Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncogenes, Fusion Genes and Tumor Suppressor Genes

RET fusion genes are associated with chronic myelomonocytic leukemia and enhance monocytic differentiation

Abstract

Myeloproliferative neoplasms are frequently associated with aberrant constitutive tyrosine kinase (TK) activity resulting from chimaeric fusion genes or point mutations such as BCR-ABL1 or JAK2 V617F. We report here the cloning and functional characterization of two novel fusion genes BCR-RET and FGFR1OP-RET in chronic myelomonocytic leukemia (CMML) cases generated by two balanced translocations t(10;22)(q11;q11) and t(6;10)(q27;q11), respectively. The two RET fusion genes leading to the aberrant activation of RET, are able to transform hematopoietic cells and skew the hematopoietic differentiation program towards the monocytic/macrophage lineage. The RET fusion genes seem to constitutively mimic the same signaling pathway as RAS mutations frequently involved in CMML. One patient was treated with Sorafenib, a specific inhibitor of the RET TK function, and demonstrated cytological and clinical remissions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A et al The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 2009; 114: 937–951.

    Article  CAS  Google Scholar 

  2. Tefferi A, Vainchenker W . Myeloproliferative neoplasms: molecular pathophysiology, essential clinical understanding, and treatment strategies. J Clin Oncol 2011; 29: 573–582.

    Article  CAS  Google Scholar 

  3. Takahashi M, Ritz J, Cooper GM . Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell 1985; 42: 581–588.

    Article  CAS  Google Scholar 

  4. Plaza-Menacho I, Burzynski GM, de Groot JW, Eggen BJ, Hofstra RM . Current concepts in RET-related genetics, signaling and therapeutics. Trends Genet 2006; 22: 627–636.

    Article  CAS  Google Scholar 

  5. Santoro M, Melillo RM, Fusco A . RET/PTC activation in papillary thyroid carcinoma: European Journal of Endocrinology Prize Lecture. Eur J Endocrinol 2006; 155: 645–653.

    Article  CAS  Google Scholar 

  6. Kohno T, Ichikawa H, Totoki Y, Yasuda K, Hiramoto M, Nammo T et al KIF5B-RET fusions in lung adenocarcinoma. Nat Med 2012; 18: 375–377.

    Article  CAS  Google Scholar 

  7. Lipson D, Capelletti M, Yelensky R, Otto G, Parker A, Jarosz M et al Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med 2012; 18: 382–384.

    Article  CAS  Google Scholar 

  8. Marsh DJ, Mulligan LM, Eng C . RET proto-oncogene mutations in multiple endocrine neoplasia type 2 and medullary thyroid carcinoma. Horm Res 1997; 47: 168–178.

    Article  CAS  Google Scholar 

  9. Skinner MA, Safford SD, Reeves JG, Jackson ME, Freemerman AJ . Renal aplasia in humans is associated with RET mutations. Am J Hum Genet 2008; 82: 344–351.

    Article  CAS  Google Scholar 

  10. International Human Genome Sequencing Consortium Finishing the euchromatic sequence of the human genome. Nature 2004; 431: 931–945.

    Article  Google Scholar 

  11. Beillard E, Pallisgaard N, van der Velden VH, Bi W, Dee R, van der Schoot E et al Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using 'real-time' quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR) - a Europe against cancer program. Leukemia 2003; 17: 2474–2486.

    Article  CAS  Google Scholar 

  12. Quelen C, Lippert E, Struski S, Demur C, Soler G, Prade N et al Identification of a transforming MYB-GATA1 fusion gene in acute basophilic leukemia: a new entity in male infants. Blood 2011; 117: 5719–5722.

    Article  CAS  Google Scholar 

  13. Lavau C, Szilvassy SJ, Slany R, Cleary ML . Immortalization and leukemic transformation of a myelomonocytic precursor by retrovirally transduced HRX-ENL. EMBO J 1997; 16: 4226–4237.

    Article  CAS  Google Scholar 

  14. Popovici C, Zhang B, Gregoire MJ, Jonveaux P, Lafage-Pochitaloff M, Birnbaum D et al The t(6;8)(q27;p11) translocation in a stem cell myeloproliferative disorder fuses a novel gene, FOP, to fibroblast growth factor receptor 1. Blood 1999; 93: 1381–1389.

    CAS  PubMed  Google Scholar 

  15. Carlomagno F, Anaganti S, Guida T, Salvatore G, Troncone G, Wilhelm SM et al BAY 43-9006 inhibition of oncogenic RET mutants. J Natl Cancer Inst 2006; 98: 326–334.

    Article  CAS  Google Scholar 

  16. Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT et al A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 2008; 26: 127–132.

    Article  CAS  Google Scholar 

  17. Hantschel O, Wiesner S, Guttler T, Mackereth CD, Rix LL, Mikes Z et al Structural basis for the cytoskeletal association of Bcr-Abl/c-Abl. Mol Cell 2005; 19: 461–473.

    Article  CAS  Google Scholar 

  18. Huntly BJ, Shigematsu H, Deguchi K, Lee BH, Mizuno S, Duclos N et al MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 2004; 6: 587–596.

    Article  CAS  Google Scholar 

  19. Cox MC, Panetta P, Venditti A, Abruzzese E, Del Poeta G, Cantonetti M et al New reciprocal translocation t(6;10) (q27;q11) associated with idiopathic myelofibrosis and eosinophilia. Leuk Res 2001; 25: 349–351.

    Article  CAS  Google Scholar 

  20. Ackland SP, Westbrook CA, Diaz MO, Le Beau MM, Rowley JD . Evidence favoring lineage fidelity in acute nonlymphocytic leukemia: absence of immunoglobulin gene rearrangements in FAB types M4 and M5. Blood 1987; 69: 87–91.

    CAS  PubMed  Google Scholar 

  21. Cuneo A, Ferrant A, Michaux JL, Boogaerts M, Demuynck H, Bosly A et al Clinical review on features and cytogenetic patterns in adult acute myeloid leukemia with lymphoid markers. Leuk Lymphoma 1993; 9: 285–291.

    Article  CAS  Google Scholar 

  22. Visser M, Hofstra RM, Stulp RP, Wu Y, Buys CH, Willemze R et al Absence of mutations in the RET gene in acute myeloid leukemia. Ann Hematol 1997; 75: 87–90.

    Article  CAS  Google Scholar 

  23. Melillo RM, Cirafici AM, De Falco V, Bellantoni M, Chiappetta G, Fusco A et al The oncogenic activity of RET point mutants for follicular thyroid cells may account for the occurrence of papillary thyroid carcinoma in patients affected by familial medullary thyroid carcinoma. Am J Pathol 2004; 165: 511–521.

    Article  CAS  Google Scholar 

  24. Tauchi T, Miyazawa K, Feng GS, Broxmeyer HE, Toyama K . A coiled-coil tetramerization domain of BCR-ABL is essential for the interactions of SH2-containing signal transduction molecules. J Biol Chem 1997; 272: 1389–1394.

    Article  CAS  Google Scholar 

  25. Gattei V, Celetti A, Cerrato A, Degan M, De Iuliis A, Rossi FM et al Expression of the RET receptor tyrosine kinase and GDNFR-alpha in normal and leukemic human hematopoietic cells and stromal cells of the bone marrow microenvironment. Blood 1997; 89: 2925–2937.

    CAS  PubMed  Google Scholar 

  26. van Weering DH, Medema JP, van Puijenbroek A, Burgering BM, Baas PD, Bos JL . Ret receptor tyrosine kinase activates extracellular signal-regulated kinase 2 in SK-N-MC cells. Oncogene 1995; 11: 2207–2214.

    CAS  PubMed  Google Scholar 

  27. Chiariello M, Visconti R, Carlomagno F, Melillo RM, Bucci C, de Franciscis V et al Signalling of the Ret receptor tyrosine kinase through the c-Jun NH2-terminal protein kinases (JNKS): evidence for a divergence of the ERKs and JNKs pathways induced by Ret. Oncogene 1998; 16: 2435–2445.

    Article  CAS  Google Scholar 

  28. Hayashi H, Ichihara M, Iwashita T, Murakami H, Shimono Y, Kawai K et al Characterization of intracellular signals via tyrosine 1062 in RET activated by glial cell line-derived neurotrophic factor. Oncogene 2000; 19: 4469–4475.

    Article  CAS  Google Scholar 

  29. Hwang JH, Kim DW, Suh JM, Kim H, Song JH, Hwang ES et al Activation of signal transducer and activator of transcription 3 by oncogenic RET/PTC (rearranged in transformation/papillary thyroid carcinoma) tyrosine kinase: roles in specific gene regulation and cellular transformation. Mol Endocrinol 2003; 17: 1155–1166.

    Article  CAS  Google Scholar 

  30. Lam ET, Ringel MD, Kloos RT, Prior TW, Knopp MV, Liang J et al Phase II clinical trial of sorafenib in metastatic medullary thyroid cancer. J Clin Oncol 2010; 28: 2323–2330.

    Article  CAS  Google Scholar 

  31. Kohlmann A, Grossmann V, Klein HU, Schindela S, Weiss T, Kazak B et al Next-generation sequencing technology reveals a characteristic pattern of molecular mutations in 72.8% of chronic myelomonocytic leukemia by detecting frequent alterations in TET2, CBL, RAS, and RUNX1. J Clin Oncol 2010; 28: 3858–3865.

    Article  CAS  Google Scholar 

  32. Hibi S, Lohler J, Friel J, Stocking C, Ostertag W . Induction of monocytic differentiation and tumorigenicity by v-Ha-ras in differentiation arrested hematopoietic cells. Blood 1993; 81: 1841–1848.

    CAS  PubMed  Google Scholar 

  33. Dorrell C, Takenaka K, Minden MD, Hawley RG, Dick JE . Hematopoietic cell fate and the initiation of leukemic properties in primitive primary human cells are influenced by Ras activity and farnesyltransferase inhibition. Mol Cell Biol 2004; 24: 6993–7002.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the help provided by Association Laurette-Fugain and Association de Recherche des Maladies du Sang de l'Enfant (ARMHE). CB was supported by grants from Institut National du Cancer (INCa) and Association pour la Recherche contre le Cancer (ARC). ED, CB and CC were supported by the CITTIL (Cooperacion de investigacion transpirenaica en la terapia innovadora de la leucemia), a POCTEFA grant. We thank Françoise Pflumio, Frédéric Pont and Jean-Jacques Fournié for helpful discussions. Fresh and thawed samples from AML and CMML patients have been obtained after informed consent and stored at the HIMIP collection. According to the French law, HIMIP collection has been declared to the Ministry of Higher Education and Research (DC 2008-307 collection 1) and obtained a transfer agreement (AC 2008-129) after approbation by the ‘Comité de Protection des Personnes Sud-Ouest et Outremer II’ (ethical committee). Clinical and biological annotations of the samples have been declared to the CNIL (Comité National Informatique et Libertés ie Data processing and Liberties National Committee).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Delabesse.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballerini, P., Struski, S., Cresson, C. et al. RET fusion genes are associated with chronic myelomonocytic leukemia and enhance monocytic differentiation. Leukemia 26, 2384–2389 (2012). https://doi.org/10.1038/leu.2012.109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.109

Keywords

This article is cited by

Search

Quick links