Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst

Abstract

In any artificial photosynthetic system, the oxidation of water to molecular oxygen provides the electrons needed for the reduction of protons or carbon dioxide to a fuel. Understanding how this four-electron reaction works in detail is important for the development of improved robust catalysts made of Earth-abundant materials, like first-row transition-metal oxides. Here, using time-resolved Fourier-transform infrared spectroscopy and under reaction conditions, we identify intermediates of water oxidation catalysed by an abundant metal-oxide catalyst, cobalt oxide (Co3O4). One intermediate is a surface superoxide (three-electron oxidation intermediate absorbing at 1,013 cm−1), whereas a second observed intermediate is attributed to an oxo Co(IV) site (one-electron oxidation intermediate absorbing at 840 cm−1). The temporal behaviour of the intermediates reveals that they belong to different catalytic sites. Knowledge of the structure and kinetics of surface intermediates will enable the design of improved metal-oxide materials for more efficient water oxidation catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rapid-scan FTIR spectra of water oxidation catalysis.
Figure 2: Electrochemical monitoring of oxygen evolution by photolysis pulse.
Figure 3: Temporal behaviour of superoxide surface intermediate.
Figure 4: Rapid-scan FTIR spectra of water oxidation catalysis.
Figure 5: Temporal behaviour of the 840 cm−1 intermediate assigned to Co(IV)=O.
Figure 6: Proposed photocatalytic mechanism.

Similar content being viewed by others

References

  1. Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alstrum-Acevedo, J. H., Brennaman, M. K. & Meyer, T. J. Chemical approaches to artificial photosynthesis. 2. Inorg. Chem. 44, 6802–6827 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Pushkar, Y. et al. Structural changes in the Mn4Ca cluster and the mechanism of photosynthetic water splitting. Proc. Natl Acad. Sci. USA 105, 1879–1884 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Umena, Y., Kawakami, K., Shen, J-R. & Kamiya, N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473, 55–60 (2011).

    CAS  PubMed  Google Scholar 

  5. Tilak, B. V. et al. in Comprehensive Treatise of Electrochemistry Vol. 2 (eds Bockris, J. O. M. et al.) 1–97 (Plenum, 1981).

    Google Scholar 

  6. Trasatti, S. in Electrochemistry of Novel Materials (eds Lipkowski, J. & Ross, P. N.) Ch. 5 (VCH Publishers, 1994).

    Google Scholar 

  7. Kanan, M. W. & Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Surendranath, Y., Dinca, M. & Nocera, D. G. Electrolyte dependent electrosynthesis and activity of cobalt based water oxidation catalysts. J. Am. Chem. Soc. 131, 2615–2620 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Dinca, M., Surendranath, Y. & Nocera, D. G. Nickel-borate oxygen-evolving catalyst that functions under benign conditions. Proc. Natl Acad. Sci. USA 107, 10337–10341 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jiao, F. & Frei, H. Nanostructured cobalt oxide clusters in mesoporous silica as efficient oxygen-evolving catalysts. Angew. Chem. Int. Ed. 48, 1841–1844 (2009).

    Article  CAS  Google Scholar 

  11. Jiao, F. & Frei, H. Nanostructured manganese oxide clusters supported on mesoporous silica as efficient oxygen-evolving catalysts. Chem. Commun. 46, 2920–2922 (2010).

    Article  CAS  Google Scholar 

  12. Zidki, T. et al. Water oxidation catalyzed by cobalt(II) adsorbed on silica nanoparticles. J. Am. Chem. Soc. 134, 14275–14278 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Esswein, A. J. et al. Size-dependent activity of Co3O4 nanoparticle anodes for alkaline water electrolysis. J. Phys. Chem. C 113, 15068–15072 (2009).

    Article  CAS  Google Scholar 

  14. Zaharieva, I. et al. Electrosynthesis, functional, and structural characterization of a water-oxidizing manganese oxide. Energy Environ. Sci. 5, 7081–7089 (2012).

    Article  CAS  Google Scholar 

  15. Gorlin, Y. & Jaramillo, T. F. A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J. Am. Chem. Soc. 132, 13612–13614 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Najafpour, M. M. et al. Calcium manganese(III) oxides (CaMn2O4 xH2O) as biomimetic oxygen-evolving catalysts. Angew. Chem. Int. Ed. 49, 2233–2237 (2010).

    Article  CAS  Google Scholar 

  17. Gardner, G. P. et al. Structural requirements in lithium cobalt oxides for the catalytic oxidation of water. Angew. Chem. Int. Ed. 51, 1616–1619 (2012).

    Article  CAS  Google Scholar 

  18. Hong, D. et al. Catalysis of nickel ferrite for photocatalytic water oxidation using [Ru(bpy)3]2+ and S2O82−. J. Am. Chem. Soc. 134, 19572–19575 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Yin, Q. et al. A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 328, 342–345 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Surendranath, Y., Kanan, M. W. & Nocera, D. G. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J. Am. Chem. Soc. 132, 16501–16509 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Gerken, J. B. et al. Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0–14: the thermodynamic basis for catalyst structure, stability, and activity. J. Am. Chem. Soc. 133, 14431–14442 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. McAlpin, J. G. et al. EPR Evidence for Co(IV) species produced during water oxidation at neutral pH. J. Am. Chem. Soc. 132, 6882–6883 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Kanan, M. W. et al. Structure and valency of a cobalt-phosphate water oxidation catalyst determined by in situ X-ray spectroscopy. J. Am. Chem. Soc. 132, 13692–13701 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Takashima, T., Hashimoto, K & Nakamura, R. Mechanism of pH-dependent activity for water oxidation to molecular oxygen by MnO2 electrocatalysts. J. Am. Chem. Soc. 134, 1519–1527 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Pendlebury, S. R. et al. Dynamics of photogenerated holes in nanocrystalline α-Fe2O3 electrodes for water oxidation probed by transient absorption spectroscopy. Chem. Commun. 47, 716–718 (2011).

    Article  CAS  Google Scholar 

  26. Barroso, M. et al. Charge carrier trapping, recombination and transfer in hematite (α-Fe2O3) water splitting photoanodes. Chem. Sci. 4, 2724–2734 (2013).

    Article  CAS  Google Scholar 

  27. Cummings, C. Y. et al. Kinetics and mechanism of light-driven oxygen evolution at thin film α-Fe2O3 electrodes. Chem. Commun. 48, 2027–2029 (2012).

    Article  CAS  Google Scholar 

  28. Klahr, B. et al. Electrochemical and photoelectrochemical investigation of water oxidation with hematite electrodes. Energy Environ. Sci. 5, 7626–7636 (2012).

    Article  CAS  Google Scholar 

  29. Young, K. M. H. et al. Photocatalytic water oxidation with hematite electrodes. Catal. Sci. Tech. 3, 1660–1671 (2013).

    Article  CAS  Google Scholar 

  30. Nakamura, R. & Nakato, Y. Primary intermediates of oxygen photoevolution reaction on TiO2 (rutile) particles revealed by in situ FTIR absorption and photoluminescence measurements. J. Am. Chem. Soc. 126, 1290–1298 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds 5th edn, 155 (Wiley, 1997).

    Google Scholar 

  32. Egan, J. W. et al. Crystal structure of a side-on superoxo complex of cobalt and hydrogen abstraction by a reactive terminal oxo ligand. J. Am. Chem. Soc. 112, 2445–2446 (1990).

    Article  CAS  Google Scholar 

  33. Rajani, C., Kincaid, J. R. & Petering, D. H. Resonance Raman studies of HOO–Co(III)bleomycin and Co(III)bleomycin: identification of two important vibrational modes, ν(Co–OOH) and ν(O–OH). J. Am. Chem. Soc. 126, 3829–3836 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Zecchina, A., Spoto, G. & Coluccia, S. Surface dioxygen adducts on MgO–CoO solid solutions: analogy with cobalt-based homogeneous oxygen carriers. J. Mol. Catal. 14, 351–355 (1982).

    Article  CAS  Google Scholar 

  35. Shibahara, T. & Mori, M. Raman and infrared spectra of µ-O2 dicobalt(III) complexes. Bull. Chem. Soc. Jpn 51, 1374–1379 (1978).

    Article  CAS  Google Scholar 

  36. Barraclough, C. G., Lawrance, G. A. & Lay, P. A. Characterization of binuclear µ-peroxo and µ-superoxo cobalt(III) amine complexes from Raman spectroscopy. Inorg. Chem. 17, 3317–3322 (1978).

    Article  CAS  Google Scholar 

  37. Urban, M. W., Nonaka, Y. & Nakamoto, K. Infrared and resonance Raman spectra of molecular oxygen adducts of [N,N′-ethylenebis(acetylacetoniminato)] cobalt(II). Inorg. Chem. 21, 1046–1049 (1982).

    Article  CAS  Google Scholar 

  38. Nour, E. M. & Hester, R. E. Resonance Raman studies of oxygen binding in cobalt(III)-salen complexes. J. Mol. Struct. 62, 77–79 (1980).

    Article  CAS  Google Scholar 

  39. Giamello, E., Sojka, Z., Che, M. & Zecchina, A. Spectroscopic study of superoxide species formed by low-temperature adsorption of oxygen onto cobalt oxide (CoO)–magnesium oxide solid solutions: an example of synthetic heterogeneous oxygen carriers. J. Phys. Chem. 90, 6084–6091 (1986).

    Article  CAS  Google Scholar 

  40. Shirai, H., Morioka, Y. & Nakagawa, I. Infrared and Raman spectra and lattice vibrations of some oxide spinels. J. Phys. Soc. Jpn 51, 592–597 (1982).

    Article  CAS  Google Scholar 

  41. Dimitrou, K. et al. Mixed-valence, tetranuclear cobalt(III,IV) complexes: preparation and properties of [Co4O4(O2CR)2(bpy)4]3+ salts. Chem. Commun. 1284–1285 (2001).

  42. Pfaff, F. F. et al. An oxo cobalt(IV) complex stabilized by Lewis acid interactions with scandium(III) ions. Angew. Chem. Int. Ed. 50, 1711–1715 (2011).

    Article  CAS  Google Scholar 

  43. Lacy, D. C., Park, Y. J., Ziller, J. W., Yano, J. & Borovik, A. S. Assembly and properties of heterobimetallic CoII/III/CaII complexes with aquo and hydroxo ligands. J. Am. Chem. Soc. 134, 17526–17535 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rigsby, M. L. et al. Cobalt analogs of Ru-based water oxidation catalysts: overcoming thermodynamic instability and kinetic lability to achieve electrocatalytic O2 evolution. Chem. Sci. 3, 3058–3062 (2012).

    Article  CAS  Google Scholar 

  45. Rohde, J. U. et al. Crystallographic and spectroscopic characterization of a nonheme Fe(IV)=O complex. Science 299, 1037–1039 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Xu, X. L., Chen, Z. H., Li, Y., Chen, W. K. & Li, J. Q. Bulk and surface properties of spinel Co3O4 by density functional calculations. Surf. Sci. 603, 653–658 (2009).

    Article  CAS  Google Scholar 

  47. Garcia Mota, M. et al. Importance of correlation in determining electrocatalytic oxygen evolution activity on cobalt oxides. J. Phys. Chem. C 116, 21077–21082 (2012).

    Article  CAS  Google Scholar 

  48. Chen, J. & Selloni, A. Water adsorption and oxidation at the Co3O4(110) surface. J. Phys. Chem. Lett. 3, 2808–2814 (2012).

    Article  CAS  Google Scholar 

  49. Chivot, J., Mendoza, L., Mansour, C., Pauporte, T. & Cassir, M. New insight in the behaviour of Co–H2O system at 25–150 °C, based on revised Pourbaix diagrams. Corros. Sci. 50, 62–69 (2008).

    Article  CAS  Google Scholar 

  50. Yeo, B. S. & Bell, A. T. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 133, 5587–5593 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Wang, L. P. & Van Voorhis, T. Direct-coupling O2 bond forming a pathway in cobalt oxide water oxidation catalysts. J. Phys. Chem. Lett. 2, 2200–2204 (2011).

    Article  CAS  Google Scholar 

  52. Concepcion, J. J., Jurss, J. W., Templeton, J. L. & Meyer, T. J. Mediator-assisted water oxidation by the ruthenium ‘blue dimer’ cis,cis-[(bpy)2(H2O)RuORu(OH2)(bpy)2]4+. Proc. Natl Acad. Sci. USA 105, 17632–17635 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sivasankar, N., Weare, W. W. & Frei, H. Direct observation of a hydroperoxide surface intermediate upon visible light-driven water oxidation at an Ir oxide nanocluster catalyst by rapid-scan FT-IR spectroscopy. J. Am. Chem. Soc. 133, 12976–12979 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Lever, A. B. P., Ozin, G. A. & Gray, H. B. Electron transfer in metal–dioxygen adducts. Inorg. Chem. 19, 1823–1824 (1980).

    Article  CAS  Google Scholar 

  55. Gamelin, D. R. Water splitting: Catalyst or spectator? Nature Chem. 4, 965–967 (2012).

    Article  CAS  Google Scholar 

  56. Agiral, A., Soo, H. S. & Frei, H. Visible light induced hole transport from sensitizer to Co3O4 water oxidation catalyst across nanoscale silica barrier with embedded molecular wires. Chem. Mater. 25, 2264–2273 (2013).

    Article  CAS  Google Scholar 

  57. Zhou, M., Robertson, G. P. & Roovers, J. Comparative study of ruthenium(II) tris(bipyridine) derivatives for electrochemiluminescence application. Inorg. Chem. 44, 8317–8325 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical, Geological and Biosciences of the US Department of Energy (contract no. DE-AC02-05CH11231).

Author information

Authors and Affiliations

Authors

Contributions

H.F. developed the set-up and designed the experiments. M.Z. and M.D.R. prepared the samples and conducted the rapid-scan FTIR experiments and electrochemical measurements. M.Z. performed the mass spectrometric measurements. H.F. and M.Z. wrote the paper.

Corresponding author

Correspondence to Heinz Frei.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 7016 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, M., de Respinis, M. & Frei, H. Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst. Nature Chem 6, 362–367 (2014). https://doi.org/10.1038/nchem.1874

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1874

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing