Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Plasmodium genetic loci linked to host cytokine and chemokine responses

Abstract

Both host and parasite factors contribute to disease severity of malaria infection; however, the molecular mechanisms responsible for the disease and the host–parasite interactions involved remain largely unresolved. To investigate the effects of parasite factors on host immune responses and pathogenesis, we measured levels of plasma cytokines/chemokines (CCs) and growth rates in mice infected with two Plasmodium yoelii strains having different virulence phenotypes and in progeny from a genetic cross of the two parasites. Quantitative trait loci (QTL) analysis linked levels of many CCs, particularly IL-1β, IP-10, IFN-γ, MCP-1 and MIG, and early parasite growth rate to loci on multiple parasite chromosomes, including chromosomes 7, 9, 10, 12 and 13. Comparison of the genome sequences spanning the mapped loci revealed various candidate genes. The loci on chromosomes 7 and 13 had significant (P<0.005) additive effects on IL-1β, IL-5 and IP-10 responses, and the chromosome 9 and 12 loci had significant (P=0.017) interaction. Infection of knockout mice showed critical roles of MCP-1 and IL-10 in parasitemia control and host mortality. These results provide important information for a better understanding of malaria pathogenesis and can be used to examine the role of these factors in human malaria infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. WHOWorldmalaria report 2012 http://www.who.int/malaria/publications/world_malaria_report_2012/en/index.html 2012.

  2. Conway DJ . Molecular epidemiology of malaria. Clin Microbiol Rev 2007; 20: 188–204.

    Article  CAS  Google Scholar 

  3. Miller LH, Baruch DI, Marsh K, Doumbo OK . The pathogenic basis of malaria. Nature 2002; 415: 673–679.

    Article  CAS  Google Scholar 

  4. Perkins DJ, Were T, Davenport GC, Kempaiah P, Hittner JB, Ong'echa JM . Severe malarial anemia: innate immunity and pathogenesis. Int J Biol Sci 2011; 7: 1427–1442.

    Article  CAS  Google Scholar 

  5. Schofield L . Intravascular infiltrates and organ-specific inflammation in malaria pathogenesis. Immunol Cell Biol 2007; 85: 130–137.

    Article  CAS  Google Scholar 

  6. Stevenson MM, Lyanga JJ, Skamene E . Murine malaria: genetic control of resistance to Plasmodium chabaudi. Infect Immun 1982; 38: 80–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Erdman LK, Finney CA, Liles WC, Kain KC . Inflammatory pathways in malaria infection: TLRs share the stage with other components of innate immunity. Mol Biochem Parasitol 2008; 162: 105–111.

    Article  CAS  Google Scholar 

  8. Laroque A, Min-Oo G, Tam M, Radovanovic I, Stevenson MM, Gros P . Genetic control of susceptibility to infection with Plasmodium chabaudi chabaudi AS in inbred mouse strains. Genes Immun 2012; 13: 155–163.

    Article  CAS  Google Scholar 

  9. Longley R, Smith C, Fortin A, Berghout J, McMorran B, Burgio G et al. Host resistance to malaria: using mouse models to explore the host response. Mamm Genome 2011; 22: 32–42.

    Article  CAS  Google Scholar 

  10. Walther M, Woodruff J, Edele F, Jeffries D, Tongren JE, King E et al. Innate immune responses to human malaria: heterogeneous cytokine responses to blood-stage Plasmodium falciparum correlate with parasitological and clinical outcomes. J Immunol 2006; 177: 5736–5745.

    Article  CAS  Google Scholar 

  11. Artavanis-Tsakonas K, Eleme K, McQueen KL, Cheng NW, Parham P, Davis DM et al. Activation of a subset of human NK cells upon contact with Plasmodium falciparum-infected erythrocytes. J Immunol 2003; 171: 5396–5405.

    Article  CAS  Google Scholar 

  12. Korbel DS, Newman KC, Almeida CR, Davis DM, Riley EM . Heterogeneous human NK cell responses to Plasmodium falciparum-infected erythrocytes. J Immunol 2005; 175: 7466–7473.

    Article  CAS  Google Scholar 

  13. Modiano D, Petrarca V, Sirima BS, Nebie I, Diallo D, Esposito F et al. Different response to Plasmodium falciparum malaria in west African sympatric ethnic groups. Proc Natl Acad Sci USA 1996; 93: 13206–13211.

    Article  CAS  Google Scholar 

  14. Kremsner PG, Winkler S, Brandts C, Wildling E, Jenne L, Graninger W et al. Prediction of accelerated cure in Plasmodium falciparum malaria by the elevated capacity of tumor necrosis factor production. Am J Trop Med Hyg 1995; 53: 532–538.

    Article  CAS  Google Scholar 

  15. Lyke KE, Burges R, Cissoko Y, Sangare L, Dao M, Diarra I et al. Serum levels of the proinflammatory cytokines interleukin-1 beta (IL-1beta), IL-6, IL-8, IL-10, tumor necrosis factor alpha, and IL-12(p70) in Malian children with severe Plasmodium falciparum malaria and matched uncomplicated malaria or healthy controls. Infect Immun 2004; 72: 5630–5637.

    Article  CAS  Google Scholar 

  16. Driss A, Hibbert JM, Wilson NO, Iqbal SA, Adamkiewicz TV, Stiles JK . Genetic polymorphisms linked to susceptibility to malaria. Malar J 2011; 10: 271.

    Article  Google Scholar 

  17. Ockenhouse CF, Hu WC, Kester KE, Cummings JF, Stewart A, Heppner DG et al. Common and divergent immune response signaling pathways discovered in peripheral blood mononuclear cell gene expression patterns in presymptomatic and clinically apparent malaria. Infect Immun 2006; 74: 5561–5573.

    Article  CAS  Google Scholar 

  18. Franklin BS, Parroche P, Ataide MA, Lauw F, Ropert C, de Oliveira RB et al. Malaria primes the innate immune response due to interferon-gamma induced enhancement of toll-like receptor expression and function. Proc Natl Acad Sci USA 2009; 106: 5789–5794.

    Article  CAS  Google Scholar 

  19. Omer FM, de Souza JB, Corran PH, Sultan AA, Riley EM . Activation of transforming growth factor beta by malaria parasite-derived metalloproteinases and a thrombospondin-like molecule. J Exp Med 2003; 198: 1817–1827.

    Article  CAS  Google Scholar 

  20. Omer FM, Kurtzhals JA, Riley EM . Maintaining the immunological balance in parasitic infections: a role for TGF-beta? Parasitol Today 2000; 16: 18–23.

    Article  CAS  Google Scholar 

  21. Fairhurst RM, Wellems TE . Modulation of malaria virulence by determinants of Plasmodium falciparum erythrocyte membrane protein-1 display. Curr Opin Hematol 2006; 13: 124–130.

    Article  CAS  Google Scholar 

  22. Doumbo OK, Thera MA, Kone AK, Raza A, Tempest LJ, Lyke KE et al. High levels of Plasmodium falciparum rosetting in all clinical forms of severe malaria in African children. Am J Trop Med Hyg 2009; 81: 987–993.

    Article  Google Scholar 

  23. Dondorp AM, Desakorn V, Pongtavornpinyo W, Sahassananda D, Silamut K, Chotivanich K et al. Estimation of the total parasite biomass in acute falciparum malaria from plasma PfHRP2. PLoS Med 2005; 2: e204.

    Article  Google Scholar 

  24. Chotivanich K, Udomsangpetch R, Simpson JA, Newton P, Pukrittayakamee S, Looareesuwan S et al. Parasite multiplication potential and the severity of Falciparum malaria. J Infect Dis 2000; 181: 1206–1209.

    Article  CAS  Google Scholar 

  25. Sharma S, DeOliveira RB, Kalantari P, Parroche P, Goutagny N, Jiang Z et al. Innate immune recognition of an AT-rich stem-loop DNA motif in the Plasmodium falciparum genome. Immunity 2011; 35: 194–207.

    Article  CAS  Google Scholar 

  26. Coban C, Ishii KJ, Kawai T, Hemmi H, Sato S, Uematsu S et al. Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. J Exp Med 2005; 201: 19–25.

    Article  CAS  Google Scholar 

  27. Parroche P, Lauw FN, Goutagny N, Latz E, Monks BG, Visintin A et al. Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proc Natl Acad Sci USA 2007; 104: 1919–1924.

    Article  CAS  Google Scholar 

  28. Augustijn KD, Kleemann R, Thompson J, Kooistra T, Crawford CE, Reece SE et al. Functional characterization of the Plasmodium falciparum and P. berghei homologues of macrophage migration inhibitory factor. Infect Immun 2007; 75: 1116–1128.

    Article  CAS  Google Scholar 

  29. Zhang Y, Miura K, Li J, Tullo G, Zhu F, Hong L et al. Macrophage migration inhibitory factor homolog from Plasmodium yoelii modulates monocyte recruitment and activation in spleen during infection. Parasitol Res 2012; 110: 1755–1763.

    Article  Google Scholar 

  30. Shao D, Zhong X, Zhou YF, Han Z, Lin Y, Wang Z et al. Structural and functional comparison of MIF ortholog from Plasmodium yoelii with MIF from its rodent host. Mol Immunol 2010; 47: 726–737.

    Article  CAS  Google Scholar 

  31. Omer FM, de Souza JB, Riley EM . Differential induction of TGF-beta regulates proinflammatory cytokine production and determines the outcome of lethal and nonlethal Plasmodium yoelii infections. J Immunol 2003; 171: 5430–5436.

    Article  CAS  Google Scholar 

  32. Pattaradilokrat S, Cheesman SJ, Carter R . Congenicity and genetic polymorphism in cloned lines derived from a single isolate of a rodent malaria parasite. Mol Biochem Parasitol 2008; 157: 244–247.

    Article  CAS  Google Scholar 

  33. Li J, Pattaradilokrat S, Zhu F, Jiang H, Liu S, Hong L et al. Linkage maps from multiple genetic crosses and loci linked to growth-related virulent phenotype in Plasmodium yoelii. Proc Natl Acad Sci USA 2011; 108: E374–E382.

    Article  CAS  Google Scholar 

  34. Li J, Zhang Y, Liu S, Hong L, Sullivan M, McCutchan TF et al. Hundreds of microsatellites for genotyping Plasmodium yoelii parasites. Mol Biochem Parasitol 2009; 166: 153–158.

    Article  CAS  Google Scholar 

  35. Stevenson MM, Riley EM . Innate immunity to malaria. Nat Rev Immunol 2004; 4: 169–180.

    Article  CAS  Google Scholar 

  36. Torre S, van Bruggen R, Kennedy JM, Berghout J, Bongfen SE, Langat P et al. Susceptibility to lethal cerebral malaria is regulated by epistatic interaction between chromosome 4 (Berr6) and chromosome 1 (Berr7) loci in mice. Genes Immun 2013; 14: 249–257.

    Article  CAS  Google Scholar 

  37. Qi Y, Zhu F, Li J, Fu Y, Pattaradilokrat S, Hong L et al. Optimized protocols for improving the likelihood of cloning recombinant progeny from Plasmodium yoelii genetic crosses. Exp Parasitol 2013; 133: 44–50.

    Article  Google Scholar 

  38. Lim DC, Cooke BM, Doerig C, Saeij JP . Toxoplasma and Plasmodium protein kinases: roles in invasion and host cell remodelling. Int J Parasitol 2012; 42: 21–32.

    Article  CAS  Google Scholar 

  39. Melo MB, Jensen KD, Saeij JP . Toxoplasma gondii effectors are master regulators of the inflammatory response. Trends Parasitol 2011; 27: 487–495.

    Article  CAS  Google Scholar 

  40. Saeij JP, Boyle JP, Coller S, Taylor S, Sibley LD, Brooke-Powell ET et al. Polymorphic secreted kinases are key virulence factors in toxoplasmosis. Science 2006; 314: 1780–1783.

    Article  CAS  Google Scholar 

  41. Saeij JP, Coller S, Boyle JP, Jerome ME, White MW, Boothroyd JC . Toxoplasma co-opts host gene expression by injection of a polymorphic kinase homologue. Nature 2007; 445: 324–327.

    Article  CAS  Google Scholar 

  42. Cao J, Kaneko O, Thongkukiatkul A, Tachibana M, Otsuki H, Gao Q et al. Rhoptry neck protein RON2 forms a complex with microneme protein AMA1 in Plasmodium falciparum merozoites. Parasitol Int 2009; 58: 29–35.

    Article  CAS  Google Scholar 

  43. Richard D, MacRaild CA, Riglar DT, Chan JA, Foley M, Baum J et al. Interaction between Plasmodium falciparum apical membrane antigen 1 and the rhoptry neck protein complex defines a key step in the erythrocyte invasion process of malaria parasites. J Biol Chem 2010; 285: 14815–14822.

    Article  CAS  Google Scholar 

  44. Painter HJ, Campbell TL, Llinas M . The Apicomplexan AP2 family: integral factors regulating Plasmodium development. Mol Biochem Parasitol 2011; 176: 1–7.

    Article  CAS  Google Scholar 

  45. Balu B, Maher SP, Pance A, Chauhan C, Naumov AV, Andrews RM et al. CCR4-associated factor 1 coordinates the expression of Plasmodium falciparum egress and invasion proteins. Eukaryot Cell 2011; 10: 1257–1263.

    Article  CAS  Google Scholar 

  46. Culleton R, Kaneko O . Erythrocyte binding ligands in malaria parasites: intracellular trafficking and parasite virulence. Acta Trop 2010; 114: 131–137.

    Article  CAS  Google Scholar 

  47. Akimitsu N, Kim HS, Hamamoto H, Kamura K, Fukuma N, Arimitsu N et al. Duffy antigen is important for the lethal effect of the lethal strain of Plasmodium yoelii 17XL. Parasitol Res 2004; 93: 499–503.

    Article  Google Scholar 

  48. Swardson-Olver CJ, Dawson TC, Burnett RC, Peiper SC, Maeda N, Avery AC . Plasmodium yoelii uses the murine Duffy antigen receptor for chemokines as a receptor for normocyte invasion and an alternative receptor for reticulocyte invasion. Blood 2002; 99: 2677–2684.

    Article  CAS  Google Scholar 

  49. Otsuki H, Kaneko O, Thongkukiatkul A, Tachibana M, Iriko H, Takeo S et al. Single amino acid substitution in Plasmodium yoelii erythrocyte ligand determines its localization and controls parasite virulence. Proc Natl Acad Sci USA 2009; 106: 7167–7172.

    Article  CAS  Google Scholar 

  50. Hadley TJ, Peiper SC . From malaria to chemokine receptor: the emerging physiologic role of the Duffy blood group antigen. Blood 1997; 89: 3077–3091.

    CAS  PubMed  Google Scholar 

  51. Car BD, Meloni F, Luisetti M, Semenzato G, Gialdroni-Grassi G, Walz A . Elevated IL-8 and MCP-1 in the bronchoalveolar lavage fluid of patients with idiopathic pulmonary fibrosis and pulmonary sarcoidosis. Am J Respir Crit Care Med 1994; 149: 655–659.

    Article  CAS  Google Scholar 

  52. Thompson WL, Karpus WJ, Van Eldik LJ . MCP-1-deficient mice show reduced neuroinflammatory responses and increased peripheral inflammatory responses to peripheral endotoxin insult. J Neuroinflammation 2008; 5: 35.

    Article  Google Scholar 

  53. Sen S, Ferdig M . QTL analysis for discovery of genes involved in drug responses. Curr Drug Targets Infect Disord 2004; 4: 53–63.

    Article  CAS  Google Scholar 

  54. Kong Y . Btrim: a fast, lightweight adapter and quality trimming program for next-generation sequencing technologies. Genomics 2011; 98: 152–153.

    Article  CAS  Google Scholar 

  55. Li H, Durbin R . Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25: 1754–1760.

    Article  CAS  Google Scholar 

  56. Langmead B, Trapnell C, Pop M, Salzberg SL . Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009; 10: R25.

    Article  Google Scholar 

  57. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al. The sequence alignment/map format and SAMtools. Bioinformatics 2009; 25: 2078–2079.

    Article  Google Scholar 

  58. Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 2012; 6: 80–92.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs Alan Sher and David Sacks for valuable advice and comments and Brenda Rae Marshall, DPSS, NIAID, for editing. This work was supported by the Intramural Research Program of the Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health and partially by ‘Project 111’ sponsored by the State Bureau of Foreign Experts and Ministry of Education of China (B06016) and by the National Natural Science Foundation of China (#81271858, #81201324 and #81220108019).

As SP, JL, JW, YQ, RTE, MZ, SCN, MCH, MQ, HJ, JZ, KZ, CAL and X-zS are government employees and this is a government work, the work is in the public domain in the United States. Notwithstanding any other agreements, the NIH reserves the right to provide the work to PubMedCentral for display and use by the public, and PubMedCentral may tag or modify the work consistent with its customary practices. You can establish rights outside of the US subject to a government use license.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X-z Su.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pattaradilokrat, S., Li, J., Wu, J. et al. Plasmodium genetic loci linked to host cytokine and chemokine responses. Genes Immun 15, 145–152 (2014). https://doi.org/10.1038/gene.2013.74

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2013.74

Keywords

This article is cited by

Search

Quick links