Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute myeloid leukemia

GFI1 as a novel prognostic and therapeutic factor for AML/MDS

Abstract

Genetic and epigenetic aberrations contribute to the initiation and progression of acute myeloid leukemia (AML). GFI1, a zinc-finger transcriptional repressor, exerts its function by recruiting histone deacetylases to target genes. We present data that low expression of GFI1 is associated with an inferior prognosis of AML patients. To elucidate the mechanism behind this, we generated a humanized mouse strain with reduced GFI1 expression (GFI1-KD). Here we show that AML development induced by onco-fusion proteins such as MLL-AF9 or NUP98-HOXD13 is accelerated in mice with low human GFI1 expression. Leukemic cells from animals that express low levels of GFI1 show increased H3K9 acetylation compared to leukemic cells from mice with normal human GFI1 expression, resulting in the upregulation of genes involved in leukemogenesis. We investigated a new epigenetic therapy approach for this subgroup of AML patients. We could show that AML blasts from GFI1-KD mice and from AML patients with low GFI1 levels were more sensitive to treatment with histone acetyltransferase inhibitors than cells with normal GFI1 expression levels. We suggest therefore that GFI1 has a dose-dependent role in AML progression and development. GFI1 levels are involved in epigenetic regulation, which could open new therapeutic approaches for AML patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Estey E, Dohner H . Acute myeloid leukaemia. Lancet 2006; 368: 1894–1907.

    Article  PubMed  Google Scholar 

  2. Dohner H, Estey EH, Amadori S, Appelbaum FR, Buchner T, Burnett AK et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 2010; 115: 453–474.

    Article  PubMed  Google Scholar 

  3. Tefferi A, Vardiman JW . Myelodysplastic syndromes. N Engl J Med 2009; 361: 1872–1885.

    Article  CAS  PubMed  Google Scholar 

  4. Malcovati L, Hellstrom-Lindberg E, Bowen D, Ades L, Cermak J, Del Canizo C et al. Diagnosis and treatment of primary myelodysplastic syndromes in adults: recommendations from the European LeukemiaNet. Blood 2013; 122: 2943–2964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sekeres MA, Swern AS, Fenaux P, Greenberg PL, Sanz GF, Bennett JM et al. Validation of the IPSS-R in lenalidomide-treated, lower-risk myelodysplastic syndrome patients with del(5q). Blood Cancer J 2014; 4: e242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Steidl U, Steidl C, Ebralidze A, Chapuy B, Han HJ, Will B et al. A distal single nucleotide polymorphism alters long-range regulation of the PU.1 gene in acute myeloid leukemia. J Clin Invest 2007; 117: 2611–2620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bejar R, Levine R, Ebert BL . Unraveling the molecular pathophysiology of myelodysplastic syndromes. J Clin Oncol 2011; 29: 504–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Celton M, Forest A, Gosse G, Lemieux S, Hebert J, Sauvageau G et al. Epigenetic regulation of GATA2 and its impact on normal karyotype acute myeloid leukemia. Leukemia 2014; 28: 1617–1626.

    Article  CAS  PubMed  Google Scholar 

  9. van Riel B, Rosenbauer F . Epigenetic control of hematopoiesis: the PU.1 chromatin connection. Biol Chem 2014; 395: 1265–1274.

    Article  CAS  PubMed  Google Scholar 

  10. Rosenbauer F, Wagner K, Kutok JL, Iwasaki H, Le Beau MM, Okuno Y et al. Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nat Genet 2004; 36: 624–630.

    Article  CAS  PubMed  Google Scholar 

  11. Kuo MC, Liang DC, Huang CF, Shih YS, Wu JH, Lin TL et al. RUNX1 mutations are frequent in chronic myelomonocytic leukemia and mutations at the C-terminal region might predict acute myeloid leukemia transformation. Leukemia 2009; 23: 1426–1431.

    Article  CAS  PubMed  Google Scholar 

  12. Wouters BJ, Lowenberg B, Erpelinck-Verschueren CA, van Putten WL, Valk PJ, Delwel R . Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome. Blood 2009; 113: 3088–3091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lessard J, Sauvageau G . Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 2003; 423: 255–260.

    Article  CAS  PubMed  Google Scholar 

  14. Bullinger L, Dohner K, Bair E, Frohling S, Schlenk RF, Tibshirani R et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med 2004; 350: 1605–1616.

    Article  CAS  PubMed  Google Scholar 

  15. Heyd F, Chen R, Afshar K, Saba I, Lazure C, Fiolka K et al. The p150 subunit of the histone chaperone Caf-1 interacts with the transcriptional repressor Gfi1. Biochim Biophys Acta 2011; 1809: 255–261.

    Article  CAS  PubMed  Google Scholar 

  16. Montoya-Durango DE, Velu CS, Kazanjian A, Rojas ME, Jay CM, Longmore GD et al. Ajuba functions as a histone deacetylase-dependent co-repressor for autoregulation of the growth factor-independent-1 transcription factor. J Biol Chem 2008; 283: 32056–32065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McGhee L, Bryan J, Elliott L, Grimes HL, Kazanjian A, Davis JN et al. Gfi-1 attaches to the nuclear matrix, associates with ETO (MTG8) and histone deacetylase proteins, and represses transcription using a TSA-sensitive mechanism. J Cell Biochem 2003; 89: 1005–1018.

    Article  CAS  PubMed  Google Scholar 

  18. Bell DW, Taguchi T, Jenkins NA, Gilbert DJ, Copeland NG, Gilks CB et al. Chromosomal localization of a gene, GF1, encoding a novel zinc finger protein reveals a new syntenic region between man and rodents. Cytogenet Cell Genet 1995; 70: 263–267.

    Article  CAS  PubMed  Google Scholar 

  19. Phelan JD, Saba I, Zeng H, Kosan C, Messer MS, Olsson HA et al. Growth factor independent-1 maintains Notch1-dependent transcriptional programming of lymphoid precursors. PLoS Genet 2013; 9: e1003713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Karsunky H, Zeng H, Schmidt T, Zevnik B, Kluge R, Schmid KW et al. Inflammatory reactions and severe neutropenia in mice lacking the transcriptional repressor Gfi1. Nat Genet 2002; 30: 295–300.

    Article  PubMed  Google Scholar 

  21. Person RE, Li FQ, Duan Z, Benson KF, Wechsler J, Papadaki HA et al. Mutations in proto-oncogene GFI1 cause human neutropenia and target ELA2. Nat Genet 2003; 34: 308–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zeng H, Yucel R, Kosan C, Klein-Hitpass L, Moroy T . Transcription factor Gfi1 regulates self-renewal and engraftment of hematopoietic stem cells. EMBO J 2004; 23: 4116–4125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hock H, Hamblen MJ, Rooke HM, Schindler JW, Saleque S, Fujiwara Y et al. Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells. Nature 2004; 431: 1002–1007.

    Article  CAS  PubMed  Google Scholar 

  24. Marteijn JA, van der Meer LT, van Emst L, van Reijmersdal S, Wissink W, de Witte T et al. Gfi1 ubiquitination and proteasomal degradation is inhibited by the ubiquitin ligase Triad1. Blood 2007; 110: 3128–3135.

    Article  CAS  PubMed  Google Scholar 

  25. Zhu J, Jankovic D, Grinberg A, Guo L, Paul WE . Gfi-1 plays an important role in IL-2-mediated Th2 cell expansion. Proc Natl Acad Sci USA 2006; 103: 18214–18219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rathinam C, Klein C . Transcriptional repressor Gfi1 integrates cytokine-receptor signals controlling B-cell differentiation. PLoS One 2007; 2: e306.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pargmann D, Yucel R, Kosan C, Saba I, Klein-Hitpass L, Schimmer S et al. Differential impact of the transcriptional repressor Gfi1 on mature CD4+ and CD8+ T lymphocyte function. Eur J Immunol 2007; 37: 3551–3563.

    Article  CAS  PubMed  Google Scholar 

  28. Zarebski A, Velu CS, Baktula AM, Bourdeau T, Horman SR, Basu S et al. Mutations in growth factor independent-1 associated with human neutropenia block murine granulopoiesis through colony stimulating factor-1. Immunity 2008; 28: 370–380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Horman SR, Velu CS, Chaubey A, Bourdeau T, Zhu J, Paul WE et al. Gfi1 integrates progenitor versus granulocytic transcriptional programming. Blood 2009; 113: 5466–5475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Spooner CJ, Cheng JX, Pujadas E, Laslo P, Singh H . A recurrent network involving the transcription factors PU.1 and Gfi1 orchestrates innate and adaptive immune cell fates. Immunity 2009; 31: 576–586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hock H, Orkin SH . Zinc-finger transcription factor Gfi-1: versatile regulator of lymphocytes, neutrophils and hematopoietic stem cells. Curr Opin Hematol 2006; 13: 1–6.

    Article  CAS  PubMed  Google Scholar 

  32. Phelan JD, Shroyer NF, Cook T, Gebelein B, Grimes HL . Gfi1-cells and circuits: unraveling transcriptional networks of development and disease. Curr Opin Hematol 2010; 17: 300–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. van der Meer LT, Jansen JH, van der Reijden BA . Gfi1 and Gfi1b: key regulators of hematopoiesis. Leukemia 2010; 24: 1843–1834.

    Article  Google Scholar 

  34. Karsunky H, Mende I, Schmidt T, Moroy T . High levels of the onco-protein Gfi-1 accelerate T-cell proliferation and inhibit activation induced T-cell death in Jurkat T-cells. Oncogene 2002; 21: 1571–1579.

    Article  CAS  PubMed  Google Scholar 

  35. Hock H, Hamblen MJ, Rooke HM, Traver D, Bronson RT, Cameron S et al. Intrinsic requirement for zinc finger transcription factor Gfi-1 in neutrophil differentiation. Immunity 2003; 18: 109–120.

    Article  CAS  PubMed  Google Scholar 

  36. Khandanpour C, Krongold J, Schutte J, Bouwman F, Vassen L, Gaudreau MC et al. The human GFI136N variant induces epigenetic changes at the Hoxa9 locus and accelerates K-RAS driven myeloproliferative disorder in mice. Blood 2012; 120: 4006–4017.

    Article  CAS  PubMed  Google Scholar 

  37. Mori N, Morosetti R, Mizoguchi H, Koeffler HP . Progression of myelodysplastic syndrome: allelic loss on chromosomal arm 1p. Br J Haematol 2003; 122: 226–230.

    Article  PubMed  Google Scholar 

  38. Huh HJ, Chae SL, Lee M, Hong KS, Mun YC, Seong CM et al. CD34, RAB20, PU.1 and GFI1 mRNA expression in myelodysplastic syndrome. Int J Lab Hematol 2009; 31: 344–351.

    Article  CAS  PubMed  Google Scholar 

  39. Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, Barjesteh van Waalwijk van Doorn-Khosrovani S, Boer JM et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 2004; 350: 1617–1628.

    Article  CAS  PubMed  Google Scholar 

  40. Verhaak RG, Wouters BJ, Erpelinck CA, Abbas S, Beverloo HB, Lugthart S et al. Prediction of molecular subtypes in acute myeloid leukemia based on gene expression profiling. Haematologica 2009; 94: 131–134.

    Article  PubMed  Google Scholar 

  41. Yucel R, Kosan C, Heyd F, Moroy T . Gfi1:green fluorescent protein knock-in mutant reveals differential expression and autoregulation of the growth factor independence 1 (Gfi1) gene during lymphocyte development. J Biol Chem 2004; 279: 40906–40917.

    Article  PubMed  Google Scholar 

  42. Khandanpour C, Phelan JD, Vassen L, Schutte J, Chen R, Horman SR et al. Growth factor independence 1 antagonizes a p53-induced DNA damage response pathway in lymphoblastic leukemia. Cancer Cell 2013; 23: 200–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wilson NK, Foster SD, Wang X, Knezevic K, Schutte J, Kaimakis P et al. Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators. Cell Stem Cell 2010; 7: 532–544.

    Article  CAS  PubMed  Google Scholar 

  44. Eppert K, Takenaka K, Lechman ER, Waldron L, Nilsson B, van Galen P et al. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med 2011; 17: 1086–1093.

    Article  CAS  PubMed  Google Scholar 

  45. Holzenberger M, Lenzner C, Leneuve P, Zaoui R, Hamard G, Vaulont S et al. Cre-mediated germline mosaicism: a method allowing rapid generation of several alleles of a target gene. Nucleic Acids Res 2000; 28: E92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Goardon N, Marchi E, Atzberger A, Quek L, Schuh A, Soneji S et al. Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell 2011; 19: 138–152.

    Article  CAS  PubMed  Google Scholar 

  47. Ye M, Zhang H, Yang H, Koche R, Staber PB, Cusan M et al. Hematopoietic differentiation is required for initiation of acute myeloid leukemia. Cell Stem Cell 2015; 17: 611–623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 2006; 442: 818–822.

    Article  CAS  PubMed  Google Scholar 

  49. Chen W, Kumar AR, Hudson WA, Li Q, Wu B, Staggs RA et al. Malignant transformation initiated by Mll-AF9: gene dosage and critical target cells. Cancer Cell 2008; 13: 432–440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lin YW, Slape C, Zhang Z, Aplan PD . NUP98-HOXD13 transgenic mice develop a highly penetrant, severe myelodysplastic syndrome that progresses to acute leukemia. Blood 2005; 106: 287–295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Saleque S, Kim J, Rooke HM, Orkin SH . Epigenetic regulation of hematopoietic differentiation by Gfi-1 and Gfi-1b is mediated by the cofactors CoREST and LSD1. Mol Cell 2007; 27: 562–572.

    Article  CAS  PubMed  Google Scholar 

  52. Lane AA, Chabner BA . Histone deacetylase inhibitors in cancer therapy. J Clin Oncol 2009; 27: 5459–5468.

    Article  CAS  PubMed  Google Scholar 

  53. Silva G, Cardoso BA, Belo H, Almeida AM . Vorinostat induces apoptosis and differentiation in myeloid malignancies: genetic and molecular mechanisms. PLoS One 2013; 8: e53766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Arif M, Vedamurthy BM, Choudhari R, Ostwal YB, Mantelingu K, Kodaganur GS et al. Nitric oxide-mediated histone hyperacetylation in oral cancer: target for a water-soluble HAT inhibitor, CTK7A. Chem Biol 2010; 17: 903–913.

    Article  CAS  PubMed  Google Scholar 

  55. Garnett MJ, Edelman EJ, Heidorn SJ, Greenman CD, Dastur A, Lau KW et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 2012; 483: 570–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kok CH, Watkins DB, Leclercq T, D’Andrea RJ, Hughes TP, White DL . Low GFI1 expression in white blood cells of CP-CML patients at diagnosis is strongly associated with subsequent blastic transformation. Leukemia 2013; 27: 1427–1430.

    Article  CAS  PubMed  Google Scholar 

  57. Bachas C, Schuurhuis GJ, Zwaan CM, van den Heuvel-Eibrink MM, den Boer ML, de Bont ES et al. Gene expression profiles associated with pediatric relapsed AML. PLoS One 2015; 10: e0121730.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Sanda T, Li X, Gutierrez A, Ahn Y, Neuberg DS, O’Neil J et al. Interconnecting molecular pathways in the pathogenesis and drug sensitivity of T-cell acute lymphoblastic leukemia. Blood 2010; 115: 1735–1745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fiolka K, Hertzano R, Vassen L, Zeng H, Hermesh O, Avraham KB et al. Gfi1 and Gfi1b act equivalently in haematopoiesis, but have distinct, non-overlapping functions in inner ear development. EMBO Rep 2006; 7: 326–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kirschbaum M, Gojo I, Goldberg SL, Bredeson C, Kujawski LA, Yang A et al. A phase 1 clinical trial of vorinostat in combination with decitabine in patients with acute myeloid leukaemia or myelodysplastic syndrome. Br J Haematol 2014; 167: 185–193.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all patients for agreeing to participate in the different studies. We thank Saskia Grunwald and Renata Köster for excellent technical assistance and the team of the animal facility of University Hospital Essen for genotyping, technical and administrative assistance during the whole project. We thank Joachim Göthert, Bob Löwenberg, Peter Valk and Lucio Castilla for sharing resources, mice, technical information and patient data. The MCSV-MLL-AF9-IRES-GFP construct was kindly provided by Jay Hess and Lee Grimes. Cyrus Khandanpour was supported by a Max Eder Grant from the Deutsche Krebshilfe, Germany. Tarik Möröy’s lab was supported by a grant from the Canadian Institute for Health Research (MOP – 111011) and by the Leukemia & Lymphoma Society (LLS) and holds a Tier1 Canada Research Chair.

Author contributions

CK, TM. Methodology: CK, TM. Investigation: CK, TM, JMH, LB, HM, AH, CV, LV, FR,TR, BG, AG, SvdCC, YSA-M, AT, SMH, JS, RFL, JF, KL, BP, LKH, MH, GE, CT, UD. Writing Original Draft: CK, JMH, TM, LB, CV, AH. Writing & Editing: CK, JMH, TR, TM. Funding Acquisition: CK, JM, TM, UD, JR. Resources: CK, JM, TM, UD, CT, GE, MH, CT, GE, UD, BG. Supervision: CK, JM, UD, TM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T Möröy or C Khandanpour.

Ethics declarations

Competing interests

Cyrus Khandanpour received travel reimbursement for attending scientific conferences from Amgen and Chugai. Jaroslaw Maciejewski received speaker honoraria from Celgene and Alexion. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hönes, J., Botezatu, L., Helness, A. et al. GFI1 as a novel prognostic and therapeutic factor for AML/MDS. Leukemia 30, 1237–1245 (2016). https://doi.org/10.1038/leu.2016.11

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.11

This article is cited by

Search

Quick links