Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Atomically precise organomimetic cluster nanomolecules assembled via perfluoroaryl-thiol SNAr chemistry

Abstract

The majority of biomolecules are intrinsically atomically precise, an important characteristic that enables rational engineering of their recognition and binding properties. However, imparting a similar precision to hybrid nanoparticles has been challenging because of the inherent limitations of existing chemical methods and building blocks. Here we report a new approach to form atomically precise and highly tunable hybrid nanomolecules with well-defined three-dimensionality. Perfunctionalization of atomically precise clusters with pentafluoroaryl-terminated linkers produces size-tunable rigid cluster nanomolecules. These species are amenable to facile modification with a variety of thiol-containing molecules and macromolecules. Assembly proceeds at room temperature within hours under mild conditions, and the resulting nanomolecules exhibit high stabilities because of their full covalency. We further demonstrate how these nanomolecules grafted with saccharides can exhibit dramatically improved binding affinity towards a protein. Ultimately, the developed strategy allows the rapid generation of precise molecular assemblies to investigate multivalent interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of features between the thiol-capped AuNPs and the OCNs.
Figure 2: Synthesis and characterization of the perfluoroaryl-perfunctionalized dodecaborate clusters and the subsequent modification with thiols.
Figure 3: Characterization of the PEGylated OCNs 2i2k and 3i3k.
Figure 4: Multivalent binding of the glycosylated OCN 2l to the lectin ConA.

Similar content being viewed by others

References

  1. Mammen, M., Choi, S.-K. & Whitesides, G. M. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. 37, 2754–2794 (1998).

    Article  Google Scholar 

  2. Kiessling, L. L., Gestwicki, J. E. & Strong, L. E. Synthetic multivalent ligands as probes of signal transduction. Angew. Chem. Int. Ed. 45, 2348–2368 (2006).

    Article  CAS  Google Scholar 

  3. Jones, L. H. Recent advances in the molecular design of synthetic vaccines. Nat. Chem. 7, 952–960 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Elsabahy, M. & Wooley, K. L. Design of polymeric nanoparticles for biomedical delivery applications. Chem. Soc. Rev. 41, 2545–2561 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rao, J. P. & Geckeler, K. E. Polymer nanoparticles: preparation techniques and size-control parameters. Prog. Polym. Sci. 36, 887–913 (2011).

    Article  CAS  Google Scholar 

  6. Tomalia, D. A. et al. A new class of polymers: starburst-dendritic macromolecules. Polym. J. 17, 117–132 (1985).

    Article  CAS  Google Scholar 

  7. Hawker, C. J. & Frechet, J. M. J. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J. Am. Chem. Soc. 112, 7638–7647 (1990).

    Article  CAS  Google Scholar 

  8. Farokhzad, O. C. & Langer, R. Impact of nanotechnology on drug delivery. ACS Nano 3, 16–20 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotech. 2, 751–760 (2007).

    Article  CAS  Google Scholar 

  10. Daniel, M.-C. & Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Dreaden, E. C., Alkilany, A. M., Huang, X., Murphy, C. J. & El-Sayed, M. A. The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev. 41, 2740–2779 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Brust, M., Walker, M., Bethell, D., Schiffrin, D. J. & Whyman, R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J. Chem. Soc., Chem. Commun. 801–802 (1994).

  13. Giljohann, D. A. et al. Oligonucleotide loading determines cellular uptake of DNA-modified gold nanoparticles. Nano Lett. 7, 3818–3821 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhao, H. et al. Reversible trapping and reaction acceleration within dynamically self-assembling nanoflasks. Nat. Nanotech. 11, 82–88 (2016).

    Article  CAS  Google Scholar 

  15. Jones, M. R., Seeman, N. C. & Mirkin, C. A. Programmable materials and the nature of the DNA bond. Science 347, 1260901 (2015).

    Article  PubMed  CAS  Google Scholar 

  16. Suzuki, K., Sato, S. & Fujita, M. Template synthesis of precisely monodisperse silica nanoparticles within self-assembled organometallic spheres. Nat. Chem. 2, 25–29 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Heindl, C., Peresypkina, E. V., Virovets, A. V., Kremer, W. & Scheer, M. Giant rugby ball [{CpBnFe(η5-P5)}24Cu96Br96] derived from pentaphosphaferrocene and CuBr2 . J. Am. Chem. Soc. 137, 10938–10941 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ambrogio, M. W., Thomas, C. R., Zhao, Y.-L., Zink, J. I. & Stoddart, J. F. Mechanized silica nanoparticles: a new frontier in theranostic nanomedicine. Acc. Chem. Res. 44, 903–913 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. & Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1170 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Hostetler, M. J., Green, S. J., Stokes, J. J. & Murray, R. W. Monolayers in three dimensions: synthesis and electrochemistry of ω-functionalized alkanethiolate-stabilized gold cluster compounds. J. Am. Chem. Soc. 118, 4212–4213 (1996).

    Article  CAS  Google Scholar 

  21. Hostetler, M. J., Templeton, A. C. & Murray, R. W. Dynamics of place-exchange reactions on monolayer-protected gold cluster molecules. Langmuir 15, 3782–3789 (1999).

    Article  CAS  Google Scholar 

  22. MacLeod, M. J. & Johnson, J. A. PEGylated N-heterocyclic carbene anchors designed to stabilize gold nanoparticles in biologically relevant media. J. Am. Chem. Soc. 137, 7974–7977 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Häkkinen, H. The gold–sulfur interface at the nanoscale. Nat. Chem. 4, 443–455 (2012).

    Article  PubMed  CAS  Google Scholar 

  24. Yvon, C. et al. Polyoxometalate clusters integrated into peptide chains and as inorganic amino acids: solution- and solid-phase approaches. Angew. Chem. Int. Ed. 53, 3336–3341 (2014).

    Article  CAS  Google Scholar 

  25. Lachkar, D., Vilona, D., Dumont, E., Lelli, M. & Lacôte, E. Grafting of secondary diolamides onto [P2W15V3O62]9− generates hybrid heteropoly acids. Angew. Chem. Int. Ed. 55, 5961–5965 (2016).

    Article  CAS  Google Scholar 

  26. Gouzerh, P. & Proust, A. Main-group element, organic, and organometallic derivatives of polyoxometalates. Chem. Rev. 98, 77–112 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Müller, A. & Gouzerh, P. From linking of metal–oxide building blocks in a dynamic library to giant clusters with unique properties and towards adaptive chemistry. Chem. Soc. Rev. 41, 7431–7463 (2012).

    Article  PubMed  CAS  Google Scholar 

  28. Li, G., Wang, L., Ni, H. & Pittman, C. U. Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers: a review. J. Inorg. Organomet. Polym. 11, 123–154 (2001).

    Article  CAS  Google Scholar 

  29. Spokoyny, A. M. New ligand platforms featuring boron-rich clusters as organomimetic substituents. Pure Appl. Chem. 85, 903–919 (2013).

    Article  CAS  Google Scholar 

  30. Lee, I. S., Long, J. R., Prusiner, S. B. & Safar, J. G. Selective precipitation of prions by polyoxometalate complexes. J. Am. Chem. Soc. 127, 13802–13803 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Pitochelli, A. R. & Hawthorne, M. F. The isolation of the icosahedral B12H12−2 ion. J. Am. Chem. Soc. 82, 3228–3229 (1960).

    Article  CAS  Google Scholar 

  32. Farha, O. K. et al.. Synthesis of stable dodecaalkoxy derivatives of hypercloso-B12H12 . J. Am. Chem. Soc. 127, 18243–18251 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Jalisatgi, S. S. et al. A convenient route to diversely substituted icosahedral closomer nanoscaffolds. J. Am. Chem. Soc. 133, 12382–12385 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sarma, S. J., Khan, A. A., Goswami, L. N., Jalisatgi, S. S. & Hawthorne, M. F. A trimodal closomer drug-delivery system tailored with tracing and targeting capabilities. Chem. Eur. J. 22, 12715–12723 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Wixtrom, A. I. et al. Rapid synthesis of redox-active dodecaborane B12(OR)12 clusters under ambient conditions. Inorg. Chem. Front. 3, 711–717 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Messina, M. S. et al. Visible-light-induced olefin activation using 3D aromatic boron-rich cluster photooxidants. J. Am. Chem. Soc. 138, 6952–6955 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Haynes, W. M. CRC Handbook of Chemistry and Physics (CRC/Taylor and Francis, 2016).

    Book  Google Scholar 

  38. Lundquist, J. J. & Toone, E. J. The cluster glycoside effect. Chem. Rev. 102, 555–578 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Moore, J. S. & Xu, Z. Synthesis of rigid dendritic macromolecules: enlarging the repeat unit size as a function of generation, permitting growth to continue. Macromolecules 24, 5893–5894 (1991).

    Article  CAS  Google Scholar 

  40. Birchall, J. M., Green, M., Haszeldine, R. N. & Pitts, A. D. The mechanism of the nucleophilic substitution reactions of polyfluoroarenes. Chem. Commun. Lond. 338–339 (1967).

  41. Becer, C. R., Hoogenboom, R. & Schubert, U. S. Click chemistry beyond metal-catalyzed cycloaddition. Angew. Chem. Int. Ed. 48, 4900–4908 (2009).

    Article  CAS  Google Scholar 

  42. Becer, C. R. et al. Clicking pentafluorostyrene copolymers: synthesis, nanoprecipitation, and glycosylation. Macromolecules 42, 2387–2394 (2009).

    Article  CAS  Google Scholar 

  43. Spokoyny, A. M. et al. A perfluoroaryl-cysteine SNAr chemistry approach to unprotected peptide stapling. J. Am. Chem. Soc. 135, 5946–5949 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, C. et al. π-Clamp-mediated cysteine conjugation. Nat. Chem. 8, 120–128 (2016).

    Article  PubMed  CAS  Google Scholar 

  45. Hoffman, A. S. The origins and evolution of ‘controlled’ drug delivery systems. J. Control. Release 132, 153–163 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Alconcel, S. N. S., Baas, A. S. & Maynard, H. D. FDA-approved poly(ethylene glycol)–protein conjugate drugs. Polym. Chem. 2, 1442–1448 (2011).

    Article  CAS  Google Scholar 

  47. Veronese, F. M. & Pasut, G. PEGylation, successful approach to drug delivery. Drug Discov. Today 10, 1451–1458 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Dam, T. K., Roy, R., Das, S. K., Oscarson, S. & Brewer, C. F. Binding of multivalent carbohydrates to concanavalin A and Dioclea grandiflora lectin. Thermodynamic analysis of the ‘multivalency effect’. J. Biol. Chem. 275, 14223–14230 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Müller, C., Despras, G. & Lindhorst, T. K. Organizing multivalency in carbohydrate recognition. Chem. Soc. Rev. 45, 3275–3302 (2016).

    Article  PubMed  Google Scholar 

  50. Muñoz, A. et al. Synthesis of giant globular multivalent glycofullerenes as potent inhibitors in a model of Ebola virus infection. Nat. Chem. 8, 50–57 (2016).

    Article  PubMed  CAS  Google Scholar 

  51. Bhatia, S., Camacho, L. C. & Haag, R. Pathogen inhibition by multivalent ligand architectures. J. Am. Chem. Soc. 138, 8654–8666 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Bernardi, A. et al. Multivalent glycoconjugates as anti-pathogenic agents. Chem. Soc. Rev. 42, 4709–4727 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Munoz, E. M., Correa, J., Riguera, R. & Fernandez-Megia, E. Real-time evaluation of binding mechanisms in multivalent interactions: a surface plasmon resonance kinetic approach. J. Am. Chem. Soc. 135, 5966–5969 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Fernandez-Megia, E., Correa, J., Rodríguez-Meizoso, I. & Riguera, R. A click approach to unprotected glycodendrimers. Macromolecules 39, 2113–2120 (2006).

    Article  CAS  Google Scholar 

  55. Kamiya, N., Tominaga, M., Sato, S. & Fujita, M. Saccharide-coated M12L24 molecular spheres that form aggregates by multi-interaction with proteins. J. Am. Chem. Soc. 129, 3816–3817 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.M.S. acknowledges the University of California, Los Angeles (UCLA) Department of Chemistry and Biochemistry for start-up funds, 3M for a Non-Tenured Faculty Award and the American Chemical Society Petroleum Research Fund (56562-DNI3) for the Doctoral New Investigator Grant. E.A.Q. thanks the US Public Health Service of the National Institutes of Health (NIH) for the Predoctoral Training Fellowship through the UCLA Chemistry-Biology Interface Training Program under the National Research Service Award (T32GM008496). A.S. is funded by the CARE Scholars Programs (NIH grant GM055052). M.S.M. is grateful to the National Science Foundation (NSF) for the Bridge-to-Doctorate and the Predoctoral (GRFP) fellowships. P.K. acknowledges the NSF Division of Materials Research grant 1506886. H.D.M. thanks the NSF (CHE-1507735) for funding. We thank UCLA Molecular Instrumentation Center for mass spectrometry and NMR spectroscopy (NIH grant 1S10OD016387-01, NSF grant CHE-1048804). We also thank the Electron Imaging Center for Nanomachines at the UCLA California NanoSystems Institute for electron microscopy (NIH grant 1S10RR23057) and the UCLA Biochemistry Instrumentation Facility for SPR.

Author information

Authors and Affiliations

Authors

Contributions

A.M.S. developed the concept and supervised and guided the research. E.A.Q. and A.M.S. designed the experiments. E.A.Q. performed the majority of the experimental work. A.I.W., J.C.A., A.S. and J.Y.W. contributed to the synthesis of 2 and 3. A.T.R and A.L.R. performed the crystallographic characterization of compound 3. A.S., E.H.M. and D.M. contributed to the synthesis of 2j and 3j. S.C. assisted with optimizing the reaction conditions of 2a2f, 2i, 2l, 3a3f, 3i and 3l. A.I.W. and E.H.M. contributed to the purification of the OCNs. D.J. conducted and interpreted the TEM experiments. M.S.M. and H.D.M. assisted with the GPC experiments. P.R., Y.H. and P.K. designed, conducted and interpreted the computational experiments. E.A.Q., A.I.W. and A.M.S. co-wrote the manuscript. All of the authors commented on the manuscript during its preparation.

Corresponding author

Correspondence to Alexander M. Spokoyny.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 48732 kb)

Supplementary information

Crystallographic data for compound 2 (CIF 469 kb)

Supplementary information

Supplementary information (CIF 3407 kb)

Supplementary information

Supplementary Movie 1 (MP4 14000 kb)

Supplementary information

Supplementary Movie 2 (MP4 13857 kb)

Supplementary information

Supplementary Movie 3 (MP4 15783 kb)

Supplementary information

Supplementary Movie 4 (MP4 58910 kb)

Supplementary information

Supplementary Movie 5 (MP4 13495 kb)

Supplementary information

Supplementary Movie 6 (MP4 14059 kb)

Supplementary information

Supplementary Movie 7 (MP4 15832 kb)

Supplementary information

Supplementary Movie 8 (MP4 50324 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, E., Wixtrom, A., Axtell, J. et al. Atomically precise organomimetic cluster nanomolecules assembled via perfluoroaryl-thiol SNAr chemistry. Nature Chem 9, 333–340 (2017). https://doi.org/10.1038/nchem.2686

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2686

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing