Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Signatures of a strange metal in a bosonic system

Abstract

Fermi liquid theory forms the basis for our understanding of the majority of metals: their resistivity arises from the scattering of well defined quasiparticles at a rate where, in the low-temperature limit, the inverse of the characteristic time scale is proportional to the square of the temperature. However, various quantum materials1,2,3,4,5,6,7,8,9,10,11,12,13,14,15—notably high-temperature superconductors1,2,3,4,5,6,7,8,9,10—exhibit strange-metallic behaviour with a linear scattering rate in temperature, deviating from this central paradigm. Here we show the unexpected signatures of strange metallicity in a bosonic system for which the quasiparticle concept does not apply. Our nanopatterned YBa2Cu3O7−δ (YBCO) film arrays reveal linear-in-temperature and linear-in-magnetic field resistance over extended temperature and magnetic field ranges. Notably, below the onset temperature at which Cooper pairs form, the low-field magnetoresistance oscillates with a period dictated by the superconducting flux quantum, h/2e (e, electron charge; h, Planck’s constant). Simultaneously, the Hall coefficient drops and vanishes within the measurement resolution with decreasing temperature, indicating that Cooper pairs instead of single electrons dominate the transport process. Moreover, the characteristic time scale τ in this bosonic system follows a scale-invariant relation without an intrinsic energy scale: ħ/τ ≈ a(kBT + γμBB), where ħ is the reduced Planck’s constant, a is of order unity7,8,11,12, kB is Boltzmann’s constant, T is temperature, μB is the Bohr magneton and γ ≈ 2. By extending the reach of strange-metal phenomenology to a bosonic system, our results suggest that there is a fundamental principle governing their transport that transcends particle statistics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Linear-in-temperature resistance near a bosonic anomalous metal–insulator transition in nanopatterned YBCO thin films.
Fig. 2: T-linear resistance and scale-invariant B-linear resistance in nanopatterned YBCO thin films under perpendicular magnetic field.
Fig. 3: BT scaling in nanopatterned YBCO thin films.
Fig. 4: Phase diagram of nanopatterned YBCO thin films.

Similar content being viewed by others

Data availability

The data that support the plots within this paper are available from the Zenodo data repository, https://doi.org/10.5281/zenodo.5603259Source data are provided with this paper.

References

  1. Anderson, P. W. The Theory of Superconductivity in the High-TC Cuprates (Princeton Univ. Press, 1998).

  2. Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Zaanen, J. Why the temperature is high. Nature 430, 512–513 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Jin, K., Butch, N. P., Kirshenbaum, K., Paglione, J. & Greene, R. L. Link between spin fluctuations and electron pairing in copper oxide superconductors. Nature 476, 73–75 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Greene, R. L., Mandal, P. R., Poniatowski, N. R. & Sarkar, T. The strange metal state of the electron-doped cuprates. Annu. Rev. Condens. Matter Phys. 11, 213–229 (2020).

    Article  CAS  Google Scholar 

  6. Taillefer, L. Scattering and pairing in cuprate superconductors. Annu. Rev. Condens. Matter Phys. 1, 51–70 (2010).

    Article  ADS  CAS  Google Scholar 

  7. Giraldo-Gallo, P. et al. Scale-invariant magnetoresistance in a cuprate superconductor. Science 361, 479–481 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Legros, A. et al. Universal T-linear resistivity and Planckian dissipation in overdoped cuprates. Nat. Phys. 15, 142–147 (2019).

    Article  CAS  Google Scholar 

  9. Varma, C. M., Littlewood, P. B., Schmitt-Rink, S., Abrahams, E. & Ruckenstein, A. E. Phenomenology of the normal state of Cu-O high-temperature superconductors. Phys. Rev. Lett. 63, 1996–1999 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Varma, C. M. Linear in temperature resistivity and associated mysteries including high temperature superconductivity. Rev. Mod. Phys. 92, 031001 (2020).

    Article  ADS  Google Scholar 

  11. Patel, A. A. & Sachdev, S. Theory of a Planckian metal. Phys. Rev. Lett. 123, 066601 (2019).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  12. Bruin, J. A. N., Sakai, H., Perry, R. S. & Mackenzie, A. P. Similarity of scattering rates in metals showing T-linear resistivity. Science 339, 804–807 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Hayes, I. M. et al. Scaling between magnetic field and temperature in the high-temperature superconductor BaFe2(As1−xPx)2. Nat. Phys. 12, 916–919 (2016).

    Article  Google Scholar 

  14. Doiron-Leyraud, N. et al. Correlation between linear resistivity and Tc in the Bechgaard salts and the pnictide superconductor Ba(Fe1−xCox)2As2. Phys. Rev. B 80, 214531 (2009).

    Article  ADS  Google Scholar 

  15. Cao, Y. et al. Strange metal in magic-angle graphene with near Planckian dissipation. Phys. Rev. Lett. 124, 076801 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Zaanen, J. Planckian dissipation, minimal viscosity and the transport in cuprate strange metals. SciPost Phys. 6, 061 (2019).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  17. Cao, C. et al. Universal quantum viscosity in a unitary Fermi gas. Science 331, 58–61 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Kovtun, P. K., Son, D. T. & Starinets, A. O. Viscosity in strongly interacting quantum field theories from black hole physics. Phys. Rev. Lett. 94, 111601 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Zaanen, J., Liu, Y., Sun, Y.-W. & Schalm, K. Holographic Duality in Condensed Matter Physics (Cambridge Univ. Press, 2015).

  20. Hartnoll, S. A., Lucas, A. & Sachdev, S. Holographic quantum matter. Preprint at https://arxiv.org/abs/1612.07324v1 (2016).

  21. Kapitulnik, A., Kivelson, S. A. & Spivak, B.Anomalous metals: failed superconductors. Rev. Mod. Phys. 91, 011002 (2019).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  22. Phillips, P. & Dalidovich, D. The elusive Bose metal. Science 302, 243–247 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Mason, N. & Kapitulnik, A. Dissipation effects on the superconductor–insulator transition in 2D superconductors. Phys. Rev. Lett. 82, 5341–5344 (1999).

    Article  ADS  CAS  Google Scholar 

  24. Saito, Y., Kasahara, Y., Ye, J., Iwasa, Y. & Nojima, T. Metallic ground state in an ion-gated two-dimensional superconductor. Science 350, 409–413 (2015).

    Article  ADS  MathSciNet  CAS  MATH  PubMed  Google Scholar 

  25. Breznay, N. P. & Kapitulnik, A. Particle–hole symmetry reveals failed superconductivity in the metallic phase of two-dimensional superconducting films. Sci. Adv. 3, e1700612 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  26. Yang, C. et al. Intermediate bosonic metallic state in the superconductor–insulator transition. Science 366, 1505–1509 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Liu, Y. et al. Type-II Ising superconductivity and anomalous metallic state in macro-size ambient-stable ultrathin crystalline films. Nano Lett. 20, 5728–5734 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Lindner, H. N. & Auerbach, A. Conductivity of hard core bosons: a paradigm of a bad metal. Phys. Rev. B 81, 054512 (2010).

    Article  ADS  Google Scholar 

  29. Stewart Jr, M. D., Yin, A., Xu, J. M. & Valles Jr, J. M. Superconducting pair correlations in an amorphous insulating nanohoneycomb film. Science 318, 1273–1275 (2007).

    Article  ADS  CAS  Google Scholar 

  30. Daou, R. et al. Linear temperature dependence of resistivity and change in the Fermi surface at the pseudogap critical point of a high-Tc superconductor. Nat. Phys. 5, 31–34 (2009).

    Article  CAS  Google Scholar 

  31. Hayes, I. M. et al. Superconductivity and quantum criticality linked by the Hall effect in a strange metal. Nat. Phys. 17, 58–62 (2020).

    Article  Google Scholar 

  32. Grissonnanche, G. et al. Direct measurement of the upper critical field in cuprate superconductors. Nat. Commun. 5, 3280 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Fisher, M. P. A., Weichman, P. B., Grinstein, G. & Fisher, D. S. Boson localization and the superfluid–insulator transition. Phys. Rev. B 40, 546–570 (1989).

    Article  ADS  CAS  Google Scholar 

  34. Eckern, U., Schön, G., & Ambegaokar, V. Quantum dynamics of a superconducting tunnel junction. Phys. Rev. B 30, 6419–6431 (1984).

    Article  ADS  Google Scholar 

  35. Aji, V. & Varma, C. M. Theory of the quantum critical fluctuations in cuprate superconductors. Phys. Rev. Lett. 99, 067003 (2007).

    Article  ADS  PubMed  Google Scholar 

  36. Chakravarty, S. Understanding Quantum Phase Transitions (CRC Press, 2010).

  37. Zhu, L., Hou, C. & Varma, C. M. Quantum criticality in the two-dimensional dissipative quantum XY model. Phys. Rev. B 94, 235156 (2016).

    Article  ADS  Google Scholar 

  38. Wen, L., Xu, R., Mi, Y. & Lei, L. Multiple nanostructures based on anodized aluminium oxide templates. Nat. Nanotechnol. 12, 244–250 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Chowdhury, D., Werman, Y., Berg, E. & Senthil, T. Translationally invariant non-Fermi-liquid metals with critical Fermi surfaces: solvable models. Phys. Rev. X 8, 031024 (2018).

    CAS  Google Scholar 

  40. Patel, A. A., McGreevy, J., Arovas, D. P. & Sachdev, S. Magnetotransport in a model of a disordered strange metal. Phys. Rev. X 8, 021049 (2018).

    CAS  Google Scholar 

  41. Segawa, K. & Ando, Y. Transport anomalies and the role of pseudogap in the 60-K phase of YBa2Cu3O7−δ. Phys. Rev. Lett. 86, 4907–4910 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Tomita, T., Kuga, K., Uwatoko, Y., Coleman, P. & Nakatsuji, S. Strange metal without magnetic criticality. Science 349, 506–509 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Shen, B. et al. Strange-metal behaviour in a pure ferromagnetic Kondo lattice. Nature 579, 51–55 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Custers, J. et al. The break-up of heavy electrons at a quantum critical point. Nature 424, 524–527 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Gegenwart, P., Si, Q. & Steglich, F. Quantum criticality in heavy-fermion metals. Nat. Phys. 4, 186–197 (2008).

    Article  CAS  Google Scholar 

  46. Prochaska, L. et al. Singular charge fluctuations at a magnetic quantum critical point. Science 367, 285–288 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Hartnoll, S. A. & Hofman, D. M. Locally critical resistivities from umklapp scattering. Phys. Rev. Lett. 108, 241601 (2012).

    Article  ADS  PubMed  Google Scholar 

  48. Hartnoll, S. A. Theory of universal incoherent metallic transport. Nat. Phys. 11, 54–61 (2015).

    Article  CAS  Google Scholar 

  49. Zaanen, J. Electrons go with the flow in exotic material systems. Science 351, 1026–1027 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Faulkner, T., Iqbal, N., Liu, H., McGreevy, J. & Vegh, D. Strange metal transport realized by gauge/gravity duality. Science 329, 4013–1047 (2010).

    Article  Google Scholar 

  51. Davison, R. A., Schalm, K. & Zaanen, J. Holographic duality and the resistivity of strange metals. Phys. Rev. B 89, 245116 (2014).

    Article  ADS  Google Scholar 

  52. Doniach, S. & Das, D. The Bose metal: a commentary. Braz. J. Phys. 33, 740–743 (2003).

    Article  ADS  CAS  Google Scholar 

  53. Jaeger, H. M., Haviland, D. B., Orr, B. G. & Goldman, A. M. Onset of superconductivity in ultrathin granular metal films. Phys. Rev. B 40, 182–196 (1989).

    Article  ADS  CAS  Google Scholar 

  54. Garcia-Barriocanal, J. et al. Electronically driven superconductor–insulator transition in electrostatically doped La2CuO4+δ thin films. Phys. Rev. B 87, 024509 (2013).

    Article  ADS  Google Scholar 

  55. Han, Z. et al. Collapse of superconductivity in a hybrid tin–graphene Josephson junction array. Nat. Phys. 10, 380–386 (2014).

    Article  CAS  Google Scholar 

  56. Bøttcher, C. G. L. et al. Superconducting, insulating and anomalous metallic regimes in a gated two-dimensional semiconductor–superconductor array. Nat. Phys. 14, 1138–1144 (2018)

    Article  Google Scholar 

  57. Glatz, A., Varlamov, A. & Vinokur, V. Fluctuation spectroscopy of disordered two-dimensional superconductors. Phys. Rev. B 84, 104510 (2011).

    Article  ADS  Google Scholar 

  58. Maksimovic, N. et al. Magnetoresistance scaling and the origin of H-linear resistivity in BaFe2(As1−xPx)2. Phys. Rev. X 10, 041062 (2020).

    CAS  Google Scholar 

  59. Ayres, J. et al. Incoherent transport across the strange-metal regime of overdoped cuprates. Nature 595, 661–666 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Boyd, C. & Phillips, P. W. Single-parameter scaling in the magnetoresistance of optimally doped La2−xSrxCuO4. Phys. Rev. B 100, 155139 (2019).

    Article  ADS  CAS  Google Scholar 

  61. Rullier-Albenque, F., Alloul, H., Balakirev, F. & Proust, C. Disorder, metal–insulator crossover and phase diagram in high-Tc cuprates. Europhys. Lett. 81, 37008 (2008).

    Article  ADS  Google Scholar 

  62. Bollinger, A. T. et al. Superconductor–insulator transition in La2−xSrxCuO4 at the pair quantum resistance. Nature 472, 458–460 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  63. Wang, F., Biscaras, J., Erb, A. & Shukla, A. Superconductor–insulator transition in space charge doped one unit cell Bi2.1Sr1.9CaCu2O8+x. Nat. Commun. 12, 2926 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chakravarty, S., Kivelson, S., Zimanyi, G. T. & Halperin, B. I. Effect of quasiparticle tunneling on quantum-phase fluctuations and the onset of superconductivity in granular films. Phys. Rev. B 35, 7256–7259 (1987).

    Article  ADS  CAS  Google Scholar 

  65. Kapitulnik, A., Mason, N., Kivelson, S. A. & Chakravarty, S. Effects of dissipation on quantum phase transitions. Phys. Rev. B 63, 125322 (2001).

    Article  ADS  Google Scholar 

  66. Kampf, A. & Schön, G. Quantum effects and the dissipation by quasiparticle tunneling in arrays of Josephson junctions. Phys. Rev. B 36, 3651–3660 (1987).

    Article  ADS  CAS  Google Scholar 

  67. Tikhonov, K. S. & Feigel’man, M. V. Strange metal state near quantum superconductor–metal transition in thin films. Ann. Phys. 417, 168138 (2020).

    Article  MathSciNet  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. M. Varma, H. Yao, A. Lucas and J. M. Kosterlitz for discussions. This work was supported by the National Natural Science Foundation of China (grants 51722204, 51972041, U20A20244, 11888101, 12022407, 11774008 and 12074056), the National Basic Research Program of China (grants 2021YFA0718800, 2017YFA0303300, 2018YFA0305604 and 2017YFA0304600), Beijing Natural Science Foundation (Z180010) and the China National Postdoctoral Program for Innovative Talents (BX2021054).

Author information

Authors and Affiliations

Authors

Contributions

J.X. and J.M.V. Jr conceived the study and supervised the project together with Y. Li and Jian Wang. C.Y. and Jiandong Wang fabricated the samples. C.Y., Y. Liu, S.W., D.Q., Y.W., Q.H., X.L., Y.T. and P.L. performed the experimental measurements. C.Y., H.L., J.M.V. Jr and J.X. analysed the data with contributions from Y. Liu, J.W. and Y. Li. X.C.X. participated in discussions. C.Y., J.M.V. Jr, H.L., J.X. and Y. Li wrote the manuscript with comments from J.W. and X.C.X.

Corresponding authors

Correspondence to James M. Valles Jr or Jie Xiong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Nature thanks Nicholas Breznay, Aavishkar Patel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Scanning electron microscopy image of a nanopatterned YBa2Cu3O7−δ (YBCO) thin film.

The 12-nm-thick nanopatterned YBCO thin film was fabricated by reactive ion etching through an anodic aluminium oxide (AAO) membrane directly placed atop the YBCO. By RIE, the anodized aluminium oxide pattern of a triangular array of holes with ~70-nm diameter and ~103-nm period was duplicated onto the YBCO film.

Extended Data Fig. 2 First derivatives of the R-T curves of nanopatterned YBCO films.

af, The first derivatives of resistance as a function of temperature for f2 (a), f3 (b), f4 (c), f7(d) and f8 (e). The table shows the yielded parameters of the statistical analysis (f).

Source data

Extended Data Fig. 3 Data residuals after subtracting the linear fit for the RT curves of nanopatterned YBCO films.

Residuals for the RT curves of f2 (a), f3 (b), f4 (c), f7(d) and f8 (e). The residual is defined by the resistance subtracting the linear fitting of the RT curves with the slopes and interceptions shown in f. To delineate the temperature regime for T-linear resistivity, the residual cut-off is set by 50 Ω which is around 0.5% of the normal-state sheet resistance RN. The table shows the temperature regime for T-linear resistivity where the residual is within 50 Ω (f).

Source data

Extended Data Fig. 4 Nonlinear fitting for the R-T curves of nanopatterned YBCO films.

ad, Least-squares nonlinear fitting of the RT curves for f8 (a), f7 (b), f4 (c) and f2 (d). n is the yielded power from the fitting.

Source data

Extended Data Fig. 5 Scale-invariant B-linear resistance in nanopatterned YBCO thin films under perpendicular magnetic field.

af, The magnetoresistance for films: f0 (a), f2 (b), f3 (c), f5 (d), f6 (e) and superconducting (SC; f).

Source data

Extended Data Fig. 6 First derivatives and nonlinear fitting of the RB curves of nanopatterned YBCO films.

a, b, The first derivative of resistance as a function of magnetic field for f4 (a) and f2 (b) at various temperatures. c, d, Least-squares nonlinear curve fitting of the RB curves for f4 (c) and f2 (d).

Source data

Extended Data Fig. 7 BT scaling in nanopatterned YBCO films.

ac, BT scaling in nanopatterned YBCO thin films of f2 (a), f3 (b) and f5 (c).

Source data

Extended Data Fig. 8 Magnetotransport as a as a function of (kBT + γμBB)/kB) of nanopatterned YBCO films.

ad, The resistance and magnetoresistance of f1 (a), f2 (b), f3 (c) and f5 (d) as a function of (kBT + γμBB)/kB), where the γ parameter can be estimated by adjusting it when the curves collapse best.

Source data

Extended Data Fig. 9 Electrode pattern for the measurement.

a, Illustration of the electrode pattern for standard four-probe measurements. b, Illustration of the electrode pattern for Hall measurements. The current was applied at electrode #1 and #5. The Hall resistance was measured from electrode #3 and #7, the longitudinal resistance is measured from electrode #2 and #3. STO, SrTiO3.

Extended Data Fig. 10 Current voltage (IV) curves and RT curves at different current excitations in nanopatterned YBCO film.

ac, RT curves for representative films f4 (a), f3 (b) and f2 (c) with different currents. d, Current voltage (IV) curves for f4.

Source data

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1–S6; Supplementary Tables 1 and 2 and Supplementary References.

Supplementary Data 1

Source Data for Supplementary Fig. 1.

Supplementary Data 2

Source Data for Supplementary Fig. 2.

Supplementary Data 3

Source Data for Supplementary Fig. 3.

Supplementary Data 4

Source Data for Supplementary Fig. 4.

Supplementary Data 5

Source Data for Supplementary Fig. 5.

Supplementary Data 6

Source Data for Supplementary Fig. 6.

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Liu, H., Liu, Y. et al. Signatures of a strange metal in a bosonic system. Nature 601, 205–210 (2022). https://doi.org/10.1038/s41586-021-04239-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-021-04239-y

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing