Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibition of RAS function through targeting an allosteric regulatory site

Abstract

RAS GTPases are important mediators of oncogenesis in humans. However, pharmacological inhibition of RAS has proved challenging. Here we describe a functionally critical region, located outside the effector lobe of RAS, that can be targeted for inhibition. We developed NS1, a synthetic binding protein (monobody) that bound with high affinity to both GTP- and GDP-bound states of H-RAS and K-RAS but not N-RAS. NS1 potently inhibited growth factor signaling and oncogenic H-RAS- and K-RAS-mediated signaling and transformation but did not block oncogenic N-RAS, BRAF or MEK1. NS1 bound the α4-β6-α5 region of RAS, which disrupted RAS dimerization and nanoclustering and led to blocking of CRAF–BRAF heterodimerization and activation. These results establish the importance of the α4-β6-α5 interface in RAS-mediated signaling and define a previously unrecognized site in RAS for inhibiting RAS function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RAS-specific monobody targets H-RAS and K-RAS.
Figure 2: NS1 inhibits RAS-mediated signaling and transformation.
Figure 3: NS1 targets the α4–α5 interface in RAS distal to switch regions.
Figure 4: NS1 targets a putative RAS dimerization interface.
Figure 5: NS1 blocks RAS dimerization and nanoclustering and subsequent RAF activation.
Figure 6: Effect of NS1 on oncogenic RAS activation of RAF.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Karnoub, A.E. & Weinberg, R.A. Ras oncogenes: split personalities. Nat. Rev. Mol. Cell Biol. 9, 517–531 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cox, A.D. & Der, C.J. Ras history: The saga continues. Small GTPases 1, 2–27 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ostrem, J.M., Peters, U., Sos, M.L., Wells, J.A. & Shokat, K.M. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503, 548–551 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Leshchiner, E.S. et al. Direct inhibition of oncogenic KRAS by hydrocarbon-stapled SOS1 helices. Proc. Natl. Acad. Sci. USA 112, 1761–1766 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Patgiri, A., Yadav, K.K., Arora, P.S. & Bar-Sagi, D. An orthosteric inhibitor of the Ras-Sos interaction. Nat. Chem. Biol. 7, 585–587 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Koide, A., Bailey, C.W., Huang, X. & Koide, S. The fibronectin type III domain as a scaffold for novel binding proteins. J. Mol. Biol. 284, 1141–1151 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Koide, A., Wojcik, J., Gilbreth, R.N., Hoey, R.J. & Koide, S. Teaching an old scaffold new tricks: monobodies constructed using alternative surfaces of the FN3 scaffold. J. Mol. Biol. 415, 393–405 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Koide, S., Koide, A. & Lipovšek, D. Target-binding proteins based on the 10th human fibronectin type III domain (10Fn3). Methods Enzymol. 503, 135–156 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Sha, F. et al. Dissection of the BCR-ABL signaling network using highly specific monobody inhibitors to the SHP2 SH2 domains. Proc. Natl. Acad. Sci. USA 110, 14924–14929 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cox, A.D., Fesik, S.W., Kimmelman, A.C., Luo, J. & Der, C.J. Drugging the undruggable RAS: mission possible? Nat. Rev. Drug Discov. 13, 828–851 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wong, K.A. et al. A new dimension to Ras function: a novel role for nucleotide-free Ras in Class II phosphatidylinositol 3-kinase beta (PI3KC2β) regulation. PLoS One 7, e45360 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chiu, V.K. et al. Ras signalling on the endoplasmic reticulum and the Golgi. Nat. Cell Biol. 4, 343–350 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Colicelli, J. Human RAS superfamily proteins and related GTPases. Sci. STKE 2004, RE13 (2004).

    PubMed  PubMed Central  Google Scholar 

  14. Burns, M.C. et al. Approach for targeting Ras with small molecules that activate SOS-mediated nucleotide exchange. Proc. Natl. Acad. Sci. USA 111, 3401–3406 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Feramisco, J.R. et al. Transient reversion of ras oncogene-induced cell transformation by antibodies specific for amino acid 12 of ras protein. Nature 314, 639–642 (1985).

    Article  CAS  PubMed  Google Scholar 

  16. Fetics, S.K. et al. Allosteric effects of the oncogenic RasQ61L mutant on Raf-RBD. Structure 23, 505–516 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Margarit, S.M. et al. Structural evidence for feedback activation by Ras.GTP of the Ras-specific nucleotide exchange factor SOS. Cell 112, 685–695 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Hall, B.E., Bar-Sagi, D. & Nassar, N. The structural basis for the transition from Ras-GTP to Ras-GDP. Proc. Natl. Acad. Sci. USA 99, 12138–12142 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Scheffzek, K. et al. The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277, 333–338 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Boriack-Sjodin, P.A., Margarit, S.M., Bar-Sagi, D. & Kuriyan, J. The structural basis of the activation of Ras by Sos. Nature 394, 337–343 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Sun, Q. et al. Discovery of small molecules that bind to K-Ras and inhibit Sos-mediated activation. Angew. Chem. Int. Edn. Engl. 51, 6140–6143 (2012).

    Article  CAS  Google Scholar 

  22. Güldenhaupt, J. et al. N-Ras forms dimers at POPC membranes. Biophys. J. 103, 1585–1593 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Abankwa, D. et al. A novel switch region regulates H-ras membrane orientation and signal output. EMBO J. 27, 727–735 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Plowman, S.J., Muncke, C., Parton, R.G. & Hancock, J.F. H-ras, K-ras, and inner plasma membrane raft proteins operate in nanoclusters with differential dependence on the actin cytoskeleton. Proc. Natl. Acad. Sci. USA 102, 15500–15505 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhou, Y. et al. Membrane potential modulates plasma membrane phospholipid dynamics and K-Ras signaling. Science 349, 873–876 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rajakulendran, T., Sahmi, M., Lefrançois, M., Sicheri, F. & Therrien, M. A dimerization-dependent mechanism drives RAF catalytic activation. Nature 461, 542–545 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Freeman, A.K., Ritt, D.A. & Morrison, D.K. Effects of Raf dimerization and its inhibition on normal and disease-associated Raf signaling. Mol. Cell 49, 751–758 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhou, Y. et al. Signal integration by lipid-mediated spatial cross talk between Ras nanoclusters. Mol. Cell. Biol. 34, 862–876 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Plowman, S.J., Ariotti, N., Goodall, A., Parton, R.G. & Hancock, J.F. Electrostatic interactions positively regulate K-Ras nanocluster formation and function. Mol. Cell. Biol. 28, 4377–4385 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yan, J., Roy, S., Apolloni, A., Lane, A. & Hancock, J.F. Ras isoforms vary in their ability to activate Raf-1 and phosphoinositide 3-kinase. J. Biol. Chem. 273, 24052–24056 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Lim, S.M. et al. Therapeutic targeting of oncogenic K-Ras by a covalent catalytic site inhibitor. Angew. Chem. Int. Edn Engl. 53, 199–204 (2014).

    Article  CAS  Google Scholar 

  32. Shima, F. et al. In silico discovery of small-molecule Ras inhibitors that display antitumor activity by blocking the Ras-effector interaction. Proc. Natl. Acad. Sci. USA 110, 8182–8187 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wu, X., Upadhyaya, P., Villalona-Calero, M.A., Briesewitz, R. & Pei, D. Inhibition of Ras-Effector Interaction by Cyclic Peptides. MedChemComm 4, 378–382 (2013).

    Article  PubMed  Google Scholar 

  34. Zhang, X. et al. Inhibition of the EGF receptor by binding of MIG6 to an activating kinase domain interface. Nature 450, 741–744 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Herrero, A. et al. Small Molecule Inhibition of ERK Dimerization Prevents Tumorigenesis by RAS-ERK Pathway Oncogenes. Cancer Cell 28, 170–182 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Santos, E., Nebreda, A.R., Bryan, T. & Kempner, E.S. Oligomeric structure of p21 ras proteins as determined by radiation inactivation. J. Biol. Chem. 263, 9853–9858 (1988).

    CAS  PubMed  Google Scholar 

  37. Inouye, K., Mizutani, S., Koide, H. & Kaziro, Y. Formation of the Ras dimer is essential for Raf-1 activation. J. Biol. Chem. 275, 3737–3740 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Nan, X. et al. Ras-GTP dimers activate the Mitogen-Activated Protein Kinase (MAPK) pathway. Proc. Natl. Acad. Sci. USA 112, 7996–8001 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nan, X. et al. Single-molecule superresolution imaging allows quantitative analysis of RAF multimer formation and signaling. Proc. Natl. Acad. Sci. USA 110, 18519–18524 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Muratcioglu, S. et al. GTP-Dependent K-Ras Dimerization. Structure 23, 1325–1335 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kovrigina, E.A., Galiakhmetov, A.R. & Kovrigin, E.L. The Ras G Domain Lacks the Intrinsic Propensity to Form Dimers. Biophys. J. 109, 1000–1008 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mazhab-Jafari, M.T. et al. Oncogenic and RASopathy-associated K-RAS mutations relieve membrane-dependent occlusion of the effector-binding site. Proc. Natl. Acad. Sci. USA 112, 6625–6630 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kunkel, T.A., Roberts, J.D. & Zakour, R.A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 154, 367–382 (1987).

    Article  CAS  PubMed  Google Scholar 

  44. Gilbreth, R.N. et al. Isoform-specific monobody inhibitors of small ubiquitin-related modifiers engineered using structure-guided library design. Proc. Natl. Acad. Sci. USA 108, 7751–7756 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Minor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. HKL-3000: the integration of data reduction and structure solution—from diffraction images to an initial model in minutes. Acta Crystallogr. D Biol. Crystallogr. 62, 859–866 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    PubMed  Google Scholar 

  48. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. The PyMOL Molecular Graphics System v.1.8 (Schrödinger, LLC, 2015).

  51. Reynolds, C., Damerell, D. & Jones, S. ProtorP: a protein-protein interaction analysis server. Bioinformatics 25, 413–414 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Lawrence, M.C. & Colman, P.M. Shape complementarity at protein/protein interfaces. J. Mol. Biol. 234, 946–950 (1993).

    Article  CAS  PubMed  Google Scholar 

  53. Taylor, S.J., Resnick, R.J. & Shalloway, D. Nonradioactive determination of Ras-GTP levels using activated ras interaction assay. Methods Enzymol. 333, 333–342 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Bondzi, C., Grant, S. & Krystal, G.W. A novel assay for the measurement of Raf-1 kinase activity. Oncogene 19, 5030–5033 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Pai, E.F. et al. Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 A resolution: implications for the mechanism of GTP hydrolysis. EMBO J. 9, 2351–2359 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Lavoie, H. et al. Inhibitors that stabilize a closed RAF kinase domain conformation induce dimerization. Nat. Chem. Biol. 9, 428–436 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Abe, K. et al. Vav2 is an activator of Cdc42, Rac1, and RhoA. J. Biol. Chem. 275, 10141–10149 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Prior, I.A., Muncke, C., Parton, R.G. & Hancock, J.F. Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J. Cell Biol. 160, 165–170 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Prior, I.A., Parton, R.G. & Hancock, J.F. Observing cell surface signaling domains using electron microscopy. Sci. STKE 2003, PL9 (2003).

    PubMed  Google Scholar 

Download references

Acknowledgements

This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract number DE-AC02-06CH11357. The contents do not represent the views of the US Department of Veterans Affairs or the United States Government. We thank J. Kuriyan and Y. Kondo (University of California, Berkeley (UC Berkeley)) for the purified Sos protein; S. Campbell (University of North Carolina at Chapel Hill (UNC)) for the K-RAS expression construct; A. Cox (UNC) for the N-RAS(G12D) construct; W. Hahn (Dana-Farber Cancer Institute) for the pBabe-Puro-MEK-DD (Addgene plasmid 15268); G. Clark (University of Louisville) for pCGN-RAF; B. Kreutz (University of Illinois at Chicago) for assistance with the fluorescent nucleotide exchange assays; D. Morrison (National Cancer Institute, NIH) for purified MEK(K97R); A. Aplin (Thomas Jefferson University) for A375 human melanoma cells; and C.-D. Hu (Purdue University) for expression constructs consisting of the Flag-tagged N terminus or HA-tagged C terminus of Venus. R.S.-S. is supported by a US National Institutes of Health (NIH) F31 Predoctoral Award (CA192822). This work was supported in part by a CIHR award to F. Sicheri (FDN 143277), a Merit Review Award (1I01BX002095) from the US Department of Veterans Affairs Biomedical Laboratory Research and Development Service to J.P.O., NIH awards to J.P.O. (CA116708 and CA201717) and S.K. (GM090324) and a Catalyst award from the Chicago Biomedical Consortium with support from the Searles Funds at the Chicago Community Trust to S.K. and J.P.O.

Author information

Authors and Affiliations

Authors

Contributions

R.S.-S., A.K., F. Sicheri, M.I., J.F.H., M.T., S.K. and J.P.O'B. designed the study; M.N.O. and I.D. prepared protein for monobody isolation; A.K. and E.D. performed library selection and identified NS1; I.D., M.S. and M.I. performed and interpreted NMR experiments; T.R. and F. Sicheri analyzed RAS structures in the PDB; R.S.-S., A.K., E.H.-G., D.S., P.G., J.C., M.J. and M.N.O. performed biochemical and cell biology experiments; R.R.E., F. Sha, A.G. and S.K. determined X-ray structure of monobody–RAS complex; Y.Z. and J.F.H. performed the nanoclustering analysis; H.L. and M.T. performed the BRET analysis; R.S.-S., F. Sicheri., S.K. and J.P.O. wrote the manuscript, and all authors commented and approved the manuscript.

Corresponding authors

Correspondence to Shohei Koide or John P O'Bryan.

Ethics declarations

Competing interests

S.K. and A.K. are inventors on a patent application filed by the University of Chicago that covers a design of monobody libraries (US 13/813,409). S.K., A.K. and J.P.O'B. are inventors on a patent application jointly filed by the University of Chicago and University of Illinois that covers the NS1 monobody.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–3 and Supplementary Figures 1–21. (PDF 15103 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spencer-Smith, R., Koide, A., Zhou, Y. et al. Inhibition of RAS function through targeting an allosteric regulatory site. Nat Chem Biol 13, 62–68 (2017). https://doi.org/10.1038/nchembio.2231

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2231

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer