Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanochemical bond scission for the activation of drugs

An Author Correction to this article was published on 06 May 2021

This article has been updated

Abstract

Pharmaceutical drug therapy is often hindered by issues caused by poor drug selectivity, including unwanted side effects and drug resistance. Spatial and temporal control over drug activation in response to stimuli is a promising strategy to attenuate and circumvent these problems. Here we use ultrasound to activate drugs from inactive macromolecules or nano-assemblies through the controlled scission of mechanochemically labile covalent bonds and weak non-covalent bonds. We show that a polymer with a disulfide motif at the centre of the main chain releases an alkaloid-based anticancer drug from its β-carbonate linker by a force-induced intramolecular 5-exo-trig cyclization. Second, aminoglycoside antibiotics complexed by a multi-aptamer RNA structure are activated by the mechanochemical opening and scission of the nucleic acid backbone. Lastly, nanoparticle–polymer and nanoparticle–nanoparticle assemblies held together by hydrogen bonds between the peptide antibiotic vancomycin and its complementary peptide target are activated by force-induced scission of hydrogen bonds. This work demonstrates the potential of ultrasound to activate mechanoresponsive prodrug systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic depiction of US activation of drugs.
Fig. 2: US-induced release of UMB and CPT from β-carbonate disulfide polymer.
Fig. 3: Deactivation and activation of aminoglycoside antibiotics bound to R23 polyaptamer in response to US.
Fig. 4: Fabrication and characterization of Van–DADA mechanophore-based PN systems and their response to US.
Fig. 5: Fabrication and US-induced disassembly of Van–DADA mechanophore-based NN systems.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article and its Supplementary Information. Raw data used for graphs in Figs. 2a–e, 3e,f, 4b,c and 5f are available in comma-separated-values format as source data. Enquiries regarding raw data published within the Supplementary Information are welcomed by the corresponding authors. This includes free induction decay files of nuclear magnetic resonance measurements, elugrams of gel permeation and high-performance liquid chromatography, spectra of ultraviolet–visible, fluorescence and infrared spectroscopy, and MIC and IC50 measurements in comma-separated-values format.

Change history

References

  1. Wang, X., Ryu, D., Houtkooper, R. H. & Auwerx, J. Antibiotic use and abuse: a threat to mitochondria and chloroplasts with impact on research, health, and environment. BioEssays 37, 1045–1053 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tibbitt, M. W., Dahlman, J. E. & Langer, R. Emerging frontiers in drug delivery. J. Am. Chem. Soc. 138, 704–717 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Velema, W. A., Szymanski, W. & Feringa, B. L. Photopharmacology: beyond proof of principle. J. Am. Chem. Soc. 136, 2178–2191 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Hüll, K., Morstein, J. & Trauner, D. In vivo photopharmacology. Chem. Rev. 118, 10710–10747 (2018).

    Article  Google Scholar 

  5. Mosayebi, J., Kiyasatfar, M. & Laurent, S. Synthesis, functionalization, and design of magnetic nanoparticles for theranostic applications. Adv. Healthcare Mater. 6, 1700306 (2017).

    Article  Google Scholar 

  6. Deirram, N., Zhang, C., Kermaniyan, S. S., Johnston, A. P. R. & Such, G. K. pH-responsive polymer nanoparticles for drug delivery. Macromol. Rapid Commun. 40, 1800917 (2019).

    Article  Google Scholar 

  7. Huo, M., Yuan, J., Tao, L. & Wei, Y. Redox-responsive polymers for drug delivery: from molecular design to applications. Polym. Chem. 5, 1519–1528 (2014).

    Article  CAS  Google Scholar 

  8. Karimi, M. et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem. Soc. Rev. 45, 1457–1501 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mura, S., Nicolas, J. & Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12, 991–1003 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Yun, S. H. & Kwok, S. J. J. Light in diagnosis, therapy and surgery. Nat. Biomed. Eng. 1, 0008 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ahmed, S. E., Martins, A. M. & Husseini, G. A. The use of ultrasound to release chemotherapeutic drugs from micelles and liposomes. J. Drug. Target. 23, 16–42 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Phenix, C. P., Togtema, M., Pichardo, S., Zehbe, I. & Curiel, L. High intensity focused ultrasound technology, its scope and applications in therapy and drug delivery. J. Pharm. Pharm. Sci. 17, 136–153 (2014).

    Article  PubMed  Google Scholar 

  13. Kiessling, F. et al. Recent advances in molecular, multimodal and theranostic ultrasound imaging. Adv. Drug Deliv. Rev. 72, 15–27 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Lattwein, K. R. et al. Sonobactericide: an emerging treatment strategy for bacterial infections. Ultrasound Med. Biol. 46, 193–215 (2020).

    Article  PubMed  Google Scholar 

  15. Rosenthal, I., Sostaric, J. Z. & Riesz, P. Sonodynamic therapy––a review of the synergistic effects of drugs and ultrasound. Ultrason. Sonochem. 11, 349–363 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Mitragotri, S. Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nat. Rev. Drug Discov. 4, 255–260 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. May, P. A. & Moore, J. S. Polymer mechanochemistry: techniques to generate molecular force via elongational flows. Chem. Soc. Rev. 42, 7497–7506 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Akbulatov, S. & Boulatov, R. Experimental polymer mechanochemistry and its interpretational frameworks. ChemPhysChem 18, 1422–1450 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Stratigaki, M. & Göstl, R. Methods for exerting and sensing force in polymer materials using mechanophores. ChemPlusChem 85, 1095–1103 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Brown, C. L. & Craig, S. L. Molecular engineering of mechanophore activity for stress-responsive polymeric materials. Chem. Sci. 6, 2158–2165 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cravotto, G., Gaudino, E. C. & Cintas, P. On the mechanochemical activation by ultrasound. Chem. Soc. Rev. 42, 7521–7534 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Kim, G. et al. High-intensity focused ultrasound-induced mechanochemical transduction in synthetic elastomers. Proc. Natl Acad. Sci. USA 116, 10214–10222 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shi, Z., Wu, J., Song, Q., Göstl, R. & Herrmann, A. Toward drug release using polymer mechanochemical disulfide scission. J. Am. Chem. Soc. 142, 14725–14732 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Shi, Z., Song, Q., Göstl, R. & Herrmann, A. Mechanochemical activation of disulfide-based multifunctional polymers for theranostic drug release. Chem. Sci. 12, 1668–1674 (2021).

    Article  CAS  Google Scholar 

  25. Kucharski, T. J. et al. Kinetics of thiol/disulfide exchange correlate weakly with the restoring force in the disulfide moiety. Angew. Chem., Int. Ed. 48, 7040–7043 (2009).

    Article  CAS  Google Scholar 

  26. Dopieralski, P. et al. The Janus-faced role of external forces in mechanochemical disulfide bond cleavage. Nat. Chem. 5, 685–691 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Yang, Z. et al. Folate-based near-infrared fluorescent theranostic gemcitabine delivery. J. Am. Chem. Soc. 135, 11657–11662 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, F. et al. Transformative nanomedicine of an amphiphilic camptothecin prodrug for long circulation and high tumor uptake in cancer therapy. ACS Nano 11, 8838–8848 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Bastian, A. A., Marcozzi, A. & Herrmann, A. Selective transformations of complex molecules are enabled by aptameric protective groups. Nat. Chem. 4, 789–793 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Nechipurenko, Yu. D. et al. Characteristics of ultrasonic cleavage of DNA. J. Struct. Chem. 50, 1007–1013 (2009).

    Article  CAS  Google Scholar 

  31. Mohsen, M. G. & Kool, E. T. The discovery of rolling circle amplification and rolling circle transcription. Acc. Chem. Res. 49, 2540–2550 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Balouiri, M., Sadiki, M. & Ibnsouda, S. K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 6, 71–79 (2016).

    Article  PubMed  Google Scholar 

  33. Weigand, J. E. et al. Mechanistic insights into an engineered riboswitch: a switching element which confers riboswitch activity. Nucleic Acids Res. 39, 3363–3372 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Wiegand, I., Hilpert, K. & Hancock, R. E. W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 3, 163–175 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Li, J. et al. Mechanophore activation at heterointerfaces. J. Am. Chem. Soc. 136, 15925–15928 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Gu, H., Ho, P. L., Tong, E., Wang, L. & Xu, B. Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett. 3, 1261–1263 (2003).

    Article  CAS  Google Scholar 

  37. Huo, S. et al. Superior penetration and retention behavior of 50 nm gold nanoparticles in tumors. Cancer Res. 73, 319–330 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Soeriyadi, A. H., Boyer, C., Nyström, F., Zetterlund, P. B. & Whittaker, M. R. High-Order multiblock copolymers via iterative Cu(0)-mediated radical polymerizations (SET-LRP): Toward biological precision. J. Am. Chem. Soc. 133, 11128–11131 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Xu, X., Rosi, N. L., Wang, Y., Huo, F. & Mirkin, C. A. Asymmetric functionalization of gold nanoparticles with oligonucleotides. J. Am. Chem. Soc. 128, 9286–9287 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lai, H.-Z., Chen, W.-Y., Wu, C.-Y. & Chen, Y.-C. Potent antibacterial nanoparticles for pathogenic bacteria. ACS Appl. Mater. Interfaces 7, 2046–2054 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Diesendruck, C. E. et al. Proton-coupled mechanochemical transduction: a mechanogenerated acid. J. Am. Chem. Soc. 134, 12446–12449 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Nagamani, C., Liu, H. & Moore, J. S. Mechanogeneration of acid from oxime sulfonates. J. Am. Chem. Soc. 138, 2540–2543 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Lin, Y., Kouznetsova, T. B. & Craig, S. L. A latent mechanoacid for time-stamped mechanochromism and chemical signaling in polymeric materials. J. Am. Chem. Soc. 142, 99–103 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Larsen, M. B. & Boydston, A. J. “Flex-activated” mechanophores: using polymer mechanochemistry to direct bond bending activation. J. Am. Chem. Soc. 135, 8189–8192 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Larsen, M. B. & Boydston, A. J. Successive mechanochemical activation and small molecule release in an elastomeric material. J. Am. Chem. Soc. 136, 1276–1279 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Gossweiler, G. R. et al. Mechanochemical activation of covalent bonds in polymers with full and repeatable macroscopic shape recovery. ACS Macro Lett. 3, 216–219 (2014).

    Article  CAS  Google Scholar 

  47. Hu, X., Zeng, T., Husic, C. C. & Robb, M. J. Mechanically triggered small molecule release from a masked furfuryl carbonate. J. Am. Chem. Soc. 141, 15018–15023 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Karthikeyan, S., Potisek, S. L., Piermattei, A. & Sijbesma, R. P. Highly efficient mechanochemical scission of silver-carbene coordination polymers. J. Am. Chem. Soc. 130, 14968–14969 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Piermattei, A., Karthikeyan, S. & Sijbesma, R. P. Activating catalysts with mechanical force. Nat. Chem. 1, 133–137 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Michael, P. & Binder, W. H. A mechanochemically triggered “click” catalyst. Angew. Chem. Int. Ed. 54, 13918–13922 (2015).

    Article  CAS  Google Scholar 

  51. Lee, J. B., Hong, J., Bonner, D. K., Poon, Z. & Hammond, P. T. Self-assembled RNA interference microsponges for efficient siRNA delivery. Nat. Mater. 11, 316–322 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brosh, D., Miller, H. I., Herz, I., Laniado, S. & Rosenschein, U. Ultrasound angioplasty: an update review. Int. J. Cardiovasc. Interv. 1, 11–18 (1998).

    Article  Google Scholar 

  53. Nyborg, W. L. Biological effects of ultrasound: development of safety guidelines. Part II: general review. Ultrasound Med. Biol. 27, 301–333 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the European Union (European Research Council Advanced Grant SUPRABIOTICS, no. 694610). R.G. is grateful for support by a Freigeist-Fellowship of the Volkswagen Foundation (no. 92888). Parts of the analytical investigation were performed at the Center for Chemical Polymer Technology, CPT, and were supported by the European Commission and the federal state of North Rhine-Westphalia (no. 300088302). Financial support is acknowledged from the European Commission (EUSMI, no. 731019). P.Z. is grateful for financial support from the China Scholarship Council. M.Z. is grateful for financial support from the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement no. 713482.

Author information

Authors and Affiliations

Authors

Contributions

For the β-carbonate disulfides, Z.S., R.G. and A.H. conceived and designed the experiments. Z.S. synthesized and characterized the materials; Z.S., R.G. and A.H. interpreted the analyses, Z.S., R.G. and A.H. co-wrote and revised the corresponding part of the manuscript. For the polyaptamers, P.Z., S.H., R.G. and A.H. conceived and designed the experiments. P.Z. synthesized and characterized the materials; P.Z., R.G. and A.H. interpreted the analyses, P.Z., R.G. and A.H. co-wrote and revised the corresponding part of the manuscript. For the PN- and NN assemblies, S.H., R.G. and A.H. conceived and designed the experiments. S.H. synthesized and characterized the materials; S.H., R.G. and A.H. interpreted the analyses, S.H., R.G. and A.H. co-wrote and revised the corresponding part of the manuscript. X.Y, E.W. and M.L. assisted with Van and Paromo syntheses and purifications. All authors commented on the manuscript. R.G. and A.H. supervised the entire project.

Corresponding authors

Correspondence to Robert Göstl or Andreas Herrmann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Preparative and analytical procedures and data. Supplementary Schemes 1–6, Figs. 1–43 and Tables 1–4.

Reporting Summary

Source data

Source Data Fig. 2

Statistical source data for Fig. 2a–e.

Source Data Fig. 3

Statistical source data for Fig. 3e,f; unprocessed gels of Fig. 3a,c.

Source Data Fig. 4

Statistical source data for Fig. 4b,c.

Source Data Fig. 5

Statistical source data for Fig. 5f.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, S., Zhao, P., Shi, Z. et al. Mechanochemical bond scission for the activation of drugs. Nat. Chem. 13, 131–139 (2021). https://doi.org/10.1038/s41557-020-00624-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-020-00624-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing