Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A novel subclonal rearrangement of the STRN3::PDGFRB gene in de novo acute myeloid leukemia with NPM1 mutation and its leukemogenic effects

Abstract

Chromosome translocations in the 5q31-33 region are associated with a range of hematologic malignancies, some of which involve the platelet-derived growth factor receptor beta (PDGFRB) gene. We report a case of acute myeloid leukemia (AML) with a mutation in the NPM1 gene (NPM1-mut AML) and a subclonal gene rearrangement involving the PDGFRB gene. We identified a novel fusion gene, STRN3::PDGFRB, resulting from t(5;14) (q32;q12) chromosomal rearrangement. Sequential FISH confirmed that ~15% of leukemic cells carried the PDGFRB gene rearrangement, which suggests that STRN3::PDGFRB is a previously unreported fusion gene in a subclone. Reverse transcription PCR (RT-PCR) and Sanger sequencing confirmed that the fusion gene consisted of STRN3 exon 7 fused to PDGFRB exon 11, resulting in a chimeric protein containing the coiled-coil domain of striatin-3 and the transmembrane and intracellular tyrosine kinase domains of the PDGFRB. The new protein exhibited distinct cytoplasmic localization and had leukemogenic effects, as demonstrated by its ability to transform Ba/F3 cells to growth factor independence and cause a fatal myelodysplastic/myeloproliferative neoplasm (MDS/MPN)-like disease in mice, which then transformant to T-cell lymphoblastic lymphoma in secondary recipients. Ba/F3 cells expressing STRN3::PDGFRB or ETV6::PDGFRB were sensitive to tyrosine kinase inhibitors (TKIs) and selinexor, but in vitro experiments showed that the combination of imatinib and selinexor had a marked synergistic effect, although only the imatinib alone group could prolong the survival of T-cell blast transformation recipient mice. Our findings demonstrate the leukemogenic effects of the novel fusion gene and provide insights into the clone evolution of AML, which can be influenced by therapy selection. Furthermore, our results provide insight into the potential therapeutic options for patients with this type of mutation, as well as the need for careful consideration of treatment selection to prevent undesirable side effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Laboratory data of the patient.
Fig. 2: The translocations involving STRN3 and PDGFRB breakpoints.
Fig. 3: Clonal architecture of this patient.
Fig. 4: Oncogenic properties of STRN3::PDGFRB.
Fig. 5: In vivo transforming activity of STRN3::PDGFRB.
Fig. 6: The secondary recipients developed T lymphoblastic lymphoma.
Fig. 7: Effects of TKIs or XOP1 inhibitors in vitro and in vivo.

Similar content being viewed by others

Data availability

The main data supporting the results of this study are available within the article and supplementary materials.

References

  1. Mitelman F, Johansson B, Mertens F. Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer. http://cgap.nci.nih.gov/Chromosomes/Mitelman. 2022.

  2. Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia. 2022;36:1703–19.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Arber DA, Orazi A, Hasserjian RP, Borowitz MJ, Calvo KR, Kvasnicka H-M, et al. International consensus classification of myeloid neoplasms and acute leukemias: integrating morphologic, clinical, and genomic data. Blood. 2022;140:1200–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Roberts KG, Morin RD, Zhang J, Hirst M, Zhao Y, Su X, et al. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell. 2012;22:153–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Roberts KG, Li Y, Payne-Turner D, Harvey RC, Yang YL, Pei D, et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N. Engl J Med. 2014;371:1005–15.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tang Y, Fang G, Guo F, Zhang H, Chen X, An L, et al. Selective inhibition of STRN3-containing PP2A phosphatase restores hippo tumor-suppressor activity in gastric cancer. Cancer Cell. 2020;38:115–128.e9.

    Article  CAS  PubMed  Google Scholar 

  7. Miles LA, Bowman RL, Merlinsky TR, Csete IS, Ooi AT, Durruthy-Durruthy R, et al. Single-cell mutation analysis of clonal evolution in myeloid malignancies. Nature. 2020;587:477–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bezerra MF, Lima AS, Piqué-Borràs M-R, Silveira DR, Coelho-Silva JL, Pereira-Martins DA, et al. Co-occurrence of DNMT3A, NPM1, FLT3 mutations identifies a subset of acute myeloid leukemia with adverse prognosis. Blood. 2020;135:870–5.

    Article  CAS  PubMed  Google Scholar 

  9. Verhaak RGW, Goudswaard CS, van Putten W, Bijl MA, Sanders MA, Hugens W, et al. Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood. 2005;106:3747–54.

    Article  CAS  PubMed  Google Scholar 

  10. Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L, et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N. Engl J Med. 2005;352:254–66.

    Article  CAS  PubMed  Google Scholar 

  11. Svaldi M, Lanthaler A, Venturi R, Coser P, Mitterer M. Simultaneous occurrence of bcr-abl and inv16 in a case of M1 acute myeloid leukemia. Leukemia. 2001;15:695.

    Article  CAS  PubMed  Google Scholar 

  12. Bacher U, Haferlach T, Alpermann T, Zenger M, Hochhaus A, Beelen DW, et al. Subclones with the t(9;22)/BCR-ABL1 rearrangement occur in AML and seem to cooperate with distinct genetic alterations. Br J Haematol. 2011;152:713–20.

    Article  PubMed  Google Scholar 

  13. Suzuki T, Kiyoi H, Ozeki K, Tomita A, Yamaji S, Suzuki R, et al. Clinical characteristics and prognostic implications of NPM1 mutations in acute myeloid leukemia. Blood. 2005;106:2854–61.

    Article  CAS  PubMed  Google Scholar 

  14. McGowan-Jordan J, Simons A, Schmid M (eds.). ISCN 2016: An International System for Human Cytogenomic Nomenclature (2016). S. Karger AG, Switzerland, 2016.

  15. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol. 2013;31:213–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Saunders CT, Wong WSW, Swamy S, Becq J, Murray LJ, Cheetham RK. Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs. Bioinformatics. 2012;28:1811–7.

    Article  CAS  PubMed  Google Scholar 

  18. Chen X, Schulz-Trieglaff O, Shaw R, Barnes B, Schlesinger F, Källberg M, et al. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics. 2016;32:1220–2.

    Article  CAS  PubMed  Google Scholar 

  19. Boeva V, Popova T, Bleakley K, Chiche P, Cappo J, Schleiermacher G, et al. Control-FREEC: a tool for assessing copy number and allelic content using next-generation sequencing data. Bioinformatics. 2012;28:423–5.

    Article  CAS  PubMed  Google Scholar 

  20. Gale RE, Green C, Allen C, Mead AJ, Burnett AK, Hills RK, et al. The impact of FLT3 internal tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia. Blood. 2008;111:2776–84.

    Article  CAS  PubMed  Google Scholar 

  21. Miller CA, White BS, Dees ND, Griffith M, Welch JS, Griffith OL, et al. SciClone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution. PLoS Comput Biol. 2014;10:e1003665.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nelson MD, Fitch DHA. Overlap extension PCR: an efficient method for transgene construction. Methods Mol Biol. 2011;772:459–70.

    Article  CAS  PubMed  Google Scholar 

  23. Ivey A, Hills RK, Simpson MA, Jovanovic JV, Gilkes A, Grech A, et al. Assessment of minimal residual disease in standard-risk AML. N Engl J Med. 2016;374:422–33.

    Article  CAS  PubMed  Google Scholar 

  24. Ianevski A, Giri AK, Aittokallio T. SynergyFinder 2.0: visual analytics of multi-drug combination synergies. Nucleic Acids Res. 2020;48:W488–W493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tomasson MH, Sternberg DW, Williams IR, Carroll M, Cain D, Aster JC, et al. Fatal myeloproliferation, induced in mice by TEL/PDGFβR expression, depends on PDGFβR tyrosines 579/581. J Clin Invest. 2000;105:423–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. He Y, Wertheim JA, Xu L, Miller JP, Karnell FG, Choi JK, et al. The coiled-coil domain Tyr177 of bcr are required to induce a murine chronic myelogenous leukemia-like disease by bcr/abl. Blood. 2002;99:12.

  27. Tomasson MH, Williams IR, Hasserjian R, Udomsakdi C, McGrath SM, Schwaller J, et al. TEL/PDGFbetaR induces hematologic malignancies in mice that respond to a specific tyrosine kinase inhibitor. Blood. 1999;93:1707–14.

    Article  CAS  PubMed  Google Scholar 

  28. Grisolano JL, O’Neal J, Cain J, Tomasson MH. An activated receptor tyrosine kinase, TEL/PDGFβR, cooperates with AML1/ETO to induce acute myeloid leukemia in mice. Proc Natl Acad Sci USA. 2003;100:9506–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Swanton C. Intratumor heterogeneity: evolution through space and time. Cancer Res. 2012;72:4875–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dun KA, Vanhaeften R, Batt TJ, Riley LA, Diano G, Williamson J. BCR-ABL1 gene rearrangement as a subclonal change in ETV6-RUNX1–positive B-cell acute lymphoblastic leukemia. Blood Adv. 2016;1:132–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Neuendorff NR, Hemmati P, Arnold R, Ihlow J, Dörken B, Müller-Tidow C, et al. BCR-ABL+ acute myeloid leukemia: are we always dealing with a high-risk disease? Blood Adv. 2018;2:1409–11.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Catalano G, Niscola P, Banella C, Diverio D, Trawinska MM, Fratoni S, et al. NPM1 mutated, BCR-ABL1 positive myeloid neoplasms: review of the kiterature. Mediterr J Hematol Infect Dis. 2020;12:e2020083.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Vitale C, Lu X, Abderrahman B, Takahashi K, Ravandi F, Jabbour E. t(9;22) as secondary alteration in core-binding factor de novo acute myeloid leukemia. Am J Hematol. 2015;90:E211–212.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sethapati VR, Jabr R, Shune L, El Atrouni W, Gonzales PR, Cui W, et al. De novo acute myeloid leukemia with combined CBFB-MYH11 and BCR-ABL1 gene rearrangements: a case report and review of literature. Case Rep. Hematol. 2020;2020:8822670.

    PubMed  PubMed Central  Google Scholar 

  35. Neuendorff NR, Burmeister T, Dörken B, Westermann J. BCR-ABL-positive acute myeloid leukemia: a new entity? Analysis of clinical and molecular features. Ann Hematol. 2016;95:1211–21.

    Article  CAS  PubMed  Google Scholar 

  36. Neuendorff NR, Schwarz M, Hemmati P, Türkmen S, Bommer C, Burmeister T, et al. BCR-ABL1(+) acute myeloid leukemia: clonal selection of a BCR-ABL1(-) subclone as a cause of refractory disease with nilotinib treatment. Acta Haematol. 2015;133:237–41.

    Article  CAS  PubMed  Google Scholar 

  37. Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev. 2008;22:1276–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Arefi M, Garcia JL, Penarrubia MJ, Queizan JA, Hermosin L, Lopez-Corral L, et al. Incidence and clinical characteristics of myeloproliferative neoplasms displaying a PDGFRB rearrangement. Eur J Haematol. 2012;89:37–41.

    Article  CAS  PubMed  Google Scholar 

  39. Pozdnyakova O, Orazi A, Kelemen K, King R, Reichard KK, Craig FE, et al. Myeloid/lymphoid neoplasms associated with eosinophilia and rearrangements of PDGFRA, PDGFRB, or FGFR1 or with PCM1-JAK2. Am J Clin Pathol. 2021;155:160–78.

    Article  CAS  PubMed  Google Scholar 

  40. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405.

    Article  CAS  PubMed  Google Scholar 

  41. Pear WS, Miller JP, Xu L, Pui JC, Soffer B, Quackenbush RC, et al. Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood. 1998;92:3780–92.

    Article  CAS  PubMed  Google Scholar 

  42. Spangrude GJ, Brooks DM, Tumas DB. Long-term repopulation of irradiated mice with limiting numbers of purified hematopoietic stem cells: in vivo expansion of stem cell phenotype but not function. Blood. 1995;85:1006–16.

    Article  CAS  PubMed  Google Scholar 

  43. Metzgeroth G, Schwaab J, Gosenca D, Fabarius A, Haferlach C, Hochhaus A, et al. Long-term follow-up of treatment with imatinib in eosinophilia-associated myeloid/lymphoid neoplasms with PDGFR rearrangements in blast phase. Leukemia. 2013;27:2254–6.

    Article  CAS  PubMed  Google Scholar 

  44. Jawhar M, Naumann N, Schwaab J, Baurmann H, Casper J, Dang T-A, et al. Imatinib in myeloid/lymphoid neoplasms with eosinophilia and rearrangement of PDGFRB in chronic or blast phase. Ann Hematol. 2017;96:1463–70.

    Article  CAS  PubMed  Google Scholar 

  45. Walker CJ, Oaks JJ, Santhanam R, Neviani P, Harb JG, Ferenchak G, et al. Preclinical and clinical efficacy of XPO1/CRM1 inhibition by the karyopherin inhibitor KPT-330 in Ph+ leukemias. Blood. 2013;122:3034–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grant 82270190 from the National Natural Science Foundation of China (NSFC); grant 2019YFC0840605 from the National Key Research and Development Program of China.

Author information

Authors and Affiliations

Authors

Contributions

ZW: Conceptualization, resources, data curation, formal analysis, validation, investigation, and writing-original draft. TL: Data curation, formal analysis, validation, and investigation. WL: Data curation and formal analysis. LW: Validation and investigation. XG: Data curation, validation, and investigation. SQ: Data curation and formal analysis. YS: Resources and investigation. ZT: Data curation and formal analysis. MW: Resources, formal analysis, and investigation. JW: Resources and supervision. YM: Conceptualization, supervision, funding acquisition, writing—review, and editing. SW: Resources and supervision.

Corresponding authors

Correspondence to Yingchang Mi or Shuning Wei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Liu, T., Liu, W. et al. A novel subclonal rearrangement of the STRN3::PDGFRB gene in de novo acute myeloid leukemia with NPM1 mutation and its leukemogenic effects. Cancer Gene Ther 30, 1471–1484 (2023). https://doi.org/10.1038/s41417-023-00651-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-023-00651-w

Search

Quick links