Chemical origin of life articles within Nature Communications

Featured

  • Article
    | Open Access

    Coacervate-based compartments are attractive as potential protocells, but formation and control of the compartments can be challenging. Here, the authors report the spontaneous formation of core-shell, cell-sized coacervate compartments driven by droplet evaporation.

    • Cheng Qi
    • , Xudong Ma
    •  & Zhou Liu
  • Article
    | Open Access

    Coacervate droplets are promising protocells that sequester nutrients, but how new peptides could be synthesized inside coacervates remains a mystery. Here, the authors develop redox-active coacervates that facilitate the formation of new peptide bonds.

    • Jiahua Wang
    • , Manzar Abbas
    •  & Evan Spruijt
  • Article
    | Open Access

    Protocell’s survival and fitness under prebiotic radiations are elusive. Here, the authors present a radioresistant protocell model based on the assembly of two types of coacervate droplets, formed through interactions of inorganic polyphosphate with manganese and cationic tripeptide, respectively, and show that nonenzymatic Mn antioxidants are essential for its resistance to radiation.

    • Shang Dai
    • , Zhenming Xie
    •  & Bing Tian
  • Article
    | Open Access

    Homochirality, a key feature of life, has unknown origins. Magnetic mineral surfaces can act as chiral agents, but are only weakly magnetized by nature. Here, the authors report the uniform magnetization of magnetite by an RNA precursor that spreads across the surface like an avalanche.

    • S. Furkan Ozturk
    • , Deb Kumar Bhowmick
    •  & Dimitar D. Sasselov
  • Article
    | Open Access

    Achieving a form of coupling between molecular content, chemical reactions, and chassis in synthetic compartments represents a key step to the assembly of evolvable protocells but remains challenging. Here, the authors design coacervate droplets that promote non-enzymatic oligonucleotide polymerization and that restructure as a result of the reaction dynamics.

    • Tommaso P. Fraccia
    •  & Nicolas Martin
  • Comment
    | Open Access

    The early Hadean eon (>4Ga) may have had a periodically ice-covered global ocean and limited subaerial landmass, and this could have resulted in infrequent lightning occurrence. This infrequency of lightning may have limited the synthesis of prebiotic compounds necessary for life’s origins. Here I present a hypothesis that lightning associated with volcanic island eruptions created focal points for the generation of prebiotic ingredients and ultimately the origin of life.

    • Jeffrey L. Bada
  • Article
    | Open Access

    Non-equilibrium conditions at heated water-air interfaces can model Hadean microenvironments. Here, the authors show that such conditions enable one-pot synthesis, strand release and folding of functional RNAs similar to modern biological systems.

    • Annalena Salditt
    • , Leonie Karr
    •  & Hannes Mutschler
  • Article
    | Open Access

    Synthetic Ni-Fe nanoparticles have been demonstrated as catalysts for CO2 fixation to formate, acetate, and pyruvate at higher temperatures. Here, the authors show these can convert pyruvate to citramalate at the ambient temperature, in line with origin of microbial metabolism under hydrothermal vent conditions.

    • Tuğçe Beyazay
    • , Kendra S. Belthle
    •  & Harun Tüysüz
  • Article
    | Open Access

    A challenge for synthetic biology is the design and construction of prototissue. Here, the authors spatially segregate layers of enzyme-decorated coacervate protocells as a model prototissue capable of chemical signal processing and modulating outputs of nitric oxide to inhibit blood clot formation.

    • Songyang Liu
    • , Yanwen Zhang
    •  & Jianbo Liu
  • Article
    | Open Access

    Phosphate is critical for all life on Earth but its origins have remained enigmatic. Experiments indicate that phosphate may have been abundant in ancient Fe-rich seawater, providing a crucial ingredient for the origins of life on Earth.

    • Matthew P. Brady
    • , Rosalie Tostevin
    •  & Nicholas J. Tosca
  • Article
    | Open Access

    Researchers at Newcastle University have discovered a mechanism by which earthquakes create bursts of hydrogen peroxide and oxygen in hot underground fractures. These may have played a vital role in the early evolution and origin of life on Earth.

    • Jordan Stone
    • , John O. Edgar
    •  & Jon Telling
  • Article
    | Open Access

    How photosynthetic oxygen evolution is originated on ancient Earth is unknown. Here, the authors find that some amino acid residues at the ligand sites of the Mn cluster can be posttranslationally converted to the original carboxylate residues, which could have contributed to the evolutionary process of photosynthetic oxygen evolution.

    • Yuichiro Shimada
    • , Takehiro Suzuki
    •  & Takumi Noguchi
  • Article
    | Open Access

    Signal processing for downstream functional and morphological adaptations is crucial for understanding and re-enacting features of living systems. Here, the authors show DNAzyme-containing, metabolic protocells that induce prototissue formation via chemical messenger communication due to in situ cleavage of upstream DNA signals.

    • Avik Samanta
    • , Maximilian Hörner
    •  & Andreas Walther
  • Article
    | Open Access

    Macromolecular aggregates may have played an important role in the origin of life. Here, the authors report hydrophobic-cationic peptides that form insoluble aggregates, which reversibly accrete RNA on their surfaces, and enhance RNA polymerization by a ribozyme.

    • Peiying Li
    • , Philipp Holliger
    •  & Shunsuke Tagami
  • Article
    | Open Access

    One of the early processes enabling the origins of life is thought to be the condensation of building blocks into oligomers and polymers. In this article, the authors report the synthesis of thiodepsipeptides and HS-peptides under mild temperatures and various pH, suggesting they could have formed on early prebiotic Earth.

    • Moran Frenkel-Pinter
    • , Marcos Bouza
    •  & Aikomari Guzman-Martinez
  • Article
    | Open Access

    “A hallmark of living systems is their homochirality, the selection of specific mirror symmetry in their molecules. Here, the authors show that chiral symmetry can be spontaneously broken in complex, random chemical systems via exploitation of environmental energy sources – a possible mechanism for the emergence of homochirality in life.”

    • William D. Piñeros
    •  & Tsvi Tlusty
  • Article
    | Open Access

    Chiroptical properties of amino acids are challenging to investigate in the gas phase due to the low vapor pressure of these molecules. Here the authors succeed in measuring circular dichroism active transitions and anisotropies in the ultraviolet range for several gas-phase amino acids, shedding light on the interactions between molecules and circularly polarized light that lead to chiral symmetry breaking.

    • Cornelia Meinert
    • , Adrien D. Garcia
    •  & Uwe J. Meierhenrich
  • Article
    | Open Access

    Peptide bond formation is one of the key biochemical reactions needed for the formation of life, but is thermodynamically unfavoured in water. Here, the authors report on the possibility of complex oligomer formation in liquid sulphur dioxide which may have existed on early Earth at the emergence of life.

    • Fabian Sauer
    • , Maren Haas
    •  & Oliver Trapp
  • Article
    | Open Access

    Coacervate droplets (CDs) are a model for protocells formed by liquid-liquid phase separation (LLPS), but protocell models able to proliferate remain undeveloped. Here, the authors report a proliferating peptide-based CD using synthesised amino acid thioesters as monomers, which could concentrate RNA and lipids, enabling RNA to protect the droplet from dissolution by lipids.

    • Muneyuki Matsuo
    •  & Kensuke Kurihara
  • Article
    | Open Access

    Transfer of scarce phosphate to organic molecules is a significant challenge for prebiotic chemistry. Here authors show a prebiotic physicochemical cycle to activate orthophosphate and via a kinetically stable, thermodynamically activated molecule phosphorylate all of life’s basic building blocks.

    • Oliver R. Maguire
    • , Iris B. A. Smokers
    •  & Wilhelm T. S. Huck
  • Article
    | Open Access

    The “anti-branching rule”, introduced in 1950, excludes branched polyphosphates from biological relevance due to their supposedly rapid hydrolysis. Here, the authors synthesize monodisperse branched polyphosphates and demonstrate their unexpected stability in water, as well as provide evidence for their competence in phosphorylation.

    • Tobias Dürr-Mayer
    • , Danye Qiu
    •  & Henning J. Jessen
  • Article
    | Open Access

    Active coacervate droplets are droplets coupled to a chemical reaction that maintains them out of equilibrium, which can be used to drive active processes, but coacervates are still subject to passive processes that compete with or mask growth. Here, the authors present a nucleotide-based model for active coacervate droplets that form and grow by fuel-driven synthesis of ATP, and, importantly, do not undergo Ostwald ripening.

    • Karina K. Nakashima
    • , Merlijn H. I. van Haren
    •  & Evan Spruijt
  • Article
    | Open Access

    The transition of prebiotic chemistry to present-day chemistry lasted a very long period of time, but the current laboratory investigations of this process are mostly limited to a couple of days. Here, the authors develop a fully automated robotic prebiotic chemist designed for long-term chemical experiments exploring unconstrained multicomponent reactions, which can run autonomously and uses simple chemical inputs.

    • Silke Asche
    • , Geoffrey J. T. Cooper
    •  & Leroy Cronin
  • Article
    | Open Access

    Evolution selects for the fittest but must operate within the realm of the physically possible. Here, the authors present a theoretical framework that allows them to explore how ten abiotic constraints can shape the operation, regulation, and adaptation of metabolism in E. coli.

    • Amir Akbari
    • , James T. Yurkovich
    •  & Bernhard O. Palsson
  • Article
    | Open Access

    The search for life in the universe is difficult due to issues with defining signatures of living systems. Here, the authors present an approach based on the molecular assembly number and tandem mass spectrometry that allows identification of molecules produced by biological systems, and use it to identify biosignatures from a range of samples, including ones from outer space.

    • Stuart M. Marshall
    • , Cole Mathis
    •  & Leroy Cronin
  • Article
    | Open Access

    UV-induced photodamage that likely occurred during the prebiotic synthesis of DNA and RNA is still an untackled issue for their origin on early Earth. Here, the authors show that substitution of 2,6-diaminopurine for adenine enables repair of cyclobutane pyrimidine dimers with high yields, and demonstrate that both 2,6-diaminopurine and adenine nucleosides can be formed under the same prebiotic conditions.

    • Rafał Szabla
    • , Magdalena Zdrowowicz
    •  & Janusz Rak
  • Article
    | Open Access

    So far, only a few chemical oscillators based on organic reactions have been developed. Here, the authors report both autocatalytic and oscillatory reaction networks that form substituted guanidines from thiouronium salts; when coupled to cascade cyclization, this reaction network produces oscillations in the production of pyrimidine-based heterocycles.

    • Alexander I. Novichkov
    • , Anton I. Hanopolskyi
    •  & Sergey N. Semenov
  • Article
    | Open Access

    Artificial molecular systems can show complex kinetics of reproduction, however their integration into larger ensembles remains a challenge towards evolving higher order functionality. Here authors use show that self-reproducing lipids can initiate and accelerate octanol droplet movement and that reciprocally chemotactic movement of these droplets increases the rate of lipid reproduction substantially.

    • Dhanya Babu
    • , Robert J. H. Scanes
    •  & Nathalie Katsonis
  • Article
    | Open Access

    Furanose species have a key role in the chemistry of life despite their instability over pyranose ones. The authors, through NMR characterization of the anomeric ratios at equilibrium and a non-equilibrium theoretical treatment, show that a steady temperature gradient, at temperatures relevant to the early Earth, favors furanose over pyranose isomers.

    • Avinash Vicholous Dass
    • , Thomas Georgelin
    •  & Francesco Piazza
  • Article
    | Open Access

    Autocatalytic networks may have started evolution during the origin of life. Here, the authors establish a landscape of thousands of RNA networks by barcoded sequencing and microfluidics, and derive relationships between topology and Darwinian properties such as variation and differential reproduction.

    • Sandeep Ameta
    • , Simon Arsène
    •  & Philippe Nghe
  • Article
    | Open Access

    A world preceding the prebiotic RNA-world may have been based on xeno nucleic acids (XNAs), but their replication likely did not require enzymes. Here, the authors demonstrate template-directed non-enzymatic synthesis of an XNA, acyclic l-threoninol nucleic acid, via chemical ligation mediated by N-cyanoimidazole, and achieve a pseudo-primer extension of this XNA with all four nucleobases.

    • Keiji Murayama
    • , Hikari Okita
    •  & Hiroyuki Asanuma
  • Article
    | Open Access

    Mimicking the crowded cytosol of cells in synthetic cells has been a major limitation to the functionality. Here, the authors used the interaction between nickel, nitrilotriacetic acid and histidine tagged proteins to control loading of macromolecules into spatially programmed coacervate-based protocells.

    • Wiggert J. Altenburg
    • , N. Amy Yewdall
    •  & Jan C. M. van Hest
  • Article
    | Open Access

    Photosynthetic formation of manganese (Mn) oxides from dissolved Mn ions was proposed to occur in ancestral photosystems before oxygenic photosynthesis evolved. Here, the authors provide evidence for this hypothesis by showing that photosystem II devoid of the Mn cluster oxidises Mn ions leading to formation of Mn-oxide nanoparticles.

    • Petko Chernev
    • , Sophie Fischer
    •  & Holger Dau
  • Article
    | Open Access

    Short cationic peptides and nucleotides can form complex coacervates, but the influence of reduced multivalency on coacervate functionality was not investigated. Here, the authors report that coacervates formed from short polyions generate distinct pH microenvironments, accumulate RNA and preserve nucleic acid duplexes more efficiently than their longer counterparts.

    • Fatma Pir Cakmak
    • , Saehyun Choi
    •  & Christine D. Keating
  • Article
    | Open Access

    Wet-dry cycling is thought to have enabled the production of molecular building blocks of life. Here, the authors investigate the impact of dehydration/rehydration on RNA-containing complex coacervates, which are membraneless compartments formed by phase separation of polyelectrolyte solutions.

    • Hadi M. Fares
    • , Alexander E. Marras
    •  & Christine D. Keating
  • Article
    | Open Access

    Membraneless organelles are liquid-liquid phase-separated droplets whose behaviour can be regulated by chemical reactions, but this process is poorly understood. Here, the authors report model membraneless organelles based on coacervate droplets that show fuel-driven dynamic behaviour and concentrate functional RNA.

    • Carsten Donau
    • , Fabian Späth
    •  & Job Boekhoven
  • Article
    | Open Access

    ATP acts as a co-substrate in enzyme catalysed reactions, but can also specifically bind metal ions. Here, the authors show that ATP interacts with copper ions and forms a Cu(II)-ATP complex that efficiently catalyses Diels-Alder reactions, and determine ATP residues that are essential for this activity.

    • Changhao Wang
    • , Qianqian Qi
    •  & Jörg S. Hartig
  • Article
    | Open Access

    The feasibility of molecular assemblers as a device to control chemical reactions by positioning molecules with atomic precision is a matter of debate in the literature. Here the authors describe of a rudimentary synthetic molecular assembler, supramolecular aggregate of bifunctional surfactants produced by the reaction of two phase-separated reactants that produces polymers.

    • Anthonius H. J. Engwerda
    •  & Stephen P. Fletcher
  • Article
    | Open Access

    Formation of peptide bonds in cold gas-phase environments might represent a prebiotic synthesis route of polypeptides. Here, the authors show the formation of up to tetra-peptide species in the collision of He2+ ions, with kinetic energies typical for solar wind ions, with cold β-alanine clusters.

    • Patrick Rousseau
    • , Dariusz G. Piekarski
    •  & Bernd A. Huber
  • Article
    | Open Access

    Structurally divergent reactions on racemic mixtures, which produce distinct chemical species from an enantiomeric mixture, are extremely rare in the literature. Here, the authors are able to use a dynamic combinatorial approach to yield structurally divergent, non-isomeric [2]catenanes from an enantiomeric mixture.

    • Tiberiu-M. Gianga
    •  & G. Dan Pantoș
  • Article
    | Open Access

    Cooperative relationships are widespread among different classes of biopolymers and are predicted to have existed during emergence of life. This study shows that proto-peptides engage in mutually stabilizing interactions with RNA, providing support for the co-evolution of these molecules.

    • Moran Frenkel-Pinter
    • , Jay W. Haynes
    •  & Luke J. Leman
  • Article
    | Open Access

    Models of the origin of life generally require a mechanism to structure emerging populations. Here, Krieger et al. develop spatial models showing that coherent structures arising in turbulent flows in aquatic environments could have provided compartments that facilitated the origin of life.

    • Madison S. Krieger
    • , Sam Sinai
    •  & Martin A. Nowak
  • Article
    | Open Access

    The principles of intercellular communication in multicellular organisms can be explored using artificial cells. Here, the authors report on giant vesicles which can recognize diffused chemical signals and amplify the signal by synthetic enzymatic cascades to allow signal propagation over long distances.

    • Bastiaan C. Buddingh’
    • , Janneke Elzinga
    •  & Jan C. M. van Hest
  • Article
    | Open Access

    Selection in compartmentalized self-replicating systems might provide a way for life to arise from abiotic environments. Here, the authors explore selection in a system of transient autocatalytic lipids and find that autocatalytic kinetics and phase separation are the key selection factors.

    • Ignacio Colomer
    • , Arseni Borissov
    •  & Stephen P. Fletcher
  • Article
    | Open Access

    Although bistability is common in biology, it is very difficult to design de novo into synthetic systems. Here, the authors present an experimental and theoretical analysis of a chemical network that displays bistable behavior under certain far-from-equilibrium conditions, and map the parameter space in which bistability operates.

    • Indrajit Maity
    • , Nathaniel Wagner
    •  & Gonen Ashkenasy
  • Article
    | Open Access

    Wet–dry cycling is regarded as a possible driving force of condensation reactions under prebiotic conditions. Here, the authors propose that water uptake by deliquescent minerals could have facilitated the wet phase and simulate this scenario using the oligomerization of glycine as a model reaction.

    • Thomas D. Campbell
    • , Rio Febrian
    •  & Paul J. Bracher