Physical sciences articles within Nature Communications

Featured

  • Article
    | Open Access

    Photochromic materials suffer from degradation when exposed to harsh chemical environments, but this can be overcome by providing chemical shielding via superomniphobicity. Here, the authors show the design rationale and careful materials selection for fabrication of color morphing surfaces that can simultaneously display excellent chemical resistance.

    • Adil Majeed Rather
    • , Sravanthi Vallabhuneni
    •  & Arun Kumar Kota
  • Article
    | Open Access

    Zn batteries suffer from low voltage due to the high redox potential of the Zn anode and the low potential of traditional cathodes. Here, the authors develop a polymer hetero-electrolyte, which allows separated Zn and Li reversibility and achieves a 2.4 V-Zn battery based on the LiNi0.5Mn1.5O4 cathode.

    • Ze Chen
    • , Tairan Wang
    •  & Chunyi Zhi
  • Article
    | Open Access

    Bose-Einstein condensates (BEC) of ultracold atoms serve as low-entropy sources for a multitude of quantum-science applications. Here, the authors realize a non-ground-state caesium BEC with tunable interactions and tunable loss, opening up new possibilities for polaron and impurity physics.

    • Milena Horvath
    • , Sudipta Dhar
    •  & Hanns-Christoph Nägerl
  • Article
    | Open Access

    Molecular recognition of proteins is essential for achieving their biological functions but it is challenging to prepare selective protein-binding materials. Here the authors report a method that combines dynamic covalent chemistry and double molecular imprinting to construct protein-recognizing nanoparticles capable of specific inhibition of protein–protein interactions.

    • Avijit Ghosh
    • , Mansi Sharma
    •  & Yan Zhao
  • Article
    | Open Access

    The fast-spinning primary of the Didymos near-earth asteroid binary system was found to have a degraded top shape by the DART (NASA) mission. Here, authors find that these surface features observed in the asteroid are more likely to have been caused by collisional effects than by the YORP effect.

    • Adriano Campo Bagatin
    • , Aldo Dell’Oro
    •  & Jean-Baptiste Vincent
  • Article
    | Open Access

    Spin-momentum locking is a fundamental property of condensed matter systems. Here, the authors evidence parallel Weyl spin-momentum locking of multifold fermions in the chiral topological semimetal PtGa.

    • Jonas A. Krieger
    • , Samuel Stolz
    •  & Niels B. M. Schröter
  • Article
    | Open Access

    Electrochemical-mechanical issues bring challenges but create new opportunities to design innovative all-solid-state batteries. Here, the authors propose to use the (de)lithiation-stress-creep synergistic time-dependent evolution to boost the electrochemical performance of all-solid-state batteries.

    • Xiaolin Xiong
    • , Ting Lin
    •  & Liumin Suo
  • Article
    | Open Access

    Caustics, as a unique type of singularity in wave phenomena, occur in diverse physical systems. Here, the authors realize multi-dimensional customization of caustics with 3D-printed metasurfaces. This arbitrary caustic engineering is poised to bring new revolutions to many domains.

    • Xiaoyan Zhou
    • , Hongtao Wang
    •  & Cheng-Wei Qiu
  • Article
    | Open Access

    The widespread use of organoboronic acids has prompted the development of synthetic methodologies to meet the demands on structural diversity and functional group tolerance. Herein, the authors disclose a divergent radical dechloroborylation reaction enabled by dinuclear gold catalysis with visible light irradiation.

    • Cheng-Long Ji
    • , Hongliang Chen
    •  & Jin Xie
  • Article
    | Open Access

    A promising strategy for scaling trapped-ion-based quantum technologies is to use fully integrated optical waveguides to deliver light to numerous ions at multiple sites. Here, the authors. optically address three ions using on-chip waveguides to deliver three distinct wavelengths per ion, and perform Rabi flopping on each ion simultaneously.

    • Joonhyuk Kwon
    • , William J. Setzer
    •  & Hayden J. McGuinness
  • Article
    | Open Access

    Room-temperature phosphorescence usually occurs immediately after the removal of excitation. Here the authors achieve combined instant and delayed phosphorescence through introduction of phosphines into carbazole emitters.

    • Guang Lu
    • , Jing Tan
    •  & Hui Xu
  • Article
    | Open Access

    Restricted reaction mechanism of anti-dihalogenation of alkenes makes it challenging to alter the diastereochemical course into the complementary syn-dihalogenation process. Here, the authors report a conceptually distinctive strategy for the simultaneous double electrophilic activation of the two alkene carbons from the same side to realize syn-dihalogenation.

    • Hyeon Moon
    • , Jungi Jung
    •  & Won-jin Chung
  • Article
    | Open Access

    Chiral antiferromagnets, such as Mn3Pt, host a variety of transport phenomena arising due to the chiral arrangement of the spins. Herein, the authors find two contributions to the anomalous hall effect in Mn3Pt, and through comparison with other chiral antiferromagnets develop a universal scaling law for the anomalous hall effect in chiral antiferromagnets.

    • Shijie Xu
    • , Bingqian Dai
    •  & Weisheng Zhao
  • Article
    | Open Access

    Indan and tetralin are used as fuel additives and intermediates in the manufacture of many products, including thermal-stable jet fuel. Here the authors report a route for the synthesis of methylindan and tetralin by the hydrogenolysis of xylose or hemicellulose over a non-noble metal catalyst, followed by further reaction over zeolite H-ZSM-5. Reviewer recognition:

    • Zhufan Zou
    • , Zhenjie Yu
    •  & Ning Li
  • Article
    | Open Access

    Given that entangled states can store more information than unentangled ones, it would be natural to assume that highly-entangled data would always enhance capabilities of quantum machine learning models. Here, the authors show that this is not the case, in particular when the allowed number of measurements to incoherently learn quantum dynamics is low

    • Xinbiao Wang
    • , Yuxuan Du
    •  & Dacheng Tao
  • Article
    | Open Access

    The fluctuating dynamics of a passive object suspended in an active fluid can provide fundamental insight into the fundamental non-equilibrium behavior of the fluid. Singh and Chaudhuri theoretically investigate the dynamics of a passive deformable droplet in active nematic turbulence and show how the motion of the droplet is influenced by the interplay of spatial correlations of the flow and the size of the droplet.

    • Chamkor Singh
    •  & Abhishek Chaudhuri
  • Article
    | Open Access

    The average Internet user spends over 40% of their waking hours online, yet the environmental footprint remains poorly understood. This study suggests that digital content consumption could exacerbate the pressure on the finite Earth’s carrying capacity.

    • Robert Istrate
    • , Victor Tulus
    •  & Gonzalo Guillén-Gosálbez
  • Article
    | Open Access

    Brains and neuromorphic systems learn with local learning rules in online-continual learning scenarios. Designing neural networks that learn effectively under these conditions is challenging. The authors introduce a neural network that implements an effective, principled approach to local, online-continual learning on associative memory tasks.

    • Nicholas Alonso
    •  & Jeffrey L. Krichmar
  • Article
    | Open Access

    Understanding loss mechanisms in superconducting circuits is crucial for improving qubit coherence. Here the authors use a multimode resonator to study loss mechanisms in thin-film superconducting circuits and demonstrate on-chip quantum memories with lifetimes exceeding 1ms, using Ta thin-films and high-temperature substrate annealing

    • Suhas Ganjam
    • , Yanhao Wang
    •  & Robert J. Schoelkopf
  • Article
    | Open Access

    Silicon-integrated graphene photodetectors exhibit promising bandwidths at telecom wavelengths, but their responsivity is usually limited. Here, the authors report the wafer-scale fabrication of waveguide-integrated detectors based on twisted bilayer graphene, showing responsivities up to 0.65 A/W and 3-dB bandwidths >65 GHz.

    • Qinci Wu
    • , Jun Qian
    •  & Hailin Peng
  • Article
    | Open Access

    Developing an efficient method for the stereocontrolled synthesis of all stereoisomers of chiral hindered ethers is highly desirable but challenging. Here, the authors report an asymmetric cascade reaction catalyzed by a bimetallic catalytic system with control over the configuration of the stereocenters of tetra-aryl substituted ethers.

    • Xiangfeng Lin
    • , Xia Mu
    •  & Can Li
  • Article
    | Open Access

    Magnetic tunnel junctions consist of two magnetic layers, separated by a thin insulator. The simplicity belies the industrial importance: magnetic tunnel junctions have a very wide variety of applications in contemporary society. Here, Fu et al present a magnetic tunnel junction composed of single van der Waals magnetic insulator, CrI3, exhibiting remarkably low power consumption.

    • ZhuangEn Fu
    • , Piumi I. Samarawickrama
    •  & Jifa Tian
  • Article
    | Open Access

    Multiplexed spiking data coding schemes could enable artificial visual neurons to emulate the human visual system in a more biologically plausible way. Here, Li et al. present an artificial neuron device capable of encoding visual analog signals into spike trains using multiplexed rate and temporal fusion coding. Reviewer recognition:

    • Fanfan Li
    • , Dingwei Li
    •  & Bowen Zhu
  • Article
    | Open Access

    Redox reactions exhibit different thermodynamics and kinetics in water microdroplets compared to the bulk. Here, the authors use reactive molecular dynamics to show the importance of charged reactive species in explaining reactivity under confinement.

    • Joseph P. Heindel
    • , R. Allen LaCour
    •  & Teresa Head-Gordon
  • Article
    | Open Access

    Due to the electrophilic nature of arynes, it is very challenging to control chemoselectivity, when substrates possess multiple competing reaction sites. Here, the authors demonstrate that chemoselective control between two major types of benzyne transformation is accomplished by varying the 3-substituent on aryne intermediate.

    • Hongcheng Tan
    • , Shuxin Yu
    •  & Yang Li
  • Article
    | Open Access

    Plastic pollution severely threatens the resilience of nature. Here, the authors utilize the spore-forming, polymer-degrading bacteria, Bacillus subtilis, as a living filler to develop biocomposite thermoplastic polyurethane with improved mechanical properties and biodegradation.

    • Han Sol Kim
    • , Myung Hyun Noh
    •  & Jonathan K. Pokorski
  • Article
    | Open Access

    Organic mechanoluminescent materials have potential in a range of applications, but it can be challenging to achieve long-lived emission. Here, the authors report isostructural doping as a strategy to achieve multicolour and high efficiency organic mechanoluminescence, applied in stress sensing.

    • Zongliang Xie
    • , Yufeng Xue
    •  & Bin Liu
  • Article
    | Open Access

    Previous studies of the effects of strain on charge density waves have mostly focused on uniaxial strain. Here the authors use a biaxial-strain device to demonstrate switching of the charge density wave orientation, as well as a strong linear increase of the transition temperature while the gap seems to saturate.

    • A. Gallo–Frantz
    • , V. L. R. Jacques
    •  & D. Le Bolloc’h
  • Article
    | Open Access

    Ising machines have been usually applied to predefined combinatorial problems due to their distinct physical properties. The authors introduce an approach that utilizes equilibrium propagation for the training of Ising machines and achieves high accuracy performance on classification tasks.

    • Jérémie Laydevant
    • , Danijela Marković
    •  & Julie Grollier
  • Article
    | Open Access

    The study of defects and boundaries in the context of conformal field theory is important but challenging in dimensions higher than two. Here the authors use the recently developed fuzzy sphere regularization approach to perform non-perturbative analysis of defect conformal field theory in 3D

    • Liangdong Hu
    • , Yin-Chen He
    •  & W. Zhu
  • Article
    | Open Access

    The design of synthetic systems that can sense chemical gradients and respond with directional motility and chemical activity is of interest. Here, the authors realize and control such behaviors in a synthetic system by tailoring multivalent interactions of adenosine nucleotides with catalytic microbeads.

    • Ekta Shandilya
    • , Bhargav Rallabandi
    •  & Subhabrata Maiti
  • Article
    | Open Access

    Photonic time crystal refers to a material whose dielectric properties oscillate in time. Here the authors theoretically show such behaviour in the excitonic insulator candidate Ta2NiSe5 under optical excitation and use it to explain the enhanced THz reflectivity recently observed in pump-probe experiments

    • Marios H. Michael
    • , Sheikh Rubaiat Ul Haque
    •  & Eugene Demler
  • Article
    | Open Access

    Researchers report a sustainable nanofluidic osmotic energy harvester made from natural montmorillonite clay nanosheets and recycled cellulose. Scaled-up films of 700 cm2 show power output of 8 W m−2 with stability over 30 days

    • Jiadong Tang
    • , Yun Wang
    •  & Tieyong Zuo
  • Article
    | Open Access

    Compared to well-developed catalytic 1,2-diazidation of alkenes, the corresponding catalytic 1,1-diazidation of alkenes has not been realized. Here, the authors report an efficient approach for catalytic 1,1-diazidation of alkenes by redox-active selenium catalysis.

    • Wangzhen Qiu
    • , Lihao Liao
    •  & Xiaodan Zhao
  • Article
    | Open Access

    Nucleoside-processing enzymes exhibit strict regioselectivity for glycosylation of purine nucleobases at N9. Here, the authors report an exception and show that wild type nucleoside phosphorylases also furnish N7-xanthosine, a non-native ribosylation regioisomer of xanthosine.

    • Sarah Westarp
    • , Felix Brandt
    •  & Felix Kaspar
  • Article
    | Open Access

    The practical application of electrosynthesis of propylene oxide is hindered by limited performance. Here, the authors report a spatial decoupling strategy by utilizing the bromide mediator to link propylene and anode within separated reactors, realizing high-performance electrosynthesis of propylene oxide.

    • Mingfang Chi
    • , Jingwen Ke
    •  & Jie Zeng
  • Article
    | Open Access

    Crystals are known to have a range of responses to light, but multiple responses in the same material are rare. Here, the authors report different mechanical effects in response to light across three polymorphs as a result of a dimerization reaction.

    • Jiawei Lin
    • , Jianmin Zhou
    •  & Junbo Gong
  • Article
    | Open Access

    Here, the authors report the ledge-guided epitaxial growth of high-density 2D Bi2O2Se fin arrays and their application for the realization of 2D multi-channel fin field-effect transistors, showing improved on-state currents as the number of integrated channels is increased.

    • Mengshi Yu
    • , Congwei Tan
    •  & Hailin Peng
  • Article
    | Open Access

    The stability of non-noble catalysts is key for their use in proton exchange membrane water electrolysers. Here, authors study activity-stability relationships of MoSx allotropes for H2 production, reporting allotrope-dependent stabilities and dissolution pathways, and propose operation guidelines.

    • Daniel Escalera-López
    • , Christian Iffelsberger
    •  & Serhiy Cherevko
  • Article
    | Open Access

    The authors present a scalable on-chip parallel intensity modulation and direct detection (IM-DD) data transmission system. This system offers an aggregate line rate of 1.68 Tbit/s over a 20-km-long SMF. For the chromatic dispersion compensation of 40-km-SMFs, the energy consumption is ~0.3 pJ/bit, much less than the commercial 400G-ZR coherent transceivers counterparts.

    • Yuanbin Liu
    • , Hongyi Zhang
    •  & Andrew W. Poon