Nanoparticles articles within Nature Chemistry

Featured

  • Article |

    Clathrates—open crystals with a hierarchy of polyhedral cages—are mostly found in atomic and molecular systems. Now, it has been shown through Monte Carlo simulations that the formation of colloidal host–guest clathrates can be driven by entropy alone, through entropy compartmentalization.

    • Sangmin Lee
    • , Thi Vo
    •  & Sharon C. Glotzer
  • Article |

    Large biomolecules cannot be loaded into conventional Janus nanoparticles with small mesopores, preventing the establishment of efficient logic-gate systems in single Janus nanoparticles. Now, an emulsion-oriented assembly approach has been shown to fabricate Janus double-spherical nanoparticles with dual-tunable mesopores, enabling the design of various single-particle-level logic systems.

    • Tiancong Zhao
    • , Liang Chen
    •  & Dongyuan Zhao
  • Article |

    Current strategies for photoinduced olefin metathesis lack wavelength tunability. Now, plasmonic nanoparticles have been used to activate latent ruthenium catalysts, enabling light-induced olefin metathesis in the infrared range with several advantages when compared with conventional heating. Implementing this approach in ring-opening metathesis polymerization resulted in photoresponsive polymer–nanoparticle composites with enhanced mechanical properties.

    • Nir Lemcoff
    • , Noy B. Nechmad
    •  & Yossi Weizmann
  • Article |

    Gold nanoparticles typically exhibit hard-sphere-like assembly behaviour, but now the size, morphology and symmetry of crystals of Au25 nanoparticles have been tuned. The presence of excess tetraethylammonium cations has been shown to promote the one-dimensional assembly of the nanoparticles, which in turn form rod-like crystals, by stabilizing dynamically detached ligands from adjacent particles into interparticle linkers through CH⋯π and ion-pairing interactions.

    • Qiaofeng Yao
    • , Lingmei Liu
    •  & Jianping Xie
  • Article |

    Spin-crossover nanoparticles have been covalently grafted onto a semiconducting MoS2 layer to form a self-strainable heterostructure. Under light or thermal stimulus, the nanoparticles switch between their high- and low-spin states, in which they have different volumes. This generates a reversible strain over the MoS2 layer and, in turn, alters the electrical and optical properties of the heterostructure.

    • Ramón Torres-Cavanillas
    • , Marc Morant-Giner
    •  & Eugenio Coronado
  • News & Views |

    Charged nanoparticles can behave as large ions or as small colloids. Their interaction with multivalent ions has now been shown to reflect this dichotomy, providing new paths to large, self-assembled nanoparticle superstructures.

    • Tobias Kraus
  • Article |

    Coulombic interactions can be used to assemble charged nanoparticles into higher-order structures, but this process typically requires similarly sized oppositely charged partners. Now, small anions or cations with as few as three charges have been shown to induce attractive interactions between oppositely charged nanoparticles in water, guiding the assembly of colloidal crystals.

    • Tong Bian
    • , Andrea Gardin
    •  & Rafal Klajn
  • News & Views |

    Colloidal self-assembly requires carefully balanced particle interactions that are often incompatible with the mechanical disturbances associated with macroscopic-scale manufacturing. Now, a practical bottom-up route has enabled the production of bulk solid materials with nanoscale components.

    • Theodore Hueckel
    •  & Stefano Sacanna
  • Article |

    Nanoparticulate platinum is a highly active catalyst, but it is scarce, expensive and not always sufficiently durable. Now, barium platinate has been used as a vehicle to preserve platinum as an oxide during the solid-state synthesis of a Pt-doped titanate perovskite; this enables the production of a structure with active and stable Pt nanoparticles on the perovskite surface that catalyses CO oxidation.

    • Maadhav Kothari
    • , Yukwon Jeon
    •  & John T. S. Irvine
  • Article |

    Stimuli-responsive control of drug activation can mitigate issues caused by poor drug selectivity. Now, it has been shown that mechanical force—induced by ultrasound—can be used to activate drugs in three different systems. This approach has enabled the activation of antibiotics or a cytotoxic anticancer agent from synthetic polymers, polyaptamers and nanoparticle assemblies.

    • Shuaidong Huo
    • , Pengkun Zhao
    •  & Andreas Herrmann
  • Article |

    A programmable polymer library that responds to external and internal stimuli has been developed and used to fabricate a series of nanocarriers for drug release. The carriers respond to disease biomarkers, triggering self-immolative motifs and leading to the site-specific release of therapeutics both in vitro and in vivo.

    • Penghui Zhang
    • , Di Gao
    •  & Weihong Tan
  • Article |

    Quantum dots functionalized with energy-accepting dyes hold promise for converting low-energy photons into higher-energy visible light for bioimaging, catalysis and solar energy harvesting. Now, it has been shown that non-toxic silicon quantum dots can be used in these systems; the transfer of spin-triplet excitons to molecules at their surface has been observed.

    • Pan Xia
    • , Emily K. Raulerson
    •  & Sean T. Roberts
  • News & Views |

    Enzymes can perform various biological functions because of their delicately and precisely organized structures. Now, simple inorganic nanoparticles with a rationally designed recognition capability can mimic restriction enzymes and selectively cut specific DNA sequences.

    • Aleksandar P. Ivanov
    •  & Joshua B. Edel
  • News & Views |

    The beauty and activity of enzymes inspire chemists to tailor new and better non-biological catalysts. Now, a study reveals that the active sites within heterogeneous catalysts actively cooperate in a fashion phenomenologically similar to, but mechanistically distinct, from enzymes.

    • Bert M. Weckhuysen
  • Article |

    Multi-electron redox reactions are kinetically sluggish; however, plasmonic nanoparticles have shown promise as multi-electron reduction catalysts. Now, the principles that govern the harvesting of multiple electron–hole pairs from plasmonically excited gold nanoparticle photocatalysts are elucidated, providing a general foundation for the plasmonic catalysis of challenging multi-electron, multi-proton chemistry, such as N2 fixation and CO2 reduction.

    • Youngsoo Kim
    • , Jeremy G. Smith
    •  & Prashant K. Jain
  • Article |

    Cell-to-cell variation in gene expression creates a need for techniques that characterize expression at the level of individual cells. Now, a technique for characterizing mRNA expression has been developed. The technique uses the intracellular self-assembly of magnetic nanoparticles to quantitate RNA levels at the single-cell level.

    • Mahmoud Labib
    • , Reza M. Mohamadi
    •  & Shana O. Kelley
  • Article |

    Nanocatalysts can undergo various dynamic phenomena that affect their activity, such as restructuring and spillover. Now, using spatially and temporally resolved imaging of individual catalytic reactions, cooperative communication between different sites within single palladium- and gold-based nanocatalysts, and between different nanocatalysts, has been observed during three distinct catalytic reactions.

    • Ningmu Zou
    • , Xiaochun Zhou
    •  & Peng Chen
  • Article |

    Photosynthesis uses sunlight to oxidize or reduce reaction centres multiple times and prepare them for multiple-electron-transfer reactions. Now, it has been shown that a molecular proxy for a multiple-electron-transfer electrocatalyst can be oxidized twice by dye molecules when both are anchored to a mesoporous TiO2 thin film and excited with low-intensity visible light.

    • Hsiang-Yun Chen
    •  & Shane Ardo
  • News & Views |

    Biomimetic molecules that can be easily tailored offer numerous opportunities. Now, boron-based clusters have been shown to be excellent biomimetics. The ease with which the cluster surfaces can be modified stands to change how chemists might go about preparing materials for imaging, drug delivery and other applications.

    • Marek B. Majewski
    • , Ashlee J. Howarth
    •  & Omar K. Farha
  • Article |

    A scalable, one-pot, solution-based protocol for the controlled synthesis of uniform non-spherical block copolymer micelles is a desirable but challenging target. Now, a polymerization-induced crystallization-driven self-assembly process has been developed that offers facile access to 1D and platelet micelle morphologies and to near monodisperse cylinders of controlled length.

    • Charlotte E. Boott
    • , Jessica Gwyther
    •  & Ian Manners
  • Article |

    The operational simplicity of modifying the surfaces of thiol-capped gold nanoparticles has been a hallmark of their success in materials chemistry, despite having limited control over the surface composition. Now, SNAr chemistry on activated perfluoroaromatics has been shown to mimic this simplicity and allow for the synthesis of atomically precise nanomolecules.

    • Elaine A. Qian
    • , Alex I. Wixtrom
    •  & Alexander M. Spokoyny
  • Article |

    Biomolecular nanoscale compartments are ubiquitous in living systems. Although their formation is fairly straightforward, the same cannot be said of their inorganic counterparts. In this study, uniform nanoshells are observed self-assembling from stabilizer-free inorganic nanoparticles in water, under ambient conditions, and without the need for spherical tiling. This enables further study of inorganic prebiotic systems and compartmentalized biomimetic catalysis.

    • Ming Yang
    • , Henry Chan
    •  & Nicholas A. Kotov
  • Article |

    Crystals grow from nuclei. In systems where nuclei are nanometre-sized and form quickly, it is difficult to determine the mechanism of their formation. Now, through in situ TEM, the demixing of a supersaturated aqueous gold solution into metastable gold-poor and gold-rich liquid phases is observed, the latter yielding stable clusters that become nuclei for nanocrystal growth.

    • N. Duane Loh
    • , Soumyo Sen
    •  & Utkur Mirsaidov
  • Article |

    Photoexcited holes in CdS nanocrystals rapidly trap to the surface and although they are integral to nanocrystal photophysics and photochemistry, their dynamics have remained elusive. Time-resolved spectroscopy and theoretical modelling have now revealed that trapped holes in CdS nanorods are mobile and undergo a random walk on the nanocrystal surface.

    • James K. Utterback
    • , Amanda N. Grennell
    •  & Gordana Dukovic
  • Article |

    A broadly applicable strategy that can control the self-assembly of nanoparticles into a predefined structure has been reported. Integrating nanoparticles with DNA constructs creates individual modules that can be assembled into complex planar architectures. The approach combines nanoparticles with the selectivity and directionality of bonds provided by DNA.

    • Wenyan Liu
    • , Jonathan Halverson
    •  & Oleg Gang
  • Article |

    DNA nanostructures are typically used as molecular scaffolds. Now, it has been shown that they can also act as reusable templates for ‘molecular printing’ of DNA strands onto gold nanoparticles. The products inherit the recognition elements of the parent template: number, orientation and sequence asymmetry of DNA strands. This converts isotropic nanoparticles into complex building blocks.

    • Thomas G. W. Edwardson
    • , Kai Lin Lau
    •  & Hanadi F. Sleiman
  • Article |

    Impure glycerol is obtained as a significant by-product of biodiesel production. Now it is shown that this crude glycerol can be reacted with water over very simple basic or redox oxide catalysts to produce methanol in high yields, together with other useful chemicals, in a one-step low pressure process.

    • Muhammad H. Haider
    • , Nicholas F. Dummer
    •  & Graham J. Hutchings
  • Article |

    Controlling the self-assembly of nanoparticles using light has been demonstrated in many systems where the particle surfaces are functionalized with photoswitchable ligands. Now, it has been shown that the light-controlled self-assembly of non-photoresponsive nanoparticles can be achieved in a quantitative and reversible fashion by placing them in a photoresponsive medium.

    • Pintu K. Kundu
    • , Dipak Samanta
    •  & Rafal Klajn
  • News & Views |

    Bioorthogonal catalysis provides new ways of mediating artificial transformations in living environs. Now, researchers have developed a nanodevice whose catalytic activity can be regulated by host–guest chemistry.

    • Asier Unciti-Broceta
  • Article |

    Regulation of bioorthogonal catalysis in living systems is challenging because of the complex intracellular environment. Now, the activity of protein-sized bioorthogonal nanozymes has been regulated by binding a supramolecular cucurbit[7]uril ‘gate-keeper’ onto the monolayer surface. This arrangement enables the controlled activation of profluorophores and prodrugs inside living cells for imaging and therapeutic applications.

    • Gulen Yesilbag Tonga
    • , Youngdo Jeong
    •  & Vincent M. Rotello
  • Research Highlights |

    • Claire Hansell
  • Article |

    Magnetic resonance imaging of gene expression has been limited by the low molecular sensitivity of conventional 1H-MRI. To overcome this limitation, the first genetically encoded reporters for hyperpolarized xenon MRI have been developed. These expressible reporters, based on gas-filled protein nanostructures from buoyant microorganisms, are detectable at picomolar concentrations.

    • Mikhail G. Shapiro
    • , R. Matthew Ramirez
    •  & Vikram S. Bajaj
  • Article |

    The conversion of water to oxygen is an essential process for both natural and artificial photosynthesis. Important intermediates in the stepwise mechanism of water oxidation on the surface of cobalt oxide have now been spectroscopically identified, providing key insights for the development of higher-efficiency catalysts made from Earth-abundant materials.

    • Miao Zhang
    • , Moreno de Respinis
    •  & Heinz Frei
  • Article |

    Non-noble-metal-based MoS2 nanostructures are hydrogen evolution catalysts whose active sites are known to be located at the edges. Supported thiomolybdate [Mo3S13]2− nanoclusters have now been prepared that exhibit a structural motif similar to that of MoS2 edges. The nanoclusters, synthesized by a scalable route, demonstrate a high turnover frequency.

    • Jakob Kibsgaard
    • , Thomas F. Jaramillo
    •  & Flemming Besenbacher
  • News & Views |

    Four-dimensional electron microscopy has been applied to the detailed characterization of metal–organic-framework nanoparticles undergoing an electronic transition. The transition characteristics of a single particle were found to differ from those of an ensemble, and also to vary from one nanoparticle to the next.

    • Nigel D. Browning
  • Article |

    Introducing a small aperture in a 4D electron microscope has enabled researchers to visualize the phase transition of a single metal–organic framework particle with excellent spatio-temporal resolution. The spin-crossover dynamics of one nanoparticle are found to be distinct from those observed for an ensemble of heterogeneous nanoparticles.

    • Renske M. van der Veen
    • , Oh-Hoon Kwon
    •  & Ahmed H. Zewail
  • Article |

    A {U12Mn6} wheel-shaped cluster that has been assembled through cation–cation interactions exhibits single-molecule-magnet behaviour. Single-molecule magnets are promising for magnetic storage devices at the nanoscale, and the observation of magnetic bistability with an open hysteresis loop and high relaxation barrier in this 5f–3d complex suggests that uranium-based compounds could be useful components.

    • Victor Mougel
    • , Lucile Chatelain
    •  & Marinella Mazzanti
  • Article |

    Heterogeneous catalysts are generally more readily recycled than homogeneous catalysts, but the latter are more easily modified to tune reactivity and selectivity. Here, the dendrimer coating of gold nanoparticle catalysts is shown to be a surrogate for the ligands of homogeneous catalysts. Tuning of product distribution and reaction selectivity is possible when these catalysts are employed in a fixed-bed flow reactor.

    • Elad Gross
    • , Jack Hung-Chang Liu
    •  & Gabor A. Somorjai
  • News & Views |

    Polymer vesicles have been constructed that entrap platinum nanoparticles in their outer surface. These serve to break down a fuel of hydrogen peroxide, generating water and oxygen and in turn inducing a propulsive effect.

    • Jonathan Howse
  • Article |

    Transparent conductive electrodes are widely used in modern optoelectronic devices, but they are rarely transparent in the near-infrared, limiting their use. Nanostructured bismuth selenide, a topological insulator, is now shown to be a flexible near-infrared transparent electrode.

    • Hailin Peng
    • , Wenhui Dang
    •  & Zhongfan Liu
  • Article |

    A supramolecular system has been assembled that moves autonomously in the presence of a molecular fuel. Platinum nanoparticles entrapped in a polymer stomatocyte — a bowl-shaped polymer vesicle — catalyse the decomposition of the molecular fuel, hydrogen peroxide. The resulting generation of water and oxygen induces a directional movement of the stomatocyte.

    • Daniela A. Wilson
    • , Roeland J. M. Nolte
    •  & Jan C. M. van Hest
  • Article |

    Surfactant-capped nanoparticles of various sizes, shapes and compositions have been completely enshrouded within a metal–organic framework in a controlled, well-dispersed manner. The resulting hybrid materials exhibit active properties — catalytic, magnetic and optical — arising from the nanoparticles as well as sieving and orientation effects originating from the porous framework.

    • Guang Lu
    • , Shaozhou Li
    •  & Fengwei Huo
  • Article |

    Colloidal hybrid nanoparticles represent an emerging class of multifunctional artificial molecules. However, unlike actual molecules, their complexity is limited by the lack of a mechanism-driven design framework. Here, nanoparticle analogues of chemoselectivity, regiospecificity, molecular substituent effects, and coupling reactions are used to predictably synthesize hybrid nanoparticle trimers, tetramers, and oligomers.

    • Matthew R. Buck
    • , James F. Bondi
    •  & Raymond E. Schaak
  • Article |

    Small nanoparticles with controlled morphologies can be prepared for catalysis applications by colloidal methods using stabilizing ligands. A solvent-extraction method has now been described that removes the ligands without affecting the morphology of the nanoparticles, or their catalytic activity over a range of reactions.

    • Jose A. Lopez-Sanchez
    • , Nikolaos Dimitratos
    •  & Graham J. Hutchings
  • Article |

    The photocatalytic production of hydrogen from renewables such as ethanol and water could be a key means of future fuel production. There are few, if any, catalysts available for such a reaction, and our understanding of photocatalytic reactions generally remains poor. It is now demonstrated that gold–titania nanoparticles are effective catalysts for producing hydrogen from ethanol, and the rate is independent of gold particle size.

    • M. Murdoch
    • , G. I. N. Waterhouse
    •  & H. Idriss