Inorganic chemistry

  • Article
    | Open Access

    Determining the covalency of actinide chemical bonding is a fundamentally important challenge. Here, the authors report a 15N nuclear magnetic resonance spectroscopy study of a terminal uranium-nitride, revealing exceptional NMR properties and covalency that redefine 15N NMR parameter space and actinide chemical bonding.

    • Jingzhen Du
    • , John A. Seed
    •  & Stephen T. Liddle
  • Article
    | Open Access

    Controlled breaking of a chemical bond by mechanical forces can provide key insight into reaction mechanisms. Here the authors, using atomic force microscopy and computations, measure the forces involved in breaking a single dative bond between a CO molecule and a ferrous phthalocyanine complex.

    • Pengcheng Chen
    • , Dingxin Fan
    •  & Nan Yao
  • Article
    | Open Access

    Transfer of scarce phosphate to organic molecules is a significant challenge for prebiotic chemistry. Here authors show a prebiotic physicochemical cycle to activate orthophosphate and via a kinetically stable, thermodynamically activated molecule phosphorylate all of life’s basic building blocks.

    • Oliver R. Maguire
    • , Iris B. A. Smokers
    •  & Wilhelm T. S. Huck
  • Article
    | Open Access

    High-nitrogen content polyhedral molecules are of fundamental interest for theory and for synthesis applications. The authors, using isomer selective, tunable soft photoionization reflectron time-of-flight mass spectrometry, identify the formation of a hitherto elusive prismatic P3N3 molecule during sublimation of PH3 and N2 ice mixtures exposed to energetic electrons.

    • Cheng Zhu
    • , André K. Eckhardt
    •  & Ralf I. Kaiser
  • Article
    | Open Access

    The “anti-branching rule”, introduced in 1950, excludes branched polyphosphates from biological relevance due to their supposedly rapid hydrolysis. Here, the authors synthesize monodisperse branched polyphosphates and demonstrate their unexpected stability in water, as well as provide evidence for their competence in phosphorylation.

    • Tobias Dürr-Mayer
    • , Danye Qiu
    •  & Henning J. Jessen
  • Article
    | Open Access

    Unlike other halogen atoms, the ability for fluorine to exist in a [C–X–C]+ connectivity pattern has only been shown in spectroscopic studies. Here the authors present a single crystal structure of a fluoronium cation, characterized by X-ray diffraction.

    • Kurt F. Hoffmann
    • , Anja Wiesner
    •  & Sebastian Riedel
  • Article
    | Open Access

    In comparison to their neutral or anionic counterparts, examples of cationic boron clusters remain scarce. Here, the authors prepare a variety of cationic polyhedral boranes by reacting closo-10-vertex carboranes with N-heterocyclic carbenes; the resulting open-cage cationic nido- arachno- or closo- derivatives are water soluble, which may enable unprecedented applications.

    • Jan Vrána
    • , Josef Holub
    •  & Aleš Růžička
  • Article
    | Open Access

    Disproportion of uranium(IV) is rare, as it is usually the stable product of uranium(III) or (V) disproportionation. Here, the authors report uranium(IV) disproportionation to uranium(III) and (V) revealing ligand and solvent control over a key thermodynamic property of uranium

    • Jingzhen Du
    • , Iskander Douair
    •  & Stephen T. Liddle
  • Article
    | Open Access

    Honeycomb layered oxides are an emerging class of materials with peculiar physicochemical properties. Here, the authors report the synthesis and electrochemical energy storage characterisations of a mixed-alkali honeycomb layered oxide material capable of storing Na and K ions simultaneously.

    • Titus Masese
    • , Yoshinobu Miyazaki
    •  & Tomohiro Saito
  • Article
    | Open Access

    The detailed understanding of the structural variations during cycling in cathodes for Zn-ion aqueous rechargeable batteries is still limited. Here, the authors utilize atomic-column-resolved scanning transmission electron microscopy to elucidate multiphase evolution during hydrated Zn-Ion insertion in vanadium oxide.

    • Pilgyu Byeon
    • , Youngjae Hong
    •  & Sung-Yoon Chung
  • Article
    | Open Access

    Solar-driven CO2 reduction into value-added chemicals and fuels is attracting worldwide attention. Here, substantially enhanced photocatalytic CO2 reduction activity is achieved via the synergy of surface oxygen vacancies and ferroelectric polarization over Bi3TiNbO9 photocatalyst.

    • Hongjian Yu
    • , Fang Chen
    •  & Yihe Zhang
  • Article
    | Open Access

    Ternary heterometallic clusters often display intriguing structures and bonding. Here the authors prepare four [Sn2Sb5]3−-based clusters stabilized by coordination of a transition metal ion; analysis of their electronic structure reveals that the resulting cluster displays globally aromatic or antiaromatic character depending on the transition metal ion.

    • Yu-He Xu
    • , Nikolay V. Tkachenko
    •  & Zhong-Ming Sun
  • Article
    | Open Access

    The preparation of artificial host–guest systems that display dynamic adaptation during guest binding is challenging. Here the authors report a chiral self-assembled tetrahedral cage featuring curved walls that reconfigures stereochemically to fit fullerene guests, regulates corannulene inversion, and enables the determination of co-guest enantiomeric excess by NMR spectroscopy.

    • Yang Yang
    • , Tanya K. Ronson
    •  & Jonathan R. Nitschke
  • Article
    | Open Access

    Responsiveness in metal-organic frameworks involving amorphous phases remains poorly understood. Here, the authors demonstrate MOFs that reversibly switch between well-defined crystalline and structurally degenerate amorphous states mediated by competing intra-framework forces.

    • Roman Pallach
    • , Julian Keupp
    •  & Sebastian Henke
  • Article
    | Open Access

    Great progress has been made in topochemistry of mobile oxygen anions, but metastable compounds have not yet been achieved by deintercalation of sulfur anions. Here, the authors prepare metastable oxychalcogenide phases by taking advantage of redox-reactive sulfur dimers embedded in a layered oxysulfide.

    • Shunsuke Sasaki
    • , Maria Teresa Caldes
    •  & Laurent Cario
  • Article
    | Open Access

    Precisely controlling the chemical composition and structure of nanoclusters is an ongoing challenge. Here, the authors report a clickable assembly strategy to construct widely varied lanthanide nanoclusters with synergized optical functionalities.

    • Jie Zhou
    • , Yang Wei
    •  & Ling Huang
  • Article
    | Open Access

    Little is known about how the orientation of coordinated water molecules affects the magnetic properties of single molecule magnets. Here the authors combine experimental data and theoretical calculations to study how the rotation of water molecules alters the magnetic anisotropy of a pyrazine-based cobalt(II) complex.

    • Sheng-Qun Su
    • , Shu-Qi Wu
    •  & Osamu Sato
  • Article
    | Open Access

    Borates offer extended structural diversity and promise in diverse applications. Here the authors report a borate with linear BO2 units as well as NMR spectroscopy characterization that provides a quantitative basis for identification of BO2 units in polycrystalline and non-crystalline samples.

    • Chunmei Huang
    • , Miriding Mutailipu
    •  & Shilie Pan
  • Article
    | Open Access

    Studying the nature of actinide-actinide bonds is important for understanding the electronic structure of the 5f elements, but the synthesis of these chemical bonds remains extremely challenging. Here, the authors report a strong covalent Th-Th bond formed between two rarely accessible Th3+ ions, stabilized inside a fullerene cage.

    • Jiaxin Zhuang
    • , Roser Morales-Martínez
    •  & Ning Chen
  • Article
    | Open Access

    Pauling’s electronegativity scale has a fundamental value and uses accessible thermochemical data, but fails at predicting the bonding behavior for several elements. The authors propose their thermochemical scale based on experimental dissociation energies that provides dimensionless values for the electronegativity and recovers the correct trends throughout the periodic table.

    • Christian Tantardini
    •  & Artem R. Oganov
  • Article
    | Open Access

    Geometric E to Z double C=C bond isomerization is challenging as it requires kinetic trapping of the Z-isomer with injection of chemical energy. Here, the authors report a dinuclear Pd(I)−Pd(I) complex that mediates selective isomerization of E-1,3-dienes to the Z-isomers without photoirradiation.

    • Eiji Kudo
    • , Kota Sasaki
    •  & Tetsuro Murahashi
  • Article
    | Open Access

    Spiroaromatic compounds are advantageous platforms for designing expanded aromatic systems. Herein, the authors present a tris‐spiro metalla‐aromatic Vanadium compound which forms a 40π Craig‐Möbius aromatic system.

    • Zhe Huang
    • , Yongliang Zhang
    •  & Zhenfeng Xi
  • Article
    | Open Access

    The obtention and study of actinide elements is challenging due to various factors including their radioactivity and scarcity. Herein, the authors characterize the atomic and electronic structure of Am, Cm, Bk, and Cf compounds using a transmission electron microscopy-based workflow that only requires nanogram amounts of the actinide element.

    • Alexander Müller
    • , Gauthier J.-P. Deblonde
    •  & Andrew M. Minor
  • Article
    | Open Access

    Lower olefins are mainly produced from fossil resources and the methanol-to-olefins process offers a new sustainable pathway. Here, the authors show a new zeolite containing tantalum and aluminium centres which shows simultaneously high propene selectivity, catalytic activity, and stability for the synthesis of propene.

    • Longfei Lin
    • , Mengtian Fan
    •  & Sihai Yang
  • Article
    | Open Access

    There are few reports of ferroelectricity due to symmetry breaking transition in A-site-ordered quadruple perovskites. Here, the authors find one with phase transition from a high-temperature centrosymmetric paraelectric phase to a low-temperature non-centrosymmetric ferroelectric phase in a high pressure synthesized compound.

    • Jianfa Zhao
    • , Jiacheng Gao
    •  & Changqing Jin
  • Article
    | Open Access

    High-valent metal nitrides are difficult to stabilise due to the high thermodynamic stability and chemical inertness of N2. Here, the authors employ a large volume press to prepare an iron(IV) nitridoferrate Ca4FeIVN4 from Fe2N and Ca3N2 via azide-mediated oxidation under high pressure conditions.

    • Simon D. Kloß
    • , Arthur Haffner
    •  & J. Paul Attfield
  • Article
    | Open Access

    The charging of Fe and Mn oxide anodes in lithium-ion batteries are believed to form rocksalt phases via reconstructive conversion reactions. Here, the authors show that MxOy (M = Fe, Mn) transform into non-native body-centred cubic FeO and zincblende MnO via topotactic displacement-like pathways.

    • Xiao Hua
    • , Phoebe K. Allan
    •  & Andrew L. Goodwin
  • Article
    | Open Access

    The development of the all solid-state battery requires the formation of stable solid/solid interfaces between different battery components. Here the authors tailor the composition to form both electrolyte and anode from the same novel family of perovskites with shared crystal chemistry.

    • Marco Amores
    • , Hany El-Shinawi
    •  & Edmund J. Cussen
  • Article
    | Open Access

    Unlike traditional chiral metal complexes, which typically contain chiral ligands, in chiral-at-metal complexes chirality originates from a stereogenic metal center bound to achiral ligands. Herein, the authors use an unsymmetric tridentate ligand to construct a Werner-type tetrahedral chiral-at-zinc complex which displays high configurational stability and catalyzes an oxa-Diels-Alder reaction with high yield and enantioselectivity.

    • Kenichi Endo
    • , Yuanfei Liu
    •  & Mitsuhiko Shionoya
  • Article
    | Open Access

    The reactivity of expanded porphyrins is highly influenced by their scaffold architecture. Here, the authors construct two nonaromatic dumbbell-shaped benzene- and pyridine-incorporating octaphyrins via Suzuki-Miyaura cross-coupling; depending on the framework, different coordination modes are obtained upon metallation with Pd(II).

    • Le Liu
    • , Zhiwen Hu
    •  & Jianxin Song
  • Article
    | Open Access

    Chemical elements at high pressure may behave more consistently with their periodic properties than they do at ambient conditions. The authors report the synthesis of PH3 from black phosphorous and hydrogen, and the crystallization of the van der Waals compound (PH3)2H2 which fills a gap in the chemistry of adjacent elements in the periodic table.

    • Matteo Ceppatelli
    • , Demetrio Scelta
    •  & Maurizio Peruzzini
  • Article
    | Open Access

    The synthesis of closo-carboranes with more than 14 vertexes is challenging, and no examples have been reported to date. Herein, the authors present the long-sought 15- and 16-vertex closo-carboranes, in which the introduction of silyl groups to the two cage carbons is crucial; this finding might enable the synthesis of even larger carborane analogs in the future.

    • Fangrui Zheng
    • , Tsz Hin Yui
    •  & Zuowei Xie
  • Article
    | Open Access

    Properties of perovskite oxides can be changed by manipulating anion-vacancy order patterns, but they are difficult to control. Here the authors show strain-induced creation and switching of anion vacancies in perovskite films in which the direction or periodicity of anion-vacancy planes is altered depending on the substrate employed.

    • Takafumi Yamamoto
    • , Akira Chikamatsu
    •  & Hiroshi Kageyama
  • Article
    | Open Access

    Synthesis of high crystal quality quantum dots (QDs) requires optimization of reaction temperature and precursor reactivity. Here, the authors report precursor chemistry that enables controllable modulation of precursor reactivity using chemical additives, and systematically grow high-quality QDs from cores of various sizes and materials.

    • Joonhyuck Park
    • , Arun Jayaraman
    •  & Hee-Sun Han