Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantum spin nematic phase in a square-lattice iridate

Abstract

Spin nematic is a magnetic analogue of classical liquid crystals, a fourth state of matter exhibiting characteristics of both liquid and solid1,2. Particularly intriguing is a valence-bond spin nematic3,4,5, in which spins are quantum entangled to form a multipolar order without breaking time-reversal symmetry, but its unambiguous experimental realization remains elusive. Here we establish a spin nematic phase in the square-lattice iridate Sr2IrO4, which approximately realizes a pseudospin one-half Heisenberg antiferromagnet in the strong spin–orbit coupling limit6,7,8,9. Upon cooling, the transition into the spin nematic phase at TC ≈ 263 K is marked by a divergence in the static spin quadrupole susceptibility extracted from our Raman spectra and concomitant emergence of a collective mode associated with the spontaneous breaking of rotational symmetries. The quadrupolar order persists in the antiferromagnetic phase below TN ≈ 230 K and becomes directly observable through its interference with the antiferromagnetic order in resonant X-ray diffraction, which allows us to uniquely determine its spatial structure. Further, we find using resonant inelastic X-ray scattering a complete breakdown of coherent magnon excitations at short-wavelength scales, suggesting a many-body quantum entanglement in the antiferromagnetic state10,11. Taken together, our results reveal a quantum order underlying the Néel antiferromagnet that is widely believed to be intimately connected to the mechanism of high-temperature superconductivity12,13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spin one-half moments on a square lattice.
Fig. 2: Dipole–quadrupole interference in circular dichroic RXD.
Fig. 3: Phase transition into the spin nematic phase.
Fig. 4: Complete breakdown of magnon at short-wavelength scales.

Similar content being viewed by others

Data availability

All data are available in the manuscript or Supplementary Information.

References

  1. Blume, M. & Hsieh, Y. Y. Biquadratic exchange and quadrupolar ordering. J. Appl. Phys. 40, 1249–1249 (1969).

    Article  ADS  Google Scholar 

  2. Andreev, A. F. & Grishchuk, I. A. Spin nematics. Sov. Phys. JETP 60, 267–271 (1984).

    ADS  Google Scholar 

  3. Läuchli, A., Domenge, J. C., Lhuillier, C., Sindzingre, P. & Troyer, M. Two-step restoration of SU(2) symmetry in a frustrated ring-exchange magnet. Phys. Rev. Lett. 95, 137206 (2005).

    Article  ADS  PubMed  Google Scholar 

  4. Shannon, N., Momoi, T. & Sindzingre, P. Nematic order in square lattice frustrated ferromagnets. Phys. Rev. Lett. 96, 027213 (2006).

    Article  ADS  PubMed  Google Scholar 

  5. Sato, M., Hikihara, T. & Momoi, T. Spin-nematic and spin-density-wave orders in spatially anisotropic frustrated magnets in a magnetic field. Phys. Rev. Lett. 110, 077206 (2013).

    Article  ADS  PubMed  Google Scholar 

  6. Kim, B. J. et al. Novel Jeff = 1/2 Mott state induced by relativistic spin-orbit coupling in Sr2IrO4. Phys. Rev. Lett. 101, 076402 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Kim, B. J. et al. Phase-sensitive observation of a spin-orbital mott state in Sr2IrO4. Science 323, 1329–1332 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Jackeli, G. & Khaliullin, G. Mott insulators in the strong spin-orbit coupling limit: from Heisenberg to a quantum compass and Kitaev models. Phys. Rev. Lett. 102, 017205 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Bertinshaw, J., Kim, Y. K., Khaliullin, G. & Kim, B. J. Square lattice iridates. Annu. Rev. Condens. Matter Phys. 10, 315–336 (2019).

    Article  ADS  CAS  Google Scholar 

  10. Dalla Piazza, B. et al. Fractional excitations in the square-lattice quantum antiferromagnet. Nat. Phys. 11, 62–68 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Shao, H. et al. Nearly deconfined spinon excitations in the square-lattice spin-1/2 Heisenberg antiferromagnet. Phys. Rev. X 7, 041072 (2017).

    Google Scholar 

  12. Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    Article  ADS  CAS  Google Scholar 

  14. Scalapino, D. J. A common thread: the pairing interaction for unconventional superconductors. Rev. Mod. Phys. 84, 1383–1417 (2012).

    Article  ADS  CAS  Google Scholar 

  15. Vaknin, D. et al. Antiferromagnetism in La2CuO4−y. Phys. Rev. Lett. 58, 2802–2805 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Singh, R. R. P. Thermodynamic parameters of the T = 0, spin-1/2 square-lattice Heisenberg antiferromagnet. Phys. Rev. B 39, 9760–9763 (1989).

    Article  ADS  CAS  Google Scholar 

  17. Smerald, A. & Shannon, N. Theory of spin excitations in a quantum spin-nematic state. Phys. Rev. B 88, 184430 (2013).

    Article  ADS  Google Scholar 

  18. Savary, L. & Senthil, T. Probing hidden orders with resonant inelastic X-ray scattering. Preprint at arxiv.org/abs/1506.04752 (2015).

  19. Kohama, Y. et al. Possible observation of quantum spin-nematic phase in a frustrated magnet. Proc. Natl Acad. Sci. USA 116, 10686–10690 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Orlova, A. et al. Nuclear magnetic resonance signature of the spin-nematic phase in LiCuVO4 at high magnetic fields. Phys. Rev. Lett. 118, 247201 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Ye, F. et al. Magnetic and crystal structures of Sr2IrO4: a neutron diffraction study. Phys. Rev. B 87, 140406 (2013).

    Article  ADS  Google Scholar 

  22. Porras, J. et al. Pseudospin-lattice coupling in the spin-orbit Mott insulator Sr2IrO4. Phys. Rev. B 99, 085125 (2019).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  23. Cetin, M. F. et al. Crossover from coherent to incoherent scattering in spin-orbit dominated Sr2IrO4. Phys. Rev. B 85, 195148 (2012).

    Article  ADS  Google Scholar 

  24. Gim, Y. et al. Isotropic and anisotropic regimes of the field-dependent spin dynamics in Sr2IrO4: Raman scattering studies. Phys. Rev. B 93, 024405 (2016).

    Article  ADS  Google Scholar 

  25. Gretarsson, H. et al. Two-magnon Raman scattering and pseudospin-lattice interactions in Sr2IrO4 and Sr3Ir2O7. Phys. Rev. Lett. 116, 136401 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Aeppli, G. et al. Magnetic dynamics of La2CuO4 and La2−xBaxCuO4. Phys. Rev. Lett. 62, 2052–2055 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Christensen, N. B. et al. Quantum dynamics and entanglement of spins on a square lattice. Proc. Natl Acad. Sci. USA 104, 15264–15269 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Headings, N. S., Hayden, S. M., Coldea, R. & Perring, T. G. Anomalous high-energy spin excitations in the high-Tc superconductor-parent antiferromagnet La2CuO4. Phys. Rev. Lett. 105, 247001 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Martinelli, L. et al. Fractional spin excitations in the infinite-layer cuprate CaCuO2. Phys. Rev. X 12, 021041 (2022).

    CAS  Google Scholar 

  30. Tsyrulin, N. et al. Quantum effects in a weakly frustrated S = 1/2 two-dimensional Heisenberg antiferromagnet in an applied magnetic field. Phys. Rev. Lett. 102, 197201 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Powalski, M., Schmidt, K. P. & Uhrig, G. S. Mutually attracting spin waves in the square-lattice quantum antiferromagnet. SciPost Phys. 4, 001 (2018).

    Article  ADS  Google Scholar 

  32. Chen, H. H. & Levy, P. M. Quadrupole phase transitions in magnetic solids. Phys. Rev. Lett. 27, 1383–1385 (1971).

    Article  ADS  CAS  Google Scholar 

  33. Chandra, P. & Coleman, P. Quantum spin nematics: moment-free magnetism. Phys. Rev. Lett. 66, 100–103 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Läuchli, A., Mila, F. & Penc, K. Quadrupolar phases of the S = 1 bilinear-biquadratic Heisenberg model on the triangular lattice. Phys. Rev. Lett. 97, 087205 (2006).

    Article  ADS  PubMed  Google Scholar 

  35. Hikihara, T., Kecke, L., Momoi, T. & Furusaki, A. Vector chiral and multipolar orders in the spin-\(\frac{1}{2}\) frustrated ferromagnetic chain in magnetic field. Phys. Rev. B 78, 144404 (2008).

    Article  ADS  Google Scholar 

  36. Ueda, H. T. & Totsuka, K. Magnon bose-einstein condensation and various phases of three-dimensonal quantum helimagnets under high magnetic field. Phys. Rev. B 80, 014417 (2009).

    Article  ADS  Google Scholar 

  37. Zhitomirsky, M. E. & Tsunetsugu, H. Magnon pairing in quantum spin nematic. EPL 92, 37001 (2010).

    Article  Google Scholar 

  38. Kim, J. et al. Magnetic excitation spectra of Sr2IrO4 probed by resonant inelastic X-ray scattering: establishing links to cuprate superconductors. Phys. Rev. Lett. 108, 177003 (2012).

    Article  ADS  PubMed  Google Scholar 

  39. Mourigal, M. et al. Evidence of a bond-nematic phase in LiCuVO4. Phys. Rev. Lett. 109, 027203 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Seyler, K. L. et al. Spin-orbit-enhanced magnetic surface second-harmonic generation in Sr2IrO4. Phys. Rev. B 102, 201113 (2020).

    Article  ADS  CAS  Google Scholar 

  41. Jeong, J., Sidis, Y., Louat, A., Brouet, V. & Bourges, P. Time-reversal symmetry breaking hidden order in Sr2(Ir,Rh)O4. Nat. Commun. 8, 15119 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  42. Murayama, H. et al. Bond directional anapole order in a spin-orbit coupled Mott insulator Sr2(Ir1−xRhx)O4. Phys. Rev. X 11, 011021 (2021).

    CAS  Google Scholar 

  43. Kim, J. et al. Single crystal growth of iridates without platinum impurities. Phys. Rev. Mater. 6, 103401 (2022).

    Article  CAS  Google Scholar 

  44. Torchinsky, D. et al. Structural distortion-induced magnetoelastic locking in Sr2IrO4 revealed through nonlinear optical harmonic generation. Phys. Rev. Lett. 114, 096404 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Zhu, X. D., Ullah, R. & Taufour, V. Oblique-incidence Sagnac interferometric scanning microscope for studying magneto-optic effects of materials at low temperatures. Rev. Sci. Instrum. 92, 043706 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Varma, C. M. Non-Fermi-liquid states and pairing instability of a general model of copper oxide metals. Phys. Rev. B 55, 14554–14580 (1997).

    Article  ADS  CAS  Google Scholar 

  47. Zhao, L. et al. Evidence of an odd-parity hidden order in a spin-orbit coupled correlated iridate. Nat. Phys. 12, 32–36 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Shannon, G. Khaliullin and Y. B. Kim for helpful discussions. This project is supported by the Institute for Basic Science (Project IBS-R014-A2) and the Samsung Science and Technology Foundation (Project SSTF-BA2201-04). Experiments at the PLS-II 1C beamline were supported in part by the Ministry of Science and ICT of Korea. The use of the Advanced Photon Source at the Argonne National Laboratory was supported by the US Department of Energy (Contract DE-AC02-06CH11357). We acknowledge the European Synchrotron Radiation Facility for provision of synchrotron radiation facilities (Proposal HC-5311), and we also thank F. Gerbon for assistance and support in using beamline ID20. J.-K.K. was supported by the Global PhD Fellowship Program by the National Research Foundation of Korea (Grant 2018H1A2A1059958). G.Y.C. is supported by the National Research Foundation of Korea (Grants 2020R1C1C1006048, RS-2023-00208291, 2023M3K5A1094810 and 2023M3K5A1094813) funded by the Korean Government (Ministry of Science and ICT), the Institute of Basic Science (Project IBS-R014-D1), the Air Force Office of Scientific Research (Award FA2386-22-1-4061) and the Samsung Science and Technology Foundation (Project SSTF-BA2002-05). H.H. and J.J. are supported by the National Research Foundation of Korea (Grant 2020R1A5A1016518) and the Creative-Pioneering Researchers Program through Seoul National University.

Author information

Authors and Affiliations

Authors

Contributions

B.J.K. conceived and managed the project. H.K., K.K. and Jonghwan Kim performed Raman experiments. H.K., J. Kwon and S.H. performed resonant X-ray diffraction experiments with help from J.S., G.F., Y.C., D.H. and J.W.K.; H.K., J.-K.K., J. Kwon and H.-W.J.K. performed resonant inelastic X-ray scattering experiments and analysed the data with help from C.J.S., A.L. and Jungho Kim. Jimin Kim grew single crystals. H.H. and J.J. performed Kerr measurements. H.K. and B.J.K. performed representation analysis. W.L. and G.Y.C. assisted in the interpretation of the data. H.K., J.-K.K. and B.J.K. wrote the manuscript with inputs from all authors.

Corresponding author

Correspondence to B. J. Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Temperature evolution of the low-energy Raman modes.

The Raman spectra of the A1g and B2g modes shown in Fig. 2c,e are displayed with vertical offset for clarity. The A1g (red) and B2g (black) spectra were measured on the same crystal under the same experimental conditions including laser power and acquisition time, and the spectra are plotted in the same arbitrary unit.

Extended Data Fig. 2 Magneto-optical Kerr measurement.

a, Relative Kerr angle in the 0.35 T in-plane magnetic field (red line) and ambient magnetic field near 0 T (black line). The relative Kerr angle (left axis) is converted to magnetization (right axis) using a conversion factor of 7.7 × 10−4 (μB/Ir ion)/(μ rad). b, Magnified plot of the 0 T data in a. Dashed line indicates the standard deviation for the T = 230 ~ 300 K range. The Kerr signal at B = 0 T in the range of 230 K < T < 300 K shows that no net magnetization is present within our experimental resolution, 3.4 × 10−5μB/ion (dashed line), thus confirming the preservation of time-reversal symmetry above TN ~ 230 K.

Extended Data Fig. 3 Polarziation-resolved RIXS spectra.

a–f, RIXS spectra along the zone boundary from (π/2, π/2) to (π, 0) with the spin components transverse (T) and longitudinal (L) to the ordered AF moments resolved. The spectra were acquired with the same experimental setup in Fig. 4. The error bars are derived using error propagation based on the standard deviations of the raw spectra.

Extended Data Table 1 Sensitive mode for each combination of specific scattering geometry and field direction in RIXS measurements on Sr2IrO4
Extended Data Table 2 Comparison to previous reports of hidden order in Sr2IrO4

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Kim, JK., Kwon, J. et al. Quantum spin nematic phase in a square-lattice iridate. Nature 625, 264–269 (2024). https://doi.org/10.1038/s41586-023-06829-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06829-4

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing