Chemistry articles within Nature Communications

Featured

  • Perspective
    | Open Access

    Considerable attention has been directed towards chiral nanocatalysts due to their significant role in facilitating asymmetric organic transformations. Here the authors highlight the recent advancements and notable examples in the field of chiral inorganic nanocatalysts.

    • Si Li
    • , Xinxin Xu
    •  & Chuanlai Xu
  • Article
    | Open Access

    The control of reaction quantum efficiencies is a fundamental photochemical problem. Here the authors use comparative quantum-classical dynamics to reveal that the synchronization of specific vibrations with the reaction coordinate is a key promoting factor.

    • Alejandro Blanco-Gonzalez
    • , Madushanka Manathunga
    •  & Massimo Olivucci
  • Article
    | Open Access

    The conversion of atmospheric N2 into NH3 under ambient pressure is highly interesting but very challenging. In this study, the authors present a tandem air-NOx and NOx-NH3 system that combines non-thermal plasma-enabled N2 oxidation with Ni(OH)x/Cu-catalyzed electrochemical NOxreduction, resulting in a high NH3 yield from N2 under ambient pressure conditions.

    • Wei Liu
    • , Mengyang Xia
    •  & Guidong Yang
  • Article
    | Open Access

    A highly efficient stereoselective C−H alkylation of indoles with aryl alkenes is achieved by sustainable iron catalysis, leading to atropoenriched and enantioenriched substituted indoles with high structural diversity. Detailed mechanistic studies by experiment, Mössbauer spectroscopy and computation reveal the origin of the catalytic efficacy and stereoselectivity.

    • Zi-Jing Zhang
    • , Nicolas Jacob
    •  & Lutz Ackermann
  • Article
    | Open Access

    Soft elastic materials could be useful in the fabrication of brain-machine interfaces, but achieving the desirable material properties can be challenging. Here, the authors report control of the amorphous-crystalline transition of polymers to alter hydrogel properties and monitor mouse behaviour.

    • Sizhe Huang
    • , Xinyue Liu
    •  & Siyuan Rao
  • Article
    | Open Access

    Many of the most industrially important magnets require the addition of rare-earths to improve their coercivity and magnetic performance. Here, the authors place a single paramagnetic rare-earth ion, Er3+, in a diamagnetic nanoparticle, and study the slow relaxation of the resulting nanoparticles, providing vital information for the further development of rare-earth magnetic materials.

    • Diogo A. Gálico
    • , Emille M. Rodrigues
    •  & Muralee Murugesu
  • Article
    | Open Access

    Hard carbon is regarded as a promising negative electrode for Na-ion batteries but suffers from low initial Coulombic efficiency (ICE). Here, the authors identify the time-dependent ion pre-desolvation on the nanopore of hard carbons, which remarkably improves the ICE by simply extending the aging time.

    • Ziyang Lu
    • , Huijun Yang
    •  & Haoshen Zhou
  • Article
    | Open Access

    Poly-β-(1–6)-N-acetylglucosamine (PNAG) is an important vaccine target, but the impact of the number and position of free amine vs N-acetylation on its antigenicity is not well understood. Here, the authors report a divergent strategy to synthesize a comprehensive library of PNAG pentasaccharides, enabling the identification of enhanced epitopes for vaccines against Staphylococcus aureus including drug resistant strains.

    • Zibin Tan
    • , Weizhun Yang
    •  & Xuefei Huang
  • Article
    | Open Access

    Normal mode analysis is a crucial step in structural biology, but is based on an expensive diagonalisation of the system’s Hessian. Here the authors present INCHING, a GPU-based approach to accelerate this task up to >250 times over current methods for macromolecular assemblies.

    • Jordy Homing Lam
    • , Aiichiro Nakano
    •  & Vsevolod Katritch
  • Article
    | Open Access

    Notwithstanding their success as strongly σ-donating and π-accepting ligands, to date no chelating bis[cyclic (alkyl)(amino)carbenes] have been reported. Here the authors describe a chelating, C2-symmetric bis[cyclic (alkyl)(amino)carbene] ligand, as well as its pseudotetrahedral complexes with iron, cobalt, nickel, and zinc dihalides.

    • Braulio M. Puerta Lombardi
    • , Morgan R. Faas
    •  & Roland Roesler
  • Article
    | Open Access

    Crystalline materials’ properties are highly dependent on their size. Here authors report a general synthesis of ultrasmall (4–6 nm) and highly defective Zr/Hf-Metal Organic Frameworks nanoparticles that present enhanced peptide hydrolysis performance.

    • Shan Dai
    • , Charlotte Simms
    •  & Christian Serre
  • Article
    | Open Access

    N-Glycosylated heterocycles play important roles in biological systems and drug development, but the synthesis heavily relies on ionic N-glycosylation. Herein, the authors report a dehydroxylative radical method for synthesizing N-glycosides by leveraging copper metallaphotoredox catalysis.

    • Da-Peng Liu
    • , Xiao-Sen Zhang
    •  & Xiang-Guo Hu
  • Article
    | Open Access

    Polarizability, a property that is closely related to softness in the classic theory of Hard and Soft Acids and Bases (HSAB), has been largely overlooked in connecting with enantio-selection in the past. Here, the authors show local polarizability-based electronic effects can rationalize a wide range of stereochemical outcomes in widely-known asymmetric catalytic reactions.

    • Fumin Chen
    • , Yu Chen
    •  & Xiangyou Xing
  • Article
    | Open Access

    Converting CO2 to valuable chemicals is of high interest. Here the authors address the challenge of low CO2 solubility in water by incorporating a metal-organic framework layer to enhance CO2 pre-concentration and activation before its electroreduction by the underlying solid electrocatalyst.

    • Subhabrata Mukhopadhyay
    • , Muhammad Saad Naeem
    •  & Idan Hod
  • Article
    | Open Access

    Sluggish kinetics of the CO2 reactions lead to the accumulation of Li2CO3 residuals, which hinders the cycling stability of Li-CO2 batteries. Here, the authors reveal the catalytic role of in-situ formed C-N species in enhancing the reversibility of Li2CO3 and cycle life of Li-CO2 batteries.

    • Fangli Zhang
    • , Wenchao Zhang
    •  & Zaiping Guo
  • Article
    | Open Access

    Phosphoric acid (PA) doped proton exchange membranes (PEMs) often degrade above 200 °C due to membrane creeping, PA dehydration, and condensation. Here, the authors introduce gel-state polybenzimidazole PEMs with double cross-linked 3D layered structures, enabling efficient and stable fuel cell operation above 200 °C.

    • Liang Zhang
    • , Mengjiao Liu
    •  & Lixin Xue
  • Article
    | Open Access

    The synthesis of sequence-regulated oligosulfates has not yet been established due to the difficulties in precise reactivity control. Here, the authors report a multi-directional divergent iterative method to furnish oligosulfates based on a chain homologation approach, in which the fluorosulfate unit is regenerated.

    • Min Pyeong Kim
    • , Swatilekha Kayal
    •  & Sung You Hong
  • Article
    | Open Access

    Developing facile and direct synthesis routes for enantioselective construction of cyclic π-conjugated molecules is crucial but the chirality orginiating from the distorted structure around heptagon-containing polyarenes is largely overlooked. Herein the authors present a highly enantioselective synthesis for fabrication of all carbon heptagon-containing polyarenes via palladium-catalyzed carbene-based cross–coupling of benzyl bromides and N-arylsulfonylhydrazones.

    • Huan Zhang
    • , Chuan-Jun Lu
    •  & Ren-Rong Liu
  • Article
    | Open Access

    While clusters in calcium orthophosphate nucleation have long been known, their speciation and mechanistic pathways to hydroxyapatite remain debated. Here the authors report a revision of ion association in the calcium phosphate system and explore the consequences thereof on the early stages of phase separation.

    • David P. McDonogh
    • , Julian D. Gale
    •  & Denis Gebauer
  • Article
    | Open Access

    Installation of small aliphatic motifs within pharmaceuticals provides a medicinally relevant tool in drug discovery programmes. Here, the authors report a late-stage meta-C–H alkylation method facilitating the biological properties modulation of therapeutic agents.

    • Lucas Guillemard
    • , Lutz Ackermann
    •  & Magnus J. Johansson
  • Article
    | Open Access

    Manganese complexes have long been utilized by nature to catalyze the oxygen evolution reaction (OER) but mirroring their efficiency in artificial electrochemical systems has proven difficult. This study centers on alpha-manganese dioxide (α-MnO2), which closely mimics natural MnIV-O-MnIII-HxO motifs, presenting a novel method for manipulating proton coupling within the OER process using an external electric field.

    • Xuelei Pan
    • , Mengyu Yan
    •  & Liqiang Mai
  • Article
    | Open Access

    Trait correlations impact evolvability as selection on one trait can influence others. Here, the authors examine trait correlation in two proteins, a fluorescent protein & an antibiotic resistance enzyme, observing rapid evolution of trait correlations through changes in the biophysical properties of these proteins.

    • Pouria Dasmeh
    • , Jia Zheng
    •  & Andreas Wagner
  • Article
    | Open Access

    Exploitation of noncovalent interactions has received much attention for the design of metal catalysts. However, because of the weak nature, CH-π interactions have been less utilized for the control of organic reactions. Here, the authors report that the CH-π interaction can be used to kinetically accelerate catalytic C-H activation of arenes.

    • Yushu Jin
    • , Boobalan Ramadoss
    •  & Laurean Ilies
  • Article
    | Open Access

    Chiral recognition of amino acids with luminescence, despite its advantages, is usually slow and lacks generality. Here, the authors demonstrate that L-phenylalanine derived benzamide can manifest the structural difference between the natural, left-handed amino acid and its right-handed counterpart via the difference in room-temperature phosphorescence, irrespective of the specific chemical structure.

    • Xiaoyu Chen
    • , Renlong Zhu
    •  & Guoqing Zhang
  • Article
    | Open Access

    Multiple autocatalytic reactions producing thiols are known, but negative feedback loop motifs are unavailable for thiol chemistry. Here, the authors develop a negative feedback loop based on the selenocarbonates, in which thiols induce the release of aromatic selenols that catalyze the oxidation of thiols by organic peroxides.

    • Xiuxiu Li
    • , Polina Fomitskaya
    •  & Sergey N. Semenov
  • Article
    | Open Access

    Continuous-flow biocatalysis with immobilized enzymes is a sustainable route for chemical synthesis, but inadequate biocatalytic efficiency caused by non-productive enzyme immobilization or enzyme-carrier mismatches presents a challenge for its application. Here, the authors report an approach for the fabrication of a high-performance enzymatic continuous-flow reactor via integrating scalable isoporous block copolymer membranes as carriers with an oriented one-step enzyme immobilization via a genetically fused material binding peptide.

    • Zhenzhen Zhang
    • , Liang Gao
    •  & Volker Abetz
  • Article
    | Open Access

    Perception plays a pivotal role in advancing future intelligent textiles. Here, the authors develop smart perceptual textiles using natural-derived ionic-conductive silk fibers. These textiles can electrically detect external hazards and precisely pinpointing human touch, making them suitable for smart protective clothing and soft human-machine interfaces.

    • Haojie Lu
    • , Yong Zhang
    •  & Yingying Zhang
  • Article
    | Open Access

    The stereospecific Z/E isomerization of tetrasubstituted alkenes remains underdeveloped, thus lacking in a stereodivergent synthesis of axially chiral alkenes. Here, authors report the atroposelective synthesis of tetrasubstituted alkene analogues by asymmetric allylic substitution-isomerization, followed by the photocatalyzed Z/E isomerization.

    • Jie Wang
    • , Jun Gu
    •  & Ying He
  • Article
    | Open Access

    It is useful to be able to equip marine animals with sensors, but it can be challenging to attach these to soft marine organisms. Here, the authors use an adhesive hydrogel to achieve rapid attachment of sensors to marine life including jellyfish, squid and lobster.

    • Camilo Duque Londono
    • , Seth F. Cones
    •  & Xuanhe Zhao
  • Article
    | Open Access

    CALF-20 MOF is considered a benchmark sorbent for industrial scale CO2 capture. Here authors use machine-learning potential simulations to show that CALF-20 exhibits anomalous structural responses to temperature and strain stimuli, with potential applications in mechanical/thermal sensing.

    • Dong Fan
    • , Supriyo Naskar
    •  & Guillaume Maurin
  • Article
    | Open Access

    The correlation between asymmetric molecular geometry of non-fullerene acceptors and their optoelectronic properties was unclear. Here, the authors found asymmetric ones exhibit increased open-circuit voltage compared to their symmetric counterparts due to reduced non-radiative charge recombination.

    • Jinfeng Huang
    • , Tianyi Chen
    •  & Lijian Zuo
  • Article
    | Open Access

    Proton exchange membrane electrolyzers hold promise for ethylamine synthesis from acetonitrile, yet local acidity fosters proton reduction. Here, authors systematically screen metal catalysts, verifying their effectiveness in such electrolyzers.

    • Chongyang Tang
    • , Cong Wei
    •  & Xiangfeng Duan
  • Article
    | Open Access

    Photo-crosslinking polymerization facilitates precise control of hydrogel formation for various applications including tissue engineering, but most existing photo-crosslinking methods fail to achieve deep-tissue penetration, especially within bone structures. Here the authors report a strategy of low-dose X-ray-activated polymerization that enables deep-tissue hydrogel formation.

    • Hailei Zhang
    • , Boyan Tang
    •  & Gang Han
  • Article
    | Open Access

    Simultaneously quantifying mitochondrial Cu+ and Cu2+ levels is vital for understanding the molecular mechanism of mitochondria-related biological events. Here the authors report an alkynyl-labeled SERS probe to simultaneously monitor free Cu+ and Cu2+ in mitochondria, and unveil their roles during ischemia and cuproptosis processes.

    • Sihan Zhang
    • , Yuxiao Mei
    •  & Yang Tian