Chem. Soc. 132, 3640–3641 (2010).

    Article  CAS  Google Scholar 

  34. Grammel, M., Luong, P., Orth, K. & Hang, H.C. A chemical reporter for protein AMPylation. J. Am. Chem. Soc. 133, 17103–17105 (2011).

    Article  CAS  Google Scholar 

  35. Paulsen, C.E. et al. Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity. Nat. Chem. Biol. 8, 57–64 (2012).

    Article  CAS  Google Scholar 

  36. Schermelleh, L. et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320, 1332–1336 (2008).

    Article  CAS  Google Scholar 

  37. Requejo-Isidro, J. Fluorescence nanoscopy. Methods and applications. J. Chem. Biol. 6, 97–120 (2013).

    Article  Google Scholar 

  38. Koos, B. et al. Analysis of protein interactions in situ by proximity ligation assays. Curr. Top. Microbiol. Immunol. 377, 11–26 (2013).

    Google Scholar 

  39. Leuchowius, K.J., Weibrecht, I. & Soderberg, O. In situ proximity ligation assay for microscopy and flow cytometry. Curr. Protoc. Cytom. 56, 9.36.1–9.36.15 (2011).

    Article  Google Scholar 

  40. Chen, B. et al. Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat. Chem. Biol. 5, 100–107 (2009).

    Article  CAS  Google Scholar 

  41. Petrova, E., Rios-Esteves, J., Ouerfelli, O., Glickman, J.F. & Resh, M.D. Inhibitors of Hedgehog acyltransferase block Sonic Hedgehog signaling. Nat. Chem. Biol. 9, 247–249 (2013).

    Article  CAS  Google Scholar 

  42. Proffitt, K.D. et al. Pharmacological inhibition of the Wnt acyltransferase PORCN prevents growth of WNT-driven mammary cancer. Cancer Res. 73, 502–507 (2013).

    Article  CAS  Google Scholar 

  43. Liu, J. et al. Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974. Proc. Natl. Acad. Sci. USA 110, 20224–20229 (2013).

    Article  CAS  Google Scholar 

  44. Zheng, B. et al. 2-Bromopalmitate analogues as activity-based probes to explore palmitoyl acyltransferases. J. Am. Chem. Soc. 135, 7082–7085 (2013).

    Article  CAS  Google Scholar 

  45. Jennings, B.C. et al. 2-Bromopalmitate and 2-(2-hydroxy-5-nitro-benzylidene)-benzo[b]thiophen-3-one inhibit DHHC-mediated palmitoylation in vitro. J. Lipid Res. 50, 233–242 (2009).

    Article  CAS  Google Scholar 

  46. Ducker, C.E. et al. Discovery and characterization of inhibitors of human palmitoyl acyltransferases. Mol. Cancer Ther. 5, 1647–1659 (2006).

    Article  CAS  Google Scholar 

  47. Lawrence, D.S., Zilfou, J.T. & Smith, C.D. Structure-activity studies of cerulenin analogues as protein palmitoylation inhibitors. J. Med. Chem. 42, 4932–4941 (1999).

    Article  CAS  Google Scholar 

  48. Draper, J.M. & Smith, C.D. Palmitoyl acyltransferase assays and inhibitors (Review). Mol. Membr. Biol. 26, 5–13 (2009).

    Article  CAS  Google Scholar 

  49. Patterson, S.I. & Skene, J.H. Inhibition of dynamic protein palmitoylation in intact cells with tunicamycin. Methods Enzymol. 250, 284–300 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the use of microscopes at the Center for Advanced Light Microscopy (CALM) at Genentech.

Author information

Authors and Affiliations

Authors

Contributions

X.G. performed the experiments. X.G. and R.N.H. designed the study and wrote the paper.

Corresponding author

Correspondence to Rami N Hannoush.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Hannoush, R. Single-cell in situ imaging of palmitoylation in fatty-acylated proteins. Nat Protoc 9, 2607–2623 (2014). https://doi.org/10.1038/nprot.2014.179

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.179

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing