Phase transitions and critical phenomena articles within Nature

Featured

  • Article |

    Evidence for a quantum magnetic analogue of a supersolid appears in a recently synthesized antiferromagnet showing a strong magnetocaloric effect of the spin supersolid phase with potential for applications in sub-kelvin refrigeration.

    • Junsen Xiang
    • , Chuandi Zhang
    •  & Gang Su
  • Article |

    We establish a spin nematic phase in the square-lattice iridate Sr2IrO4 and find a complete breakdown of coherent magnon excitations at short-wavelength scales, suggesting a many-body quantum entanglement in the antiferromagnetic state.

    • Hoon Kim
    • , Jin-Kwang Kim
    •  & B. J. Kim
  • Article |

    Transport measurements in twisted bilayer MoTe2 reveal quantized Hall resistance plateaus and composite Fermi liquid-like behaviour under zero magnetic field, constituting a direct observation of integer and fractional quantum anomalous Hall effects.

    • Heonjoon Park
    • , Jiaqi Cai
    •  & Xiaodong Xu
  • Article |

    The discovery of an orbital Fulde–Ferrell–Larkin–Ovchinnikov state in the multilayer Ising superconductor 2H-NbSe2, in which the translational and rotational symmetries are broken, enables the preparation of such states in other materials with broken inversion symmetries.

    • Puhua Wan
    • , Oleksandr Zheliuk
    •  & Jianting Ye
  • Article
    | Open Access

    All-optical, mode-selective manipulation of the crystal lattice can be used to enhance and stabilize ferromagnetism in YTiO3 well above its equilibrium ordering temperature and for many nanoseconds, enabling dynamic engineering of practically useful non-equilibrium functionalities in fluctuating electronic systems.

    • A. S. Disa
    • , J. Curtis
    •  & A. Cavalleri
  • Article |

    Using a quantum annealing processor to study three-dimensional spin glasses demonstrates an accurate large-scale quantum simulation of critical dynamics and a scaling advantage over analogous classical methods for energy optimization.

    • Andrew D. King
    • , Jack Raymond
    •  & Mohammad H. Amin
  • Article |

    An experiment is described in which the conversion of a single photon in a multimode cavity into a shower of low-energy photons was attempted, but failed owing to many-body localization and violation of Fermi’s golden rule.

    • Nitish Mehta
    • , Roman Kuzmin
    •  & Vladimir E. Manucharyan
  • Article |

    Magnetically tunable three-dimensional photonic crystals are used to achieve the experimental demonstration of Chern vectors and their topological surface states, showing the Chern vector to be an intrinsic bulk topological invariant in three-dimensional topological materials.

    • Gui-Geng Liu
    • , Zhen Gao
    •  & Baile Zhang
  • Article |

    Analysis of the antiferromagnetic ordered phase of kagome lattice FeGe suggests that charge density wave is the result of a combination of electronic-correlations-driven antiferromagnetic order and instability driven by van Hove singularities.

    • Xiaokun Teng
    • , Lebing Chen
    •  & Pengcheng Dai
  • Article |

    Confining semiconductor dipolar excitons using an artificial two-dimensional square lattice emulates extended Bose–Hubbard Hamiltonians, thus enabling control of boson-like arrays in lattices with programmable geometries and more than 100 sites.

    • C. Lagoin
    • , U. Bhattacharya
    •  & F. Dubin
  • Article |

    LiHoF4, a dipolar Ising ferromagnet, is investigated near its transverse-field quantum critical point, showing that well-defined mesoscale quantum phase transitions arise when tilting the magnetic field away from the hard axis.

    • Andreas Wendl
    • , Heike Eisenlohr
    •  & Christian Pfleiderer
  • Article |

    Experiments show that the dynamics of phase fluctuations  in a one-dimensional polariton condensate falls in the Kardar–Parisi–Zhang universality class, and theoretical analysis supports this finding revealing the key signatures of this universality class.

    • Quentin Fontaine
    • , Davide Squizzato
    •  & Jacqueline Bloch
  • Article |

    The nanostructured diamond capsule process with the inert gases solid argon and neon is demonstrated, where the trapped volatile gases could sustain their high-pressure states without confinement of conventional high-pressure vessels, opening up the possibility of in-depth investigations of high-pressure phenomena.

    • Zhidan Zeng
    • , Jianguo Wen
    •  & Qiaoshi Zeng
  • Article
    | Open Access

    A general and efficient approach to evaporatively cool ultracold polar molecules through elastic collisions to create a degenerate quantum gas in three dimensions is demonstrated using microwave shielding.

    • Andreas Schindewolf
    • , Roman Bause
    •  & Xin-Yu Luo
  • Article
    | Open Access

    The phase diagram of the unconventional superconductor Sr2RuO4 in both normal and superconducting states is mapped out using high-precision measurements of the elastocaloric effect, showing similarities to other unconventional superconductors as well as unique features.

    • You-Sheng Li
    • , Markus Garst
    •  & Andrew P. Mackenzie
  • Article
    | Open Access

    The discovery of graphite–diamond hybrid carbon, Gradia, which consists of graphite and diamond nanodomains interlocked through coherent interfaces, clarifies the long-standing mystery of how graphite turns into diamond.

    • Kun Luo
    • , Bing Liu
    •  & Yongjun Tian
  • Article |

    Precise control over the quantum state of a two-dimensional Fermi gas together with single-particle-resolved fluorescence imaging enables the direct observation of the formation of Cooper pairs at the Fermi surface.

    • Marvin Holten
    • , Luca Bayha
    •  & Selim Jochim
  • Article
    | Open Access

    Pressures of up to 900 gigapascals (9 million atmospheres) are achieved in a laser-heated double-stage diamond cell, enabling the synthesis of Re7N3, and materials characterization is performed in situ using single-crystal X-ray diffraction.

    • Leonid Dubrovinsky
    • , Saiana Khandarkhaeva
    •  & Natalia Dubrovinskaia
  • Article |

    Precise quantitative scaling laws are observed between the normalized T-linear coefficient and Tc among copper oxides, pnictides and a class of organic superconductors, suggesting a common underlying physics at work in these unconventional superconductors.

    • Jie Yuan
    • , Qihong Chen
    •  & Zhongxian Zhao
  • Article |

    A high-precision angle-resolved photoemission spectroscopy (ARPES) study on the superconductor Bi2212 resolves the spectroscopic singularity associated with the superconducting transition temperature, and indicates that the transition is driven by phase fluctuations.

    • Su-Di Chen
    • , Makoto Hashimoto
    •  & Zhi-Xun Shen
  • Article |

    Strange metallicity—in particular, resistance that is linear in temperature and magnetic field—is observed in a nanopatterned YBa2Cu3O7−δ bosonic system.

    • Chao Yang
    • , Haiwen Liu
    •  & Yanrong Li
  • Article |

    An electric-field-induced topological phase transition from a Mott insulator to a quantum anomalous Hall insulator in near-60-degree-twisted (or AB-stacked) MoTe2/WSe2 heterobilayers is reported.

    • Tingxin Li
    • , Shengwei Jiang
    •  & Kin Fai Mak
  • Article
    | Open Access

    A study establishes a scalable approach to engineer and characterize a many-body-localized discrete time crystal phase on a superconducting quantum processor.

    • Xiao Mi
    • , Matteo Ippoliti
    •  & Pedram Roushan
  • Article |

    Preparing amorphous phases of carbon with mostly sp3 bonding in bulk is challenging, but macroscopic samples that are nearly pure sp3 are synthesized here by heating fullerenes at high pressure.

    • Yuchen Shang
    • , Zhaodong Liu
    •  & Bingbing Liu
  • Article |

    Amorphous–amorphous phase transitions in silicon dioxide are shown to proceed through a sequence of percolation transitions, a process that has relevance to a range of important liquid and glassy systems.

    • A. Hasmy
    • , S. Ispas
    •  & B. Hehlen
  • Article |

    Through an idealized set of simulations, with a model that incorporates key physics, research reveals dramatic swings between massive rainfall events and extended dry periods in hothouse climates.

    • Jacob T. Seeley
    •  & Robin D. Wordsworth
  • Article |

    A large violation of the Pauli limit and re-entrant superconductivity in a magnetic field is reported for magic-angle twisted trilayer graphene, suggesting that the spin configuration of the superconducting state of this material is unlikely to consist of spin singlets.

    • Yuan Cao
    • , Jeong Min Park
    •  & Pablo Jarillo-Herrero
  • Article |

    A programmable quantum simulator with 256 qubits is created using neutral atoms in two-dimensional optical tweezer arrays, demonstrating a quantum phase transition and revealing new quantum phases of matter.

    • Sepehr Ebadi
    • , Tout T. Wang
    •  & Mikhail D. Lukin
  • Article |

    First and second sound are experimentally observed in a two-dimensional superfluid, and the temperature-dependent sound speeds reveal the predicted jump in the superfluid density at the infinite-order Berezinskii–Kosterlitz–Thouless transition.

    • Panagiotis Christodoulou
    • , Maciej Gałka
    •  & Zoran Hadzibabic
  • Article |

    Hydrogen and helium mixtures can be compressed to the extreme temperature and pressure conditions found in the interior of Jupiter and Saturn, and the immiscibility revealed supports models of Jupiter that invoke a layered interior.

    • S. Brygoo
    • , P. Loubeyre
    •  & G. W. Collins
  • Article |

    The pressure dependence and magnetic field dependence of the specific heat of a quantum magnet, SrCu2(BO3)2, demonstrate that its phase diagram contains a line of first-order transitions terminating at a critical point, in analogy with water.

    • J. Larrea Jiménez
    • , S. P. G. Crone
    •  & F. Mila
  • Article |

    An electronic analogue of the Pomeranchuk effect is present in twisted bilayer graphene, shown by the stability of entropy in a ferromagnetic phase compared to an unpolarized Fermi liquid phase at certain high temperatures.

    • Yu Saito
    • , Fangyuan Yang
    •  & Andrea F. Young
  • Article |

    Dispersion of colloidal disks in a nematic liquid crystal reveals several low-symmetry phases, including monoclinic colloidal nematic order, with interchange between them achieved through variations in temperature, concentration and surface charge.

    • Haridas Mundoor
    • , Jin-Sheng Wu
    •  & Ivan I. Smalyukh
  • Article |

    A family of topological antiferromagnetic spin textures is realized at room temperature in α-Fe2O3, and their reversible and field-free stabilization using a Kibble–Zurek-like temperature cycling is demonstrated.

    • Hariom Jani
    • , Jheng-Cyuan Lin
    •  & Paolo G. Radaelli
  • Article |

    Correlation-driven topological phases with different Chern numbers are observed in magic-angle twisted bilayer graphene in modest magnetic fields, indicating that strong electronic interactions can lead to topologically non-trivial phases.

    • Youngjoon Choi
    • , Hyunjin Kim
    •  & Stevan Nadj-Perge