Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-cell imaging of Wnt palmitoylation by the acyltransferase porcupine

Abstract

Wnts are secreted palmitoylated glycoproteins that are important in embryonic development and human cancers. Here we report a method for imaging the palmitoylated form of Wnt proteins with subcellular resolution using clickable bioorthogonal fatty acids and in situ proximity ligation. Palmitoylated Wnt3a is visualized throughout the secretory pathway and trafficks to multivesicular bodies that act as export sites in secretory cells. We establish that glycosylation is not required for Wnt3a palmitoylation, which is necessary but not sufficient for Wnt3a secretion. Wnt3a is palmitoylated by fatty acids 13–16 carbons in length at Ser209 but not at Cys77, consistent with a slow turnover rate. We find that porcupine (PORCN) itself is palmitoylated, demonstrating what is to our knowledge the first example of palmitoylation of an MBOAT protein, and this modification partially regulates Wnt palmitoylation and signaling. Our data reveal the role of O-palmitoylation in Wnt signaling and suggest another layer of cellular control over PORCN function and Wnt secretion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategy for fluorescence imaging of palmitoylated Wnt3a proteins.
Figure 2: Palmitoylated Wnt3a is targeted to MVBs in secretory cells.
Figure 3: Wnt3a palmitoylation does not require glycosylation or regulate protein turnover.
Figure 4: O-palmitate bound to Wnt3a has slow turnover rate and regulates Wnt3a secretion.
Figure 5: Porcupine catalyzes the transfer of fatty acids 13–16 carbons in length onto Ser209 of Wnt3a.
Figure 6: Human PORCN is fatty acylated, and this modification regulates Wnt signaling.
Figure 7: Proposed model for Wnt3a palmitoylation, maturation and secretion.

Similar content being viewed by others

References

  1. Resh, M.D. Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim. Biophys. Acta 1451, 1–16 (1999).

    CAS  PubMed  Google Scholar 

  2. Steinhauer, J. & Treisman, J.E. Lipid-modified morphogens: functions of fats. Curr. Opin. Genet. Dev. 19, 308–314 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Salaun, C., Greaves, J. & Chamberlain, L.H. The intracellular dynamic of protein palmitoylation. J. Cell Biol. 191, 1229–1238 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hannoush, R.N. & Sun, J. The chemical toolbox for monitoring protein fatty acylation and prenylation. Nat. Chem. Biol. 6, 498–506 (2010).

    CAS  PubMed  Google Scholar 

  5. Hannoush, R.N. & Arenas-Ramirez, N. Imaging the lipidome: ω-alkynyl fatty acids for detection and cellular visualization of lipid-modified proteins. ACS Chem. Biol. 4, 581–587 (2009).

    CAS  PubMed  Google Scholar 

  6. Yap, M.C. et al. Rapid and selective detection of fatty acylated proteins using ω-alkynyl-fatty acids and click chemistry. J. Lipid Res. 51, 1566–1580 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Nusse, R. Wnts and Hedgehogs: lipid-modified proteins and similarities in signaling mechanisms at the cell surface. Development 130, 5297–5305 (2003).

    CAS  PubMed  Google Scholar 

  8. Willert, K. et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423, 448–452 (2003).

    CAS  PubMed  Google Scholar 

  9. Clevers, H. & Nusse, R. Wnt/β-catenin signaling and disease. Cell 149, 1192–1205 (2012).

    CAS  PubMed  Google Scholar 

  10. Polakis, P. The many ways of Wnt in cancer. Curr. Opin. Genet. Dev. 17, 45–51 (2007).

    CAS  PubMed  Google Scholar 

  11. Augustin, I. et al. The Wnt secretion protein Evi/Gpr177 promotes glioma tumourigenesis. EMBO Mol. Med. 4, 38–51 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang, P.T. et al. WLS inhibits melanoma cell proliferation through the β-catenin signalling pathway and induces spontaneous metastasis. EMBO Mol. Med. 4, 1294–1307 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Smolich, B.D., McMahon, J.A., McMahon, A.P. & Papkoff, J. Wnt family proteins are secreted and associated with the cell surface. Mol. Biol. Cell 4, 1267–1275 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Komekado, H., Yamamoto, H., Chiba, T. & Kikuchi, A. Glycosylation and palmitoylation of Wnt-3a are coupled to produce an active form of Wnt-3a. Genes Cells 12, 521–534 (2007).

    CAS  PubMed  Google Scholar 

  15. Tang, X. et al. Roles of N-glycosylation and lipidation in Wg secretion and signaling. Dev. Biol. 364, 32–41 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Takada, R. et al. Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Dev. Cell 11, 791–801 (2006).

    CAS  PubMed  Google Scholar 

  17. Janda, C.Y., Waghray, D., Levin, A.M., Thomas, C. & Garcia, K.C. Structural basis of Wnt recognition by Frizzled. Science 337, 59–64 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Willert, K. & Nusse, R. Wnt proteins. Cold Spring Harb. Perspect. Biol. 4, a007864 (2012).

    PubMed  PubMed Central  Google Scholar 

  19. Zhai, L., Chaturvedi, D. & Cumberledge, S. Drosophila wnt-1 undergoes a hydrophobic modification and is targeted to lipid rafts, a process that requires porcupine. J. Biol. Chem. 279, 33220–33227 (2004).

    CAS  PubMed  Google Scholar 

  20. Gao, X., Arenas-Ramirez, N., Scales, S.J. & Hannoush, R.N. Membrane targeting of palmitoylated Wnt and Hedgehog revealed by chemical probes. FEBS Lett. 585, 2501–2506 (2011).

    CAS  PubMed  Google Scholar 

  21. Caricasole, A., Ferraro, T., Rimland, J.M. & Terstappen, G.C. Molecular cloning and initial characterization of the MG61/PORC gene, the human homologue of the Drosophila segment polarity gene Porcupine. Gene 288, 147–157 (2002).

    CAS  PubMed  Google Scholar 

  22. Galli, L.M. & Burrus, L.W. Differential palmit(e)oylation of Wnt1 on C93 and S224 residues has overlapping and distinct consequences. PLoS ONE 6, e26636 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Galli, L.M., Barnes, T.L., Secrest, S.S., Kadowaki, T. & Burrus, L.W. Porcupine-mediated lipid-modification regulates the activity and distribution of Wnt proteins in the chick neural tube. Development 134, 3339–3348 (2007).

    CAS  PubMed  Google Scholar 

  24. Herr, P. & Basler, K. Porcupine-mediated lipidation is required for Wnt recognition by Wls. Dev. Biol. 361, 392–402 (2012).

    CAS  PubMed  Google Scholar 

  25. Najdi, R. et al. A uniform human Wnt expression library reveals a shared secretory pathway and unique signaling activities. Differentiation 84, 203–213 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hofmann, K. A superfamily of membrane-bound O-acyltransferases with implications for wnt signaling. Trends Biochem. Sci. 25, 111–112 (2000).

    CAS  PubMed  Google Scholar 

  27. Tanaka, K., Okabayashi, K., Asashima, M., Perrimon, N. & Kadowaki, T. The evolutionarily conserved porcupine gene family is involved in the processing of the Wnt family. Eur. J. Biochem. 267, 4300–4311 (2000).

    CAS  PubMed  Google Scholar 

  28. Kadowaki, T., Wilder, E., Klingensmith, J., Zachary, K. & Perrimon, N. The segment polarity gene porcupine encodes a putative multitransmembrane protein involved in Wingless processing. Genes Dev. 10, 3116–3128 (1996).

    CAS  PubMed  Google Scholar 

  29. Wang, X. et al. Mutations in X-linked PORCN, a putative regulator of Wnt signaling, cause focal dermal hypoplasia. Nat. Genet. 39, 836–838 (2007).

    CAS  PubMed  Google Scholar 

  30. Grzeschik, K.H. et al. Deficiency of PORCN, a regulator of Wnt signaling, is associated with focal dermal hypoplasia. Nat. Genet. 39, 833–835 (2007).

    CAS  PubMed  Google Scholar 

  31. Proffitt, K.D. et al. Pharmacological inhibition of the Wnt acyltransferase PORCN prevents growth of WNT-driven mammary cancer. Cancer Res. 73, 502–507 (2013).

    CAS  PubMed  Google Scholar 

  32. Söderberg, O. et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat. Methods 3, 995–1000 (2006).

    PubMed  Google Scholar 

  33. Chen, B. et al. Small molecule–mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat. Chem. Biol. 5, 100–107 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Presley, J.F. et al. ER-to-Golgi transport visualized in living cells. Nature 389, 81–85 (1997).

    CAS  PubMed  Google Scholar 

  35. Escola, J.M. et al. Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J. Biol. Chem. 273, 20121–20127 (1998).

    CAS  PubMed  Google Scholar 

  36. Stoorvogel, W., Kleijmeer, M.J., Geuze, H.J. & Raposo, G. The biogenesis and functions of exosomes. Traffic 3, 321–330 (2002).

    CAS  PubMed  Google Scholar 

  37. Théry, C., Zitvogel, L. & Amigorena, S. Exosomes: composition, biogenesis and function. Nat. Rev. Immunol. 2, 569–579 (2002).

    PubMed  Google Scholar 

  38. Patterson, S.I. & Skene, J.H. Inhibition of dynamic protein palmitoylation in intact cells with tunicamycin. Methods Enzymol. 250, 284–300 (1995).

    CAS  PubMed  Google Scholar 

  39. Magee, A.I., Gutierrez, L., McKay, I.A., Marshall, C.J. & Hall, A. Dynamic fatty acylation of p21N-ras. EMBO J. 6, 3353–3357 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Staufenbiel, M. Ankyrin-bound fatty acid turns over rapidly at the erythrocyte plasma membrane. Mol. Cell. Biol. 7, 2981–2984 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Schweizer, A., Kornfeld, S. & Rohrer, J. Cysteine 34 of the cytoplasmic tail of the cation-dependent mannose 6-phosphate receptor is reversibly palmitoylated and required for normal trafficking and lysosomal enzyme sorting. J. Cell Biol. 132, 577–584 (1996).

    CAS  PubMed  Google Scholar 

  42. Omary, M.B. & Trowbridge, I. Biosynthesis of the human transferrin receptor. J. Biol. Chem. 256, 12888–12892 (1981).

    CAS  PubMed  Google Scholar 

  43. Gross, J.C., Chaudhary, V., Bartscherer, K. & Boutros, M. Active Wnt proteins are secreted on exosomes. Nat. Cell Biol. 14, 1036–1045 (2012).

    CAS  PubMed  Google Scholar 

  44. Beckett, K. et al. Drosophila S2 cells secrete wingless on exosome-like vesicles but the wingless gradient forms independently of exosomes. Traffic 14, 82–96 (2013).

    CAS  PubMed  Google Scholar 

  45. Bilic, J. et al. Wnt induces LRP6 signalosomes and promotes Dishevelled-dependent LRP6 phosphorylation. Science 316, 1619–1622 (2007).

    CAS  PubMed  Google Scholar 

  46. Taelman, V.F. et al. Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes. Cell 143, 1136–1148 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Fritz, V. et al. Abrogation of de novo lipogenesis by stearoyl-CoA desaturase 1 inhibition interferes with oncogenic signaling and blocks prostate cancer progression in mice. Mol. Cancer Ther. 9, 1740–1754 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Covey, T.M. et al. PORCN moonlights in a Wnt-independent pathway that regulates cancer cell proliferation. PLoS ONE 7, e34532 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Proffitt, K.D. & Virshup, D.M. Precise regulation of porcupine activity is required for physiological Wnt signaling. J. Biol. Chem. 287, 34167–34178 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Bornholdt, D. et al. PORCN mutations in focal dermal hypoplasia: coping with lethality. Hum. Mutat. 30, E618–E628 (2009).

    PubMed  Google Scholar 

  51. Zhang, Y. et al. Inhibition of Wnt signaling by Dishevelled PDZ peptides. Nat. Chem. Biol. 5, 217–219 (2009).

    CAS  PubMed  Google Scholar 

  52. Gong, Y. et al. Wnt isoform-specific interactions with coreceptor specify inhibition or potentiation of signaling by LRP6 antibodies. PLoS ONE 5, e12682 (2010).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank S. Scales for valuable comments on the manuscript and former members of the Hannoush lab for helpful discussions. We acknowledge use of microscopes at the Center for Advanced Light Microscopy at Genentech.

Author information

Authors and Affiliations

Authors

Contributions

X.G. and R.N.H. designed research. X.G. performed experiments. X.G. and R.N.H. analyzed data and wrote the paper. R.N.H. conceived of and guided the study.

Corresponding author

Correspondence to Rami N Hannoush.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results and Supplementary Figures 1–30. (PDF 6008 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, X., Hannoush, R. Single-cell imaging of Wnt palmitoylation by the acyltransferase porcupine. Nat Chem Biol 10, 61–68 (2014). https://doi.org/10.1038/nchembio.1392

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1392

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing